
June 2016

3D Object Recognition
with Convolutional
Neural Networks

Author:
Alberto García García

Advisors:
José García Rodríguez
Jorge Pomares Baeza

Master’s Thesis

Master’s Degree in Automation and Robotics

UNIVERSITY OF ALICANTE

MASTER’S THESIS

3D Object Recognition with
Convolutional Neural Networks

Author
Alberto GARCIA-GARCIA

Advisors
Jose GARCIA-RODRIGUEZ

Jorge POMARES-BAEZA

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Master’s Degree in Automation and Robotics
Department of Physics, Systems Engineering, and Signal Theory

May 27, 2016

http://www.ua.es
http://www.dtic.ua.es/~agarcia
http://www.dtic.ua.es/~jgarcia
mailto:jpomares@ua.es
http://www.eps.ua.es/es/master-automatica-robotica/
http://www.dfists.ua.es

This document was proudly made with LATEXand TikZ.

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

iii

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

“Will robots inherit the earth? Yes, but they will be our children.”

Marvin Minsky

v

Abstract

In this work, we propose the implementation of a 3D object recognition system using
Convolutional Neural Networks. For that purpose, we first analyzed the theoretical
foundations of that kind of neural networks. Next, we discussed ways of represent-
ing 3D data in a compact and structured manner to feed the neural network. Those
representations consist of a grid-like structure (fixed and adaptive) and a measure for
the occupancy of each cell of the grid (binary, normalized point density, and surface
intersection). At last, 2.5D and 3D Convolutional Neural Network architectures were
implemented and tested using those volumetric representations. The experimentation
included an in-depth study of their performance in synthetically simulated adverse
conditions that characterize the real-world, i.e., noise and occlusions. The resulting
system, the best one out of that experimentation, is able to efficiently recognize objects
in three dimensions with a success rate of 85% in a common household CAD objects
dataset.

vii

Resumen

En este trabajo proponemos la implementación de un sistema de reconocimiento de
objetos 3D utilizando Redes Neuronales Convolucionales. Para este propósito, anal-
izamos en primer lugar los fundamentos teóricos de este tipo de redes neuronales.
Seguidamente, discutimos formas de representar datos 3D de una manera compacta y
estructurada para proporcionarlos como entrada a la red neuronal. Estas representa-
ciones consistirán en una estructura de malla (fija o adaptativa) y de una medida de
la ocupación de cada elemento de dicha malla (binaria, densidad de puntos normal-
izada o intersección de superficie). Por último, implementamos arquitecturas de Redes
Neuronales Convolucionales 2.5D y 3D y las testeamos empleando las representaciones
volumétricas antes descritas. La experimentación incluyó un estudio detallado sobre el
rendimiento de dichas redes en condiciones adversas, simuladas de forma sintética,que
caracterizan a las escenas del mundo real, es decir, ruido y oclusiones. Como resultado
se ha obtenido un sistema capaz de reconocer de forma eficiente objetos en tres di-
mensiones con una tasa de acierto del 85% en un conjunto de datos de objetos CAD
comunes del hogar.

ix

Acknowledgements

Let us please observe a moment of silence for the many brave coffee beans that gave
their lives, so that I could finish this Thesis in time...

Thanks NVIDIA for the hardware donations. Currently running Doom at 200 FPS.
Experiments were fast too.

xi

Contents

Abstract vii

Resumen ix

Acknowledgements xi

Contents xiii

List of Figures xvii

List of Tables xxiii

List of Acronyms xxv

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Related Works . 2

1.3.1 Feature-based Object Recognition 2
1.3.2 Usage of 3D Data . 3
1.3.3 Learning Features Automatically by Means of Deep Learning . . 4
1.3.4 Convolutional Neural Networks for Image Analysis 5

1.4 Proposal and Goals . 6
1.5 Outline . 6

2 Convolutional Neural Networks 7
2.1 Introduction . 7
2.2 The Convolution Operator . 7
2.3 Architecture of a CNN . 9

2.3.1 Convolution . 9
Local Receptive Fields . 10
Shared Weights . 11

2.3.2 Activation . 12
2.3.3 Pooling . 13
2.3.4 Fully Connected . 14
2.3.5 Loss . 14

2.4 Training a CNN . 15
2.4.1 Gradient Descent . 15
2.4.2 Stochastic Gradient Descent . 16
2.4.3 Generalization and Overfitting . 17

