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Abstract 
 

The aim of this paper is to study the activities of ceria-zirconia and copper/ceria-
zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot 
combustion reaction under different gas atmospheres and loose contact mode 
(simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce 
mechanistic implications.  

Activity tests were performed under isothermal and TPR conditions. The NO 
oxidation to NO2 was studied as well. It was checked that mass transfer limitations were 
not influencing the rate measurements. Global activation energies for the catalysed and 
non-catalysed soot combustion were calculated and properly discussed.  

The results reveal that ceria-based catalysts greatly enhance their activities under 
NOx/O2 between 425ºC and 450ºC, due to the “active oxygen”-assisted soot 
combustion. Remarkably, copper/ceria-zirconia shows a slightly higher soot combustion 
rate than the Pt-based catalyst (under NOx/O2, at 450ºC).  
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1. Introduction 

 

The raise of diesel-engine vehicles in the recent years has consequently increased 

the concentration of soot particles (PM) and nitrogen oxides (NOx) in the atmosphere. 

The hazardous effects of these pollutants on our health and the environment have led to 

strictly regulations in the composition of the diesel exhaust gases, in order to diminish 

the emissions of soot and NOx [1-4].  

 

Diesel particulate filters (DPFs) are appropriate systems to remove soot particles 

generated by the diesel engines [5]. DPFs are wall-flow monoliths that need to be 

regenerated due to the channel blocking produced by soot accumulation. An effective 

regeneration strategy consists of coating the DPF’s walls with an oxidation catalyst in 

order to oxidise soot to CO2, preferentially.  

 

There are two oxidising gases present in diesel exhaust emissions that are suitable 

for soot combustion: O2 and NO2. They both play an important role in DPF 

regeneration. In diesel exhaust emissions, O2 is much more abundant than NO2. 

However, NO2 is much more active than O2, since it can directly attack the carbon 

surface. It has been shown that the oxidation of soot by NO2 occurs at typical exhaust 

temperature of diesel engines (250-400ºC) [2,6-13]. 

 

Among the several catalysts used for soot combustion, the most common are: 

molten salts [14-17], Pt-based oxides [18-21], ceria-based oxides [18,19,22-28], and 

others based on transition metals (such as copper or iron) [20,24,26,29-34]. Although 

those catalysts containing Pt show a very high activity in the NO oxidation to NO2 (and 

thus, promoting soot combustion), some other catalysts are being developed, whose 

NO2 production activities are becoming closer to those of Pt-based catalysts, but with 

lower costs.  

 

However, the NO to NO2 oxidation capacity does not match linearly to the soot 

combustion rate, because there are some other factors that influence this reaction, such 

as lattice oxygen mobility and production and transfer of “active oxygen”, as reported in 

the literature for ceria-based catalysts [22,35]. In a recent preliminary study [36], the 
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rate of soot combustion under isothermal conditions at 400°C shown by a copper-doped 

ceria-zirconia catalyst was very high, and only a little bit lower than that of a 

commercial Pt-catalyst in terms of mass of catalyst, but higher if the activity was 

expressed in terms of price of catalyst. 

 

Even though a large number of catalytic formulations have been tested for the 

catalytic combustion of diesel soot, a lot of work is still needed in order to advance 

towards a rational catalyst design. To get information regarding each catalyst 

component’s role, intrinsic reaction rates must be evaluated. Consequently, mass 

transfer limitation phenomena must be minimised. Working under realistic soot-catalyst 

contact (loose contact) implies that mass transfer limitations could become very 

important, thus decreasing the overall reaction rate. For this reason, the tight contact 

mode has been widely used to obtain kinetic data of the catalytic soot combustion [37-

39]. However, it is necessary to obtain reaction rates under loose contact in order to 

determine intrinsic kinetics to achieve an efficient design and operation of the DPF-

coated system. 

 

Numerous researchers have conducted experiments to define the kinetics associated 

to soot combustion, but the activation energy values reported present discrepancies, 

because they can be quite dependent on the experimental conditions, mainly the gaseous 

atmosphere used, due to the synergic effects among the gaseous reactants and the type 

of contact among the soot and the catalyst particles [28, 40].  

 

Therefore, a comprehensive analysis is required to accurately evaluate kinetic 

parameters under loose contact conditions with very active soot combustion catalysts, 

presenting acceptable reaction rates at temperatures close to those of the diesel exhaust. 

 

In order to shed more light on this matter, the present study analyses the 

performance of two very active ceria-based catalysts (undoped and copper-doped 

catalysts) as well as a commercial Pt/alumina catalyst in a set of experiments (under 

isothermal/ramp modes and under different gas atmospheres) to explore the 

opportunities of ceria-based catalysts versus the noble-metal supported catalyst for the 

soot combustion application. The combustion assisted by NO2, by “active oxygen” as 
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well as the NO ↔ NO2 recycling efficiency of the catalysts were analysed. The 

selection of the most appropriate experimental conditions to obtain reliable kinetic data 

was carried out. The results obtained from the kinetic study and the mechanistic 

implications derived from the whole experimental results were properly discussed. 