Maximum Norm Constraints . 18
Dropout . 18
L1, L2, and Elastic Net Regularization 19

xiii

Early Stopping . 19
Shuffling . 19

2.4.4 Vanishing and Exploding Gradient 20
2.4.5 Challenges and Optimizations . 21

SGD with Momentum . 21
Nesterov accelerated Gradient . 22
Adagrad . 22
Adadelta . 22
Adam . 23
Comparison of Optimizers . 23

2.5 Conclusion . 24

3 Materials and Methods 25
3.1 Introduction . 25
3.2 Frameworks . 25

3.2.1 Torch . 26
3.2.2 Theano . 27
3.2.3 Caffe . 27
3.2.4 Computational Network Toolkit 27
3.2.5 TensorFlow . 28
3.2.6 Other Frameworks . 28
3.2.7 Picking a Framework . 28

3.3 Datasets . 29
3.4 Hardware . 32

4 Volumetric Representations 35
4.1 Introduction . 35
4.2 Related Works . 37
4.3 Proposed Representations . 38

4.3.1 Dataset Adaptation . 39
Noise . 40
Occlusion . 41

4.3.2 Grid Generation . 42
Fixed . 42
Adaptive . 42

4.3.3 Tensor Computation . 44
Binary . 44
Normalized Density . 45
Surface Intersection . 46

4.4 Experimentation . 47
4.4.1 Results and Discussion . 48

4.5 Conclusion . 49

5 3D CNN for Object Recognition 51
5.1 Introduction . 51

5.1.1 2.5D Convolutional Neural Networks 52
5.1.2 3D Convolutional Neural Networks 53

5.2 Related Works . 53
5.3 Model-based CNN . 54

5.3.1 Experimentation . 54

xiv

5.3.2 Results and Discussion . 55
5.4 Conclusion . 61

6 Conclusion 63
6.1 Conclusions . 63
6.2 Publications . 64
6.3 Future Work . 64

A Caffe Models 65
A.1 Solver . 65
A.2 2.5D CNN Training Model . 66
A.3 3D CNN Training Model . 70

B Source Code 75
B.1 Dependencies . 75
B.2 Compilation . 75

Bibliography 77

xv

List of Figures

1.1 The object classification task focuses on providing a list of objects that are
present in the provided image with an associated probability, as shown
in Subfigure (a). On the other hand, the object detection task exhibits
more complexity since it provides a bounding-box or even an estimate
pose for each object in the image, Subfigure (b) shows an example of
detection. 2

1.2 Evolution of the number of academic documents containing the terms
2D, 3D, and Deep Learning together with Computer Vision. Search terms
statistics obtained from scopus.com. 3

1.3 Filters learned by the network proposed by Krizhevsky et al. [23]. Each
of the 96 filters shown is of size 11 × 11 × 3. The filters have clearly
learned to detect edges of various orientations and they resemble Gabor
filters. Image analysis using that kind of filters is thought to be similar
to perception in the human visual system [24]. 4

1.4 Illustration of the architecture of the aforementioned Convolutional Neu-
ral Network (CNN) proposed by Krizhevsky et al.[23] for the ImageNet
challenge. Besides the normal components, e.g., convolutional, pooling,
and fully connected layers, this network features two different paths.
One Graphics Processing Unit (GPU) runs the layers at the top while the
other runs the layers at the bottom. 5

2.1 Effect of a 5×5 edge detection kernel over an input image (a). The output
feature map (b) shows activations in white and supressed locations in
black. 8

2.2 Basic components of a typical Convolutional Neural Network. A CNN
is viewed as a stack of convolutional layers which are composed by a
combination of convolution and activation (also named detector) layers
followed by a single pooling layer. Following this scheme, an input vol-
ume is transformed to an output one which can be provided to the next
layer of the network. 9

2.3 Fully connected architecture with three inputs and one hidden layer. As
we can observe, each hidden neuron is connected with every neuron of
the previous layer, thus no inherent spatial structure is taken into account. 9

2.4 Global (a) and local (b) receptive fields for a hidden neuron over a 16×16
input. Each connection (in gray) learns a weight. 10

2.5 Sliding a local receptive field of 4× 4 over an input of 16× 16 elements.
A hidden layer of 12× 12 elements is produced by using a stride of 1× 1
elements. 10