 

The aim of this paper is to conduct a systematic study of the ceria-based catalysts’ 

activities for soot combustion, comparing to a commercial platinum/alumina catalyst, in 

order to justify the different catalytic behaviours under different atmospheres. Since the 

selected catalysts are very active for soot combustion, it is possible to obtain reliable 

kinetic parameters under realistic diesel exhaust conditions (loose contact and 

temperature). To carry out this approach, it is important to verify in a preliminary study 

that the reaction is controlled by chemical regime and activity measurements are 

reproducible. 

 

 

2. Material and methods 

 

2.1.  Catalysts preparation 

The Ce0.8Zr0.2O2 mixed oxide (denoted as CZ) was synthesised by the co-

precipitation method in alkaline medium, by using the cerium and zirconium precursors 

(NH4)2Ce(NO3)6 (supplied by Panreac with 99.0% purity) and ZrO(NO3)2·xH2O 

(supplied by Sigma-Aldrich, with x≈6, technical grade), respectively. The appropriate 

amounts of these precursors were dissolved in distilled water. The corresponding 

hydroxides of cerium and zirconium were co-precipitated by dropwise addition of a 

10% ammonia solution in water until pH=9, under constant stirring. The solid obtained 

was then filtered under vacuum and the yellowish precipitate was washed with distilled 

water until neutral pH. Finally it was dried overnight at 110°C and calcined in air in a 

muffle at 500°C for 1 h, with a heating rate of 10°C/min. 

 

The Ce0.8Zr0.2O2-supported catalyst with Cu 2wt% (denoted as Cu2/CZ) was 

prepared by incipient wetness impregnation with an aqueous solution of 

Cu(NO3)2·3H2O (supplied by Panreac with 99.0% purity). After impregnation, the 

sample was dried overnight in an oven at 110°C and thereafter calcined under air at 
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500°C for 1 h, with a heating rate of 10°C/min. The actual copper content on the 

catalyst was close to the nominal value, as verified by ICP-OES (Perkin Elmer, Optima 

3000). The copper was extracted from the catalyst using a mixture of concentrated 

HCl/HNO3 (3/1 ratio). For comparative purposes in selected experiments, another 

catalyst with Cu 6wt% (denoted as Cu6/CZ) was prepared by the same method. 

The commercial 1%Pt/Al2O3 catalyst (denoted as Pt1/AL) was supplied by Sigma-

Aldrich. 

The three representative catalysts present a very similar average crystal size, 

determined by XRD (around 6 nm). A complete physico-chemical characterisation of 

them was reported elsewhere [36]. 

 

2.2.  Catalytic activity 

2.2.1. Temperature Programmed Reactions (NO to NO2 oxidation and soot 

combustion) 

The catalytic tests were performed in a tubular quartz reactor coupled to specific 

NDIR–UV gas analysers (Fisher–Rosemount, models BINOS 100, 1004 and 1001) for 

CO, CO2, NO, NO2 and O2 monitoring. For the NO oxidation tests, 80 mg of catalyst 

were diluted with 320 mg of SiC to avoid pressure drop. The gas mixture used 

comprised 500 ppm NOx, 5% O2 and balance N2; the gas flow was fixed at 500 ml/min 

(GHSV = 30,000 h−1). The experimental set-up has been designed in order to ensure that 

the proportion of NO2 in the NO+O2 mixture fed to the reactor is negligible. The 

catalytic tests consisted of temperature programmed reactions, where the temperature 

was increased from room temperature up to 700ºC at 10ºC/min under the reactive 

atmosphere, with the purpose of quantifying the NO to NO2 oxidation capacity of the 

catalysts. 

 

The NO2 production profiles were determined in relation to the total amount of NOx 

as a temperature function using the following expression (equation 1): 

 

NO2 (%) = 100·(NO2 output)/(NOoutput + NO2 output)          (1) 
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where NOoutput and NO2output are the NO and NO2 concentrations, respectively, 

measured at the reactor exit. 

 

Soot combustion under temperature programmed conditions was conducted with a 

heating rate of 10ºC/min from room temperature to 700ºC. 80 mg of catalyst were 

mixed with 20 mg of Printex-U soot (supplied by Evonik-Degussa) in loose contact 

conditions [41], diluted with 300 mg of SiC (to avoid pressure drop and favour heat 

transfer), and placed in the reactor. Two different atmospheres were used to carry out 

the TPR experiments: i) under NOx/O2, the gas mixture comprised 500 ppm NOx, 5% 

O2 and balance N2; ii) under O2, the gas mixture comprised 5% O2 and balance N2. 