2.6 A convolution layer which generates 4 feature maps f whose sizes are
12 × 12. Each feature map is generated by a different 4 × 4 filter by
convolving it over a 16× 16 input (stride= 1). 11

2.7 Activation functions: Sigmoid (a), Tanh (b), and ReLU (c). 12

xvii

http://www.scopus.com/

2.8 Pooling operation over a 12 × 12 feature map using a filter size of 4 × 4
and a stride of 4× 4. 13

2.9 Three fully connected layers using a 3 × 3 feature map produced by a
stack of convolution, activation, and pooling layers as input. Each con-
nection has an associated weight that will be learned. The last fully con-
nected layer represents the output of the network, a vector of four scores
[s1, s2, s3, s4] (also named logits) for a classification problem with four
classes or labels. 14

2.10 Surface of the function ex
2−y2x (a) – which has a minimum at (−1/

√
2, 0)

and a maximum at (1/
√
2, 0) – together with the negative gradients shown

in a top-down view (b). 15
2.11 Surface of the function x2 + 2y2 (a)– which has a minimum at (0, 0) –

together with the negative gradients shown in a top-down view (b). . . . 16
2.12 Vanilla (a) and stochastic (b) gradient descent applied to the function

x2+2y2. The contour plots show that Stochastic Gradient Descent (SGD)
is less stable and takes more steps for convergence to a minimum. 16

2.13 Polynomial interpolation of noisy samples of the function f(x) = sin(x/3)
in the domain [0, 20] and range [−1, 1] as the order of the fitted model is
evaluated at points 2, 10, 16, and 20. The increasing complexity of the
model tends to overfit the noisy data, thus not generalizing well for the
actual function. 17

2.14 Dropout model applied to a standard fully connected network (a), the
crossed units have been dropped out randomly together with their con-
nections (b). 18

2.15 Representation of the early stopping regularization method. Both train-
ing and validation errors are monitored. At some point – near iteration
450 – validation error starts increasing while training error keeps de-
creasing. At that point, training must be stopped to avoid overfitting. . . 19

2.16 Vanishing gradient in a multi-layer neural network training with the
Mixed National Institute of Standards and Technology (MNIST) dataset.
Experiments were replicated from [43]. 20

2.17 Comparison of common optimizers (SGD, SGD with momentum, Nesterov
accelerated Gradient (NAG), Adagrad, and Adadelta) on the MNIST
dataset using a network architecture with to fully connected hidden lay-
ers with 20 neurons followed by a softmax output. A batch size of 8
samples was used, the learning rate starts at 0.01, an L2 weight decay
of 0.001 was also included, momentum was set to 0.9. The benchmark
was implemented using ConvNetJS by Andrej Karpathy [52]. The plot
compares the training loss as the number of training examples provided
to the network increases. 24

3.1 Model distribution for ModelNet-10 and ModelNet-40 29
3.2 ModelNet10 samples. 30
3.3 Asimov’s SSH banner message and welcome screen with server info. . . 33

4.1 Common volumetric representations: polygonal mesh (a), point cloud
(b), and voxel grid (c) of a chair model. 35

xviii

4.2 Effect of the leaf size on binary voxel grids. All grids have the same
cubic size: 300× 300× 300 units. Leaf sizes vary from 5, 10, and 20 units,
resulting in binary grids of 15×15×15 (a), 30×30×30 (b), and 60×60×60
voxels (c) respectively. 36

4.3 3DShapeNets representation proposed by Wu et al. as shown in their pa-
per [76]. An object (a) is captured from a certain point of view and a
depth map is generated (b) which is in turn used to generate a point
cloud that will be represented as a voxel grid (c) with empty voxels (in
white, not represented), unknown voxels (in blue), and surface or occu-
pied voxels (red). 37

4.4 Truncated Signed Distance Function (TSDF) representation proposed by
Song and Xiao as shown in their paper [77]. An object (a) is captured by a
range sensor as a point cloud (b) and then a TSDF grid is generated (red
indicates the voxel is in front of surfaces and blue indicates the voxel is
behind the surface; the intensity of the color represents the TSDF value). 37

4.5 Volumetric occupancy grid representation used by VoxNet as shown in
their paper [78]. For LIDAR data (a) a voxel size of 0.1m3 is used to create
a 32 × 32 × 32 grid (b). For RGB-D data (c), the resolution is chosen so
the object occupies a subvolume of 24× 24× 24 voxels in a 32× 32× 32
grid (d). 38

4.6 From CAD models to point clouds. The object is placed in the center
of a tessellated sphere, views are rendered placing a virtual camera in
each vertex of the icosahedron, the z-buffer data of those views is used to
generate point clouds, and the point clouds are transformed and merged
at last. 39

4.7 Different levels of noise (σ = 0 (a), σ = 0.1 (b), and σ = 1 (c)) applied to
the z-axis of every point of a table partial view. 40

4.8 Different levels of occlusion (ψ = 0% (a), ψ = 25% (b), and ψ = 50% (c))
applied randomly to a table partial view. 41

4.9 A fixed occupancy grid (8 × 8 × 8 voxels) with 40 units leaf size and
320 units grid size in all dimensions. The grid origin is placed at the
minimum x, y, and z values of the point cloud. Front (a), side (b), and
perspective (c) views of the grid over a partial view of a segmented table
object are shown. 42

4.10 An adaptive occupancy grid (8 × 8 × 8 voxels) with adapted leaf and
grid sizes in all dimensions to fit the data. The grid origin is placed at
the minimum x, y, and z values of the point cloud. Front (a), side (b),
and perspective (c) views of the grid over a partial view of a segmented
table object are shown. 43

4.11 An adaptive occupancy grid (8 × 8 × 8 voxels) with adapted leaf and
grid sizes in all dimensions to fit the data. One cell padding is enforced
so that the grid contains a halo of empty cells around the actual data.
Front (a), side (b), and perspective (c) views of the grid over a partial
view of a segmented table object. 43

4.12 Occupied voxels in an adaptive 8 × 8 × 8 grid generated over a partial
view point cloud. Those voxels with points inside are shown in a wire-
frame representation. Empty voxels are omitted. Occupied voxels must
be filled with values which represent the contained shape. 44

xix

4.13 Binary tensor computed over a point cloud of a partial view of an object
(shown in Figure 4.12). Occupied voxels are shown in blue, empty voxels
are omitted for the sake of simplicity. 44

4.14 Normalized density tensor over a point cloud of a partial view of an
object (shown in Figure 4.12). Denser voxels are darker and sparse ones
are shown in light blue. Empty voxels were removed for visualization
purposes. 45

4.15 Triangulation with varying point densities. The total surface or area re-
mains the same despite the fact that the number of vertices is increasing. 45

4.16 Surface intersection tensor calculation steps. A partial view point cloud
(a) is triangulated to generate a mesh (b). Then the value of each voxel
corresponds to the area of intersection of the mesh and that particular
voxel; for each voxel the intersecting triangles are clipped and the areas
of the resulting polygons are added up (c). 46

4.17 Surface intersection tensor over a point cloud of a partial view of an ob-
ject (shown in Figure 4.12). Those voxels with more surface intersection
area are darker. Empty voxels were removed for visualization purposes. 46

4.18 Partial view point cloud with varying point count to test occupancy com-
putation performance scaling as the number of points increases. Clouds
with low (a), medium (b), and high (c) point counts are shown. 47

4.19 Results of the experimentation carried out to test the performance scal-
ing of volumetric representations. The first plot (a) shows the scaling
of the three occupancy computation methods (binary, normalized den-
sity, and surface intersection) when the number of points of the cloud
increases (using an adaptive grid of 16× 16× 16 voxels with 2 padding
cells). The second plot (b) shows the scaling of the same three methods
using a cloud with a fixed number of points but increasing the grid size. 48

5.1 Applying a 2D convolution to a single-channel 2D input, in this case a
grayscale image, results in a 2D feature map. The filter (in dark blue)
has a fixed width and height and it is slided across the width and height
of the input image, producing a 2D feature map as a result of the matrix
multiplications of the filter and the input. 51

5.2 Applying a 2D convolution to a multi-channel input, in this case RGB-D
with four channels, results in a 2D feature map. The filter (in dark blue)
has a fixed width and height, but it extends through the full depth of
the input volume. During the forward pass, the filter is slided across
the width and height of the input volume, producing a 2D activation or
feature map. 52