Besides, the uncatalysed reaction was tested as well under 500 ppm NO2, 5% O2 and 

balance N2. The gas flow was fixed at 500 ml/min in all cases (GHSV = 30,000 h−1). 

 

2.2.2. Isothermal reactions and mass transfer limitations analysis 

Soot combustion tests were performed with the catalysts in isothermal mode (400ºC, 

425ºC and 450ºC) under NOx/O2, in the same experimental conditions than those 

described above.  

 

Soot combustion reaction yields to the formation of two possible products: CO and 

CO2. Selectivity to CO2 formation (equation 2) is also an important parameter that was 

determined by using the expression:  

 

Selectivity to CO2 (%) = 100·(CO2)/(CO+CO2)          (2) 

 

where CO and CO2 are the CO and CO2 concentrations, respectively, measured at 

the reactor exit. 

 

Since the aim of comparing intrinsic catalytic activities is to work under a kinetic 

controlled regime, a fundamental aspect to take into account is the absence of mass 

transfer limitations. In the particular case of soot combustion reaction, only external 

mass transfer limitations can take place since only the external catalytic surface may be 

in contact with the soot. In order to verify that there are no external mass transfer 

limitations, different sets of experiments were carried out. The criterion was based on 
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conducting rate measurements varying the experimental conditions. For this purpose, 

Koros-Nowak test modified by Madon-Boudart was employed [42]. CZ was chosen as a 

representative catalyst to check if mass transfer phenomena were significantly 

influencing the soot combustion reaction. These experiments were conducted in 

isothermal conditions at 450ºC, under NOx/O2. Two sets of experiments were 

performed:  

- Experiments where the space velocity (GHSV) was kept constant by varying in the 

same ratio the gas flow and the amount of solids in the reactor, and thereby changing 

the bed volume proportionally (experiments designated as A1, A2 and A3).  

- Experiments where only the catalyst mass was modified (A1 and B1). 

Table 1 shows the summary of the employed conditions. 

 

On the other hand, given the high exothermicity of the soot combustion reaction, a 

reaction runaway could take place [43]. In this sense, possible local heating in the 

catalytic bed due to the heat generated during the reaction was avoided by placing SiC 

in the reactor. Under these experimental conditions, the catalytic bed temperature 

monitoring along the temperature programmed soot combustion reaction is similar to 

that followed along the NO oxidation reaction, confirming that no significant energy 

transfer limitations are taking place. 

 

 

3. Results and discussion 

3.1.  Mass transfer limitations analysis 

In order to establish that the measurements are not influenced by external mass 

transfer phenomena, Koros-Nowak test modified by Madon-Boudart has been carried 

out, considering a differential reactor [42].  

 

A set of experiments (denominated A1, A2 and A3) has been conducted maintaining 

constant the space velocity in the reactor, as explained in Section 2.2.2. If the space 

velocity is kept constant, Koros-Nowak criterion is obeyed if the observed conversion is 

invariant [42]. Figure 1 depicts the activity curves obtained from A1, A2 and A3 

experiments (see Table 1). Soot combustion rate is expressed as mgsoot·s-1·gcatalyst
-

1·ginitial soot
-1 for a reliable comparison. The corresponding isothermal profiles are quite 
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similar for A1, A2 and A3, thus revealing that Koros-Nowak criterion is obeyed and 

therefore mass transfer effects are not significant under these experimental conditions. 

 

On the other hand, another set of experiments (A1 and B1) have been conducted by 

modifying only the concentration of the catalytically active material. It is expected that 

combustion rate changes proportionally to the catalyst mass in the kinetic regime. 

Figure 2 shows the isothermal curves at 450ºC for the experiments A1 and B1. Soot 

combustion rate approximately decreases in a 3/4 ratio, from 0.18 mgsoot·s-1·ginitial soot
-

1 (for 80 mg of catalyst), to 0.12 (for 60 mg of catalyst), when conversion is 20%. This 

ratio is observed for any conversion considered, with small deviations.  

 

Taking into consideration all these results, it can be confirmed that mass transfer 

effects are not influencing significantly our measurements under isothermal conditions 

at 450ºC. Therefore, it can be assumed that mass transfer limitations will be irrelevant at 

the lower temperatures (400ºC and 425ºC). 

 

 

3.2.  TPR experiments 

Soot combustion profiles versus temperature obtained in selected combustion 

experiments, carried out with the commercial Pt-catalyst along with the ceria-containing 

catalysts (CZ and Cu2/CZ), are shown on Figure 3. Whatever the temperature range 

considered, the commercial Pt catalyst is always more active than the ceria-containing 

catalysts under NOx/O2. Cu2/CZ catalyst shows better response in the range of lower 

temperatures regarding CZ, while their activities are very similar in the range of higher 

temperatures.  

 

The corresponding non-catalysed soot combustion under NO2/O2 is also shown on 

Figure 3. It can be seen that the existent loose contact between catalyst and soot 

accelerates the soot combustion reaction in a superior way than a NO2/O2 stream would 

produce; the latter would simulate an efficient Diesel Oxidation Catalyst in a CRT 

system. In other words, a constant NO2/O2 stream (500 ppm NO2 and 5% O2) passing 

through the soot bed cannot be the sole explanation for the catalytic behaviour of the 

selected samples, because if so, the curves would be superimposed (or that 
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corresponding to the non-catalysed NO2/O2 combustion moved towards lower 

temperatures).  

 

The corresponding soot combustion curves under a NO-free atmosphere (only 

containing 5% O2) are illustrated on Figure 4. The order of activity is quite different to 

that found under NOx/O2 and now the Pt-based catalyst is the least active of the set of 

catalysts and the other two catalysts (CZ and Cu2/CZ) present very similar soot 

conversion curves. As expected, these three curves are shifted towards higher 

temperatures in the NO-free stream, due to the absence of the NO2-assisted soot 

combustion.  

 

In order to explore the specific mechanisms that take part in the catalytic oxidation 

of soot, thus explaining the superior activity of the studied catalysts under NOx/O2 with 

regard to the non-catalysed NO2/O2 combustion, Figure 5 shows the evolution of the 

NO2 production profiles during blank experiments and Figure 6 illustrates the same 

profiles obtained from the soot combustion experiments under NOx/O2 (curves of NO2 

slip). It is interesting to note that even though the soot combustion is seen considerably 

accelerated in the case of the Pt-catalyst, the difference between the NO2 blank profile 

and the NO2 slip profile is very small (4% in the maximum, approximately), if it is 

compared with the corresponding differences measured for the other two ceria-based 

catalysts. These ideas, joined to the lowest activity shown by the Pt-containing catalyst 

under O2/N2 stream, lead to assess that the high activity towards soot combustion 

originated by the noble metal catalyst is not only due to its highest NO2 production 

during a blank experiment. This high activity is also attributed to the high efficiency of 

the commercial Pt-catalyst to recycle the NO molecules derived from the NO2-soot 

reaction again to NO2 along the catalyst-soot bed.  

 

However, and very importantly, the capacity of the two ceria-based catalysts to 

recycle efficiently the NO molecules along the catalytic reactor, if any, is moderate. 

Anyway, the NO2 production in the loose contact mode (between catalyst and soot) is 

not the rate-limiting step under our experimental conditions, since NO2 slip always 

emerges whatever the temperature range investigated.  
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Discussing now the benefits of doping ceria-zirconia with copper towards soot 

combustion, it is worth noting that Cu conveniently accelerates the NO oxidation 

reaction, mainly at low temperatures, thus promoting the soot combustion reaction in 

the low-medium temperature range compared to the undoped ceria-zirconia. 

Nevertheless and as a consequence of the contribution of “active oxygen”-assisted soot 

combustion [44], both curves become very similar at high temperatures (Figure 3).  

 

On the other hand, it has been properly proved that a high loading of copper, with 

concomitant decrease in surface area and existence of crystalline/large entities of CuOx 

on ceria-zirconia’s surface inhibits the “active oxygen”-assisted soot combustion; this 

effect is observed for the Cu6/CZ sample, included on Figure 4. It was checked under 

O2/N2 stream, where the two main mechanisms contribution can be properly split up. 

Therefore, the 2% Cu loading is seen as an optimum amount of metal to accelerate the 

NO oxidation reaction, thus promoting the soot conversion rate, but it is not high 

enough to inhibit the “active oxygen”-assisted soot combustion.  

 

Additionally, copper seems not to be beneficial in terms of NO ↔ NO2 recycling 

activity, since NO2 slip production is low and similar for both ceria-containing catalysts 

compared to the Pt-catalyst (Figure 6).  

 

To summarise this section, Table 2 presents some activity data estimated from TPR 

curves under different atmospheres: NOx/O2, NO2 and O2 (Tonset, T5, T50, Selectivity to 

CO2). Considering the selectivity to CO2 production, all the non-catalysed reactions 

yield selectivities among 35% and 60%. In contrast, whatever the catalyst used, the 

selectivity is 85% or higher; even reaching 100% in some cases. In general terms, 

selectivity to CO2 using catalysts is better in O2 than in NOx/O2, as previous studies 

pointed out [45]. 

 

All the catalysts dramatically decrease the onset temperature for soot combustion 

(Table 2) under NOx/O2 in comparison to the corresponding non-catalysed (NC) 

reaction. The lowest onset temperature is found for Pt1/AL, followed by Cu2/CZ and 

CZ. In addition, catalysts also decrease the onset temperature for soot combustion under 

O2. When comparing temperatures of a 5% of conversion, the three catalysts have 
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approximately the same value; but moving to a 50% of conversion, the copper-doped 

catalyst becomes the best one, followed by CZ, and finally the platinum-based one.  