5.3 Applying a 3D convolution to a single-channel volumetric input, in this
case a 256 × 64 × 32 grid, results in a3D feature map. The filter (in dark
blue) has a fixed width, height, and depth. During the forward pass, the
filter is slided across the width, height, and depth of the input volume,
producing a 3D activation map. 52

xx

5.4 2.5D Convolutional Neural Network architecture used for the experi-
ments. This network is an extension of the one presented in PointNet
[94]. It consists of a convolution layer – 48 filters, 3×3 filter with stride 1
–, a ReLU activation, another convolution layer – 128 filters, 5× 5 filters
with stride 1 –, followed by a ReLU activation, a pooling layer – 2 × 2
max. pooling with stride 2 –, a fully connected or inner product layer
with 1024 neurons and ReLU activation, a dropout layer – 0.5 rate –, and
an inner product layer with 10 neurons as output. The network accepts
3D tensors as input. 54

5.5 Evolution of training and validation accuracy of the model-based CNN
using both fixed (a) and adaptive (b) normalized density grids. Different
grid sizes (32, 48, and 64) were tested. 55

5.6 A desk class sample together with a table class one. 56
5.7 A night stand class sample together with a dresser one. 56
5.8 A sofa class sample together with a bed class one. 57
5.9 Evolution of validation accuracy of the model-based CNN using both

fixed (a) and adaptive (b) normalized density grids as the amount of
occlusion in the validation models increases from 0% to 30%. Three grid
sizes were tested (32, 48, and 64). 57

5.10 Evolution of validation accuracy of the model-based CNN using both
fixed (a) and adaptive (b) normalized density grids as the standard de-
viation of the Gaussian noise introduced in the z-axis of the views in-
creases from 0.001 to 10. The common grid sizes were tested (32, 48, and
64). 58

5.11 Evolution of training and validation accuracy of the model-based CNN
using adaptive binary grids (a). Evolution of validation accuracy for the
best network weights after training as the amount of occlusion in the
validation set increases (b) and different levels of noise are introduced (c). 59

5.12 Evolution of training and validation accuracy of the model-based CNN
with 3D convolutions, using adaptive binary grids with size 32×32×32
voxels. 60

xxi

List of Tables

3.1 Comparison of the most popular deep learning frameworks 26
3.2 Model distribution per object class or category for both ModelNet-10 and

ModelNet-40 training and test splits. 31
3.3 Hardware specifications of Asimov. 32

5.1 Confusion matrix of the validation results achieved by the best set of
weights for the adaptive grid with a grid size of 64 voxels. Darker cells
indicate more predictions while lighter ones indicate less. 56

5.2 Summary of the experimentation results. 61

xxiii

List of Acronyms

1D one-dimensional

2D two-dimensional

2.5D two-and-a-half-dimensional

3D three-dimensional

Adam Adaptive Moment Estimation

AMT Amazon Mechanical Turk

API Application Program Interface

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

BVLC Berkeley Vision and Learning Center

CAD Computer Aided Design

CDBN Convolutional Deep Belief Network

CIFAR Canadian Institute for Advanced Research

CLI Command Line Interface

CN Computational Network

CNN Convolutional Neural Network

CNTK Computational Network Toolkit

CSO Computer Science and Operations

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network

FAIR Facebook Artificial Intelligence Research

FPGA Field Programmable Gate Array

FREAK Fast Retina Keypoint

GCC GNU Compiler Collection

GNU GPLv3 GNU General Public License v3.0

GPU Graphics Processing Unit

xxv

HDD Hard Disk Drive

IR Infrarred

JIT Just In Time

LIDAR Light Detection and Ranging

MEL Model Editing Language

MLP Multi-Layer Perceptron

MNIST Mixed National Institute of Standards and Technology

NAG Nesterov accelerated Gradient

NDL Network Definition Language

OFF Object File Format

OpenCL Open Computing Language

OpenMP Open Multi-Processing

ORB Oriented FAST and Rotated BRIEF

PCD Point Cloud Data

PCL Point Cloud Library

POV Point of View

RAID Redudant Array of Independent Disks

RBF Radial Basis Function

ReLU Rectified Linear Unit

PReLU Parametric Rectified Linear Unit

RGB Red Green and Blue

RGB-D RGB-Depth

RNN Recursive Neural Network

RMS Root Mean Squared

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SSD Solid State Drive

SSH Secure Shell

SVM Support Vector Machine

SURF Speeded Up Robust Features

TSDF Truncated Signed Distance Function

xxvi

Chapter 1

Introduction

This first chapter introduces the main topic of this work. It is organized as follows. Section 1.1
sets up the framework for the activities performed during this thesis. Section 1.2 introduces the
motivation of this work. Section 1.3 elaborates a state of the art of object recognition systems and
the evolution of the problem during the last years. Section 1.4 lays down the proposal developed
in this work and presents the main and specific goals of this project. In the end, Section 1.5
details the structure of this document.