 

Finally, non-catalysed combustion under NO2 shows a very low onset temperature, 

thus confirming the importance of this molecule as an oxidising agent in this process. 

These results are in perfect agreement with previously reported data [44], where the 

NO2 production capacity of a catalyst is revealed as crucial for initiating and continuing 

the soot combustion process under NOx/O2.  

 

 

3.3.  Isothermal reaction experiments 

Soot combustion reactions in isothermal conditions were carried out for the catalysts 

studied, and corresponding combustion rate profiles versus conversion are depicted on 

Figures 7a, 7b and 7c, for 400ºC, 425ºC and 450ºC, respectively. Due to the very 

different reaction times to achieve the same values of conversions, the soot oxidation 

rates can be best compared as a function of the conversion data. At 400°C, 425ºC and 

450ºC, maximum oxidation rates were achieved for 10-30% of soot conversion. 

Whatever the reaction temperature tested, the selectivity values were close to 100%. It 

is worthwhile to note that the combustion reaction essentially stopped at approximately 

60-70% of soot conversion, after that, the soot oxidation rate was so low that the CO2 

emission level monitored by the analyser was that of the residual level of measurement. 

This is the reason why the profiles were not represented until 100% of conversion. 

Similar considerations related to soot combustion isothermal reactions have been 

described in the literature for different catalytic systems [14]. 

 

The activity curves show a parabolic shape: at the beginning of the reaction, the 

combustion rate increases up to around 10% of soot conversion; after this, steady state 

conditions are reached and the rate is kept constant for a period of time. Finally, the rate 

decreases progressively until the end of the experiment. This type of profile is similar to 

that described for several authors referred to the uncatalysed diesel soot combustion 

[46].  
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At 400ºC and 425ºC the same trends in catalysts’ activity are found and are similar 

to those found in TPR experiments in this temperature range. However, and remarkably, 

the activity for Cu2/CZ catalyst at 450ºC is slightly higher than the platinum-based one, 

changing the normal trend in activity, and thus showing a promising possible 

application of this formulation in diesel exhaust after-treatment systems. All these 

results highlight the importance of conducting experiments under isothermal conditions, 

at different temperatures, to complete the studies obtained from Temperature 

Programmed conditions. 

 

Furthermore, for a deeper analysis, isothermal soot combustion profiles are 

depicted, separately, on Figures 8a, 8b and 8c, for each catalyst. It is important to 

underline that the platinum catalyst (Figure 8c) shows a gradual and proportional 

increase in combustion rate with the temperature; meanwhile, combustion rates for 

ceria-based catalysts increase dramatically from 425ºC to 450ºC. It can be suggested 

that other contributions to the reaction mechanism could be relevant when increasing 

the reaction temperature from 425 to 450ºC. Since there are evidences of “active 

oxygen”-assisted soot combustion for ceria-based catalysts (see Figure 4), it is 

reasonable to assert that one of the possible causes explaining the wider difference in 

rates could be that this temperature (450°C) is high enough to promote the participation 

of the “active oxygen” in the soot combustion reaction. 

 

In order to shed more light on these observed trends, corresponding NO2 slip curves 

obtained from isothermal reactions are illustrated on Figure 9. Taking into account that 

the NO oxidation reaction to NO2 is disfavoured with temperature (see thermodynamic 

equilibrium on Figure 5) and that the soot combustion rate with NO2 increases with the 

temperature, the trend observed (for the Pt-catalyst) of decreasing the levels of NO2 slip 

with the reaction temperature is the expected one. However, for the ceria-containing 

catalysts this trend is not followed. It can be suggested that a concomitant 

decomposition of nitrite/nitrate species, generated during the NOx/O2/soot reaction is 

affecting their NO2 slip profiles. As a consequence, a possible role of this 

decomposition process in the kinetics of soot combustion when increasing the reaction 

temperature from 425 to 450°C cannot be neglected. Actually, Atribak et al. provide 

evidences about the NOx adsorption-desorption mechanism on ceria-zirconia [47]. 
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According to these authors, TPD results after NO+O2 adsorption at 350ºC reveal that 

the maximum NOx desorption for ceria-zirconia catalyst ranges between 425 and 

450ºC.  

 

 

 

3.4.  Kinetic parameters 

The isothermal combustion reactions performed at different temperatures were used 

to determine the global activation energies (Ea). Even though the kinetics involved in 

the soot combustion are very complex, simplified models can still be used to obtain a 

good global representation of the system and it is possible to estimate the global 

activation energy parameter. The power law kinetic expression chosen is that reported 

by Gross et al. [23,37]: 

 

ln(r) = ln(A) + ln(f(C, P)) + Ea/R·1/T  (3) 

 

where ‘r’ is the reaction rate; ‘A’ is the pre-exponential factor; ‘f(C, P)’ is a function 

that includes the dependence of the reaction rate with soot concentration, gas partial 

pressures, and soot particle geometry; ‘Ea’ is the global activation energy; ‘R’ is the 

gases universal constant; and ‘T’ is the absolute temperature.  

 

The global activation energy can be obtained using the set of soot combustion 

reactions at 400ºC, 425ºC and 450ºC, and measuring the reaction rate at the same 

conversion level. 

 

Experimental values of the reaction rate obtained at 20% conversion for the three 

catalysts studied are plotted as a function of (1/T) in Figure 10, exhibiting a reasonable 

linear fit. This level of conversion was chosen since it is representative of steady state 

conditions (see Figures 7a, 7b and 7c) [21]. It is worthwhile to mention that the whole 

combustion profile is quite reproducible, as demonstrated on Figure 7c for a 

representative catalyst (dotted line, Pt1/AL). The activation energies obtained from 

these Arrhenius plots (Figure 10) exhibit differences between the catalysts. The  
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tendency of activation energies is in agreement with the catalytic activity results, where 

it was shown that the platinum catalyst is the most active one (in general terms), and 

correspondingly, the one with the lowest activation energy. This will be properly 

discussed later. 

 

To check the dependence of the kinetic parameters with the soot conversion level, 

Table 3 compiles the global activation energy values, calculated for the three catalysts at 

different conversion levels. It is important to point out that this dependency on the 

conversion levels has been properly analysed in the literature for tight contact 

conditions, but it has been studied less extensively in loose contact conditions. The data 

reveal that the Ea parameter is slightly influenced by the conversion level as predicted 

by the kinetic model. Whatever the conversion percentage considered, the energy values 

follow the same trend: Pt1/AL catalyst presents the lowest values, followed by Cu2/CZ 

and finally CZ. Interestingly, the largest deviations in the activation energies when 

increasing the conversion level are for the CZ catalyst. These experimental evidences 

are in good agreement with the idea that the “active oxygen”-assisted soot combustion 

will be decisive for this mixed oxide, taking into account that this catalyst presents the 

lowest capacity to produce NO2. Therefore, combustion process will be particularly 

affected by the degree of contact between this catalyst and the soot, which will become 

worse and worse when increasing the conversion. 

 

Finally, it is useful the comparison with literature data in order to check the 

reliability of the simplified model used and subsequent data estimated. Kinetic 

parameters of catalysed and non-catalysed soot combustion have been determined in 

numerous studies mostly using fixed bed reactor (FBR) or thermogravimetric (TG) 

methods. For comparative purposes, it is interesting to mention the values of Ea 

obtained from uncatalysed combustion of Printex-U under O2 reported by Yerezets et 

al. (in the range of carbon conversion of 20-30%) [48], who found a value of 133 

kJ/mol, which is very congruent with that reported by Zouaoui et al. of 135 kJ/mol 

(using Vulcan soot) [28]. In addition, Stanmore et al. reported an activation energy 

range of 102-210 kJ/mol for this reaction [2]. On the other hand, under NOx/O2, 

Azambre et al. reported 132 kJ/mol of activation energy [18], and a value of 151 kJ/mol 

was reported by Kalogirou et al. [49]. Our uncatalysed Printex-U combustion under O2 
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and under NOx/O2 yielded values of 124 kJ/mol and 111 kJ/mol, respectively, which 

are in reasonable agreement with reported values. 

 

Taking into account that the uncatalysed soot combustion reaction with Printex-U 

under NOx/O2 (and O2) does not proceed in an appreciable manner at the temperatures 

of interest of the isothermal studies, activation energies were estimated, from an 

empirical and very simplified approach, considering differential reactor model at very 

low conversion levels (TPR mode). From the premises that non-catalysed Ea values are 

congruent with those published in the literature, activation energy values for all the 

catalysts studied were obtained using this procedure and collected in Table 2. It is 

important to highlight that the values for the three selected catalysts are in accordance 

with those results obtained from the set of isothermal reactions (see Table 3). 

 

The lowest Ea value in our studies was found to be 43 kJ/mol and corresponds to 

that obtained under NO2/O2 atmosphere. This is in agreement with other authors, such 

as Stanmore et al. [2], who found similar activation energy for this reaction (50 kJ/mol), 

Kandylas et al. [50], who reported 40 kJ/mol, and also Lee et al., reporting 44 kJ/mol 

[40]. This fact is in accordance with the idea that NO2 is much more active than O2 and 

can directly attack the carbon surface [28]. Actually, the activation energy measured for 

the direct soot-NO2 reaction is very similar to that obtained from platinum-catalysed 

reaction under NOx/O2 [21], (consistent values from TPR and isothermal conditions). 

These results confirm the idea that the relevant reaction pathways influencing the soot 

combustion rate for the case of Pt are the NO2 net production and/or recycling of NO-

NO2, being the “active oxygen”-assisted soot contribution much less important (see 

Figure 4). 

  

Table 4 compiles information about activation energies for the catalysed soot 

combustion reported in the literature. Some representative activation energies are: 72 

and 77 kJ/mol, for ceria and ceria-zirconia (under NOx/O2), and 135 and 138-149 

kJ/mol (under O2), respectively [18,27,28]. By comparing with our results, these values 

are close to those found for CZ under NOx/O2 and O2. Cu2/CZ catalyst improves the 

global activation energy under NOx/O2, but not under O2, with regard to CZ, since 

finely dispersed copper species onto ceria-zirconia support enhance catalytic activity 
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towards NO oxidation to NO2 that contributes to soot combustion process, as reported 

in a previous paper [36]. On the other hand, results presented for platinum-based 

catalysts from the literature show an Ea of 107 kJ/mol or higher (Table 4) [18,20].  

 

In general, the kinetics of catalysed and non-catalysed soot oxidation present a wide 

range of activation energies depending on the atmosphere used. And particularly, for the 

case of catalysed reactions, there is an important dependence on the type of contact. 

Moreover, as reported by Zouaoui et al. for soot combustion catalysed by ceria [28] (see 

Table 4), the difference in activation energies between loose and tight contact 

conditions is more dramatic under O2 (from 135 kJ/mol in loose contact to 44 kJ/mol in 

tight contact) than under NOx/O2 (from 72 kJ/mol in loose contact to 59 kJ/mol in tight 

contact). A similar behaviour was pointed out by other authors, such as Oliveira et al. 

[25]. In the case of tight contact under O2 atmosphere, “active oxygen” reaches easily 

the soot surface and contributes to the acceleration of the oxidation rate, thus explaining 

the remarkable difference between loose and tight conditions [28]. Under NOx/O2, 

NO2-assisted soot combustion takes place, reducing the differences observed between 

both types of contact. 

 

  

4. Conclusions 

 

Two mixed oxides (ceria-zirconia and 2%CuO/ceria-zirconia) have been synthesised 

and compared to a commercial platinum/alumina catalyst. These solids have been 

studied for the soot combustion reaction in order to obtain information about their 

catalytic activities. The large variety of experiments conducted in this study (isothermal 

at different temperatures/ramp modes, different gas atmospheres) and the proper 

comparison with the uncatalysed soot combustion have allowed us to gain insight into 

the reasons of the satisfactory behaviours of the ceria-based catalysts, to analyse the 

kinetics of soot combustion and to deduce interesting mechanistic implications.  

 

Firstly, a preliminary study carried out by varying the experimental conditions, 

confirmed that the rate measurements were not influenced by mass transfer limitations, 
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allowing us to report reliable kinetic parameters for the soot combustion reaction under 

realistic loose contact between soot-catalyst. 

 

Secondly, the ceria-based catalysts were very active in loose contact conditions, due 

to the contribution of the “active oxygen”-assisted soot combustion, which caused a 

significant enhancement in their soot combustion rates between 425ºC and 450ºC. In 

addition, the copper-doped catalyst conveniently accelerates the NO oxidation to NO2 at 

low-medium temperatures, and interestingly, it showed slightly higher activity at 450ºC 

than the platinum-based catalyst for soot combustion. As far as the authors concern, this 

is the first time that a ceria-based (noble metal-free) catalyst has been reported to be 

more active for soot combustion than a platinum-based one under selected simulated 

diesel exhaust conditions. 

 

On the other hand, it can be confirmed from the experimental results that the high 

activity of the platinum-based catalyst is mostly related to a NO2-assisted soot 

combustion mechanism, since this catalyst presents also a great NO ↔ NO2 recycling 

efficiency.  

 

Finally, the kinetic data obtained from this study have been proved to be in 

accordance with the literature data. Global activation energies followed the trend: 

Pt/alumina < 2%CuO/ceria-zirconia < Ceria-zirconia. In general, this trend was very 

similar to that found for the catalytic activity. All the catalysts decrease the activation 

energy with regard to the uncatalysed reaction, except for the NO2/O2-soot reaction, 

which is very similar to that found for the catalysed reaction with platinum under 

NOx/O2, providing additional evidences about the relevance of the NO2-assisted soot 

combustion for the Pt catalyst. 
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LIST OF TABLES 

 

Table 1. Summary of the experimental conditions to study mass transfer 

phenomena. 

Experiments Catalyst 
(mg) SiC (mg) Soot (mg) Gas flow 

(ml/min) NOx (ppm) O2 (%) 

A1 80 300 20 500 500 5 
A2 50 188 12 312 500 5 
A3 40 150 10 250 500 5 
B1 60 300 20 500 500 5 

 

 

Table 2. Activity and kinetic data obtained from TPR soot combustion (under 

different atmospheres). 

Catalyst 
(Atmosphere) 

Selec. 
CO2 (%) 

Tonset
a 

(ºC) T5
b (ºC) T50

b (ºC) Ea
c (kJ/mol) 

CZ (NOx/O2) 85 281 400 513 84 
Cu2/CZ (NOx/O2) 96 238 377 518 62 
Pt1/AL (NOx/O2) 100 159 330 474 56 

NC (NOx/O2) 35 387 502 606 111 
NC (NO2/O2) 60 247 406 588 43 

NC (O2) 40 363 496 592 124 
CZ (O2) 97 347 475 566 124 

Cu2/CZ (O2) 100 330 472 562 125 
Pt1/AL (O2) 100 317 475 585 100 

a Tonset is the temperature required to initiate the soot combustion. 
b T5 and T50 are the temperatures required to convert 5% and 50% of the soot, respectively. 
c Global activation energy, calculated considering differential reactor model at very low conversion 

levels. 
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Table 3. Global activation energies calculated from isothermal soot combustion 

experiments (at 400ºC, 425ºC and 450ºC). 

Catalyst Ea (kJ/mol) at ‘x%’ conversion 
5 10 20 30 40 50 

CZ 87 78 80 81 85 95 
Cu2/CZ 63 66 66 69 69 64 
Pt1/AL 42 45 46 47 48 48 

 

 

Table 4. Activation energies for catalysed soot combustion reaction (both in loose 
and tight contact modes) reported in the literature. 

Sample Catalyst Contact Gases Methoda 
Ea 

(kJ/mol) Ref 

Vulcan CeO2 Tight 10% O2 FBR 44 [28] 

Vulcan CeO2 Tight 500ppmNO+10%O2 FBR 59 [28] 

Vulcan CeO2 Loose 10% O2 FBR 135 [28] 

Vulcan CeO2 Loose 500ppmNO+10%O2 FBR 72 [28] 
Diesel 
soot Ce-Zr Loose 20% O2 TG 138 [18] 

Diesel 
soot Ce-Zr Loose 700ppmNO2+10%O2 TG 77 [18] 

Printex-U Ce-Zr Loose 10% O2 FBR 149 [27] 

Printex-U Cs2SO4·V2O5 Loose 10% O2 FBR 166 [17] 

Printex-U Cs2SO4·V2O5 Loose 20% O2 TG 88.4 [16] 
Diesel 
soot Pt/Al2O3 Loose 20% O2 TG 139 [18] 

Diesel 
soot Pt/Al2O3 Loose 700ppmNO2+10%O2 TG 107 [18] 

Diesel 
soot Pt/Al2O3 Loose 20% O2 FBR 168 [20] 

a TG corresponds to Thermogravimetry and FBR to Fixed-bed reactor equipment. 
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Figure 1. Soot combustion rates versus soot conversion in isothermal conditions 
(450ºC) with similar space velocity. 

 

Figure 2. Soot combustion rates versus soot conversion in isothermal conditions 
(450ºC) with different catalyst masses.  

 

Figure 3. Soot conversion curves versus temperature for catalysed reactions under 
NOx/O2 and non-catalysed (NC) reactions under NOx/O2 and NO2/O2. 

 

Figure 4. Soot conversion curves versus temperature for catalysed and non-
catalysed (NC) reactions under O2. 

 

Figure 5. NO2 production profiles during blank TPR experiments for the catalysts. 

 

Figure 6. NO2 slip production, in TPR soot combustion experiments, under 
NOx/O2. 

 

Figure 7. Soot combustion rates versus soot conversion in isothermal conditions at 
different temperatures: a) 400ºC, b) 425ºC and c) 450ºC. (Dotted line corresponds to a 
reproducibility experiment for Pt1/AL sample). 

 

Figure 8. Soot combustion rates versus soot conversion in isothermal conditions for 
each catalyst: a) CZ, b) Cu2/CZ and c) Pt1/AL. 

 

Figure 9. NO2 slip production, in isothermal soot combustion experiments, under 
NOx/O2. 

 

Figure 10. Arrhenius plots for the catalysts at 20% of soot conversion. 
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Figure 6. 
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Figure 7. 
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Figure 7. 

 

 

 

 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50 60

C
o

m
b

u
st

io
n

 r
at

e
(m

g
so

ot
·s

-1
·g

in
it

ia
l s

oo
t-1

)

Soot conversion (%)

Cu2/CZ

CZ

Pt1/AL c)



33 

 

 

 

Figure 8. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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