1.1 Overview

In this Master’s Thesis, we have performed a theoretical and practical research focused
on the problem of 3D object class recognition. The main goal is the proposal, design,
implementation, and validation of an efficient and accurate 3D object recognition sys-
tem. We leveraged deep learning techniques to solve this problem, specifically Convo-
lutional Neural Networks. This work comprises the study of the theoretical founda-
tions of CNNs, the analysis of volumetric representations for three-dimensional data,
and the implementation of a 3D CNN.

1.2 Motivation

This document presents the work carried out to prove the knowledge acquired during
the Master’s Degree in Automation and Robotics, taken between the years 2015 and 2016
at the University of Alicante. This work follows up the line started with my Bachelor’s
Thesis [1][2]. The motivation for this work is twofold.

On the one hand, part of this work was carried out during the research collabora-
tion period with the Industrial Informatics and Computer Networks research group of the
Department of Computer Technology at the University of Alicante. This collaboration was
supervised by Prof. José García-Rodríguez and funded by the grant "Ayudas para estu-
dios de master oficial e iniciación a la investigación" from the "Desarrollo e innovación
para el fomento de la I+D+i en la Universidad de Alicante" programme. The purpose
of this collaboration is to introduce students into a certain line of research, in our case
we were mainly focused on deep learning applied to computer vision.

On the other hand, this work has been performed under the frame of the SIR-
MAVED: Development of a comprehensive robotic system for monitoring and interaction for
people with acquired brain damage and dependent people [3] national project (identifier code
DPI2013-40534-R). Within this project, an object recognition system is needed to iden-
tify instances in the environment before handling or grasping them. This project is
funded by the Ministerio de Economía y Competitividad (MEC) of Spain with profes-
sors José García-Rodríguez and Miguel Ángel Cazorla-Quevedo from the University of
Alicante as main researchers.

1

2 Chapter 1. Introduction

1.3 Related Works

In the context of computer vision, object classification and detection are two of the
most challenging tasks required to achieve scene understanding. The former focuses
on predicting the existence of objects within a scene, whereas the latter aims to localize
those objects. Figure 1.1 shows a visual comparison of both tasks.

Since the very beginning of the computer vision research field, a considerable amount
of effort has been directed towards achieving robust object recognition systems that are
able to semantically classify a scene and detect objects within it, also providing their
estimated poses [4]. This is due to the fact that semantic object recognition is a key
capability required by cognitive robots to being able to operate autonomously in un-
structured, real-world environments.

1.3.1 Feature-based Object Recognition

Over the past few years, intensive research has been done on feature-based object
recognition methods. This approach relies on extracting features, i.e., pieces of in-
formation which describe simple but significant properties of the objects within the
scene. Those features are encoded into descriptors such as Scale Invariant Feature Trans-
form (SIFT)[5], Speeded Up Robust Features (SURF)[6], Binary Robust Independent El-
ementary Features (BRIEF)[7], Binary Robust Invariant Scalable Keypoints (BRISK)[8],
Oriented FAST and Rotated BRIEF (ORB)[9], or Fast Retina Keypoint (FREAK)[10] to
name a few. After extracting those descriptors, machine learning techniques are ap-
plied to train a system with them so that it becomes able to classify features extracted
from unknown scenes. Based on the used types of features, these methods can be
divided into two categories: global or local feature-based methods. Global ones are
characterized by dealing with the object as a whole; they define a set of features which
completely encompass the object and describe it effectively. On the other hand, local

Taz: 0.99

Bike: 0.90

Freshener: 0.85

Container: 0.70

(a) Object classification.

Bike: 0.90

Freshener: 0.85

Container: 0.70

Taz: 0.99

(b) Object detection.

Figure 1.1: The object classification task focuses on providing a list
of objects that are present in the provided image with an associated
probability, as shown in Subfigure (a). On the other hand, the object
detection task exhibits more complexity since it provides a bounding-
box or even an estimate pose for each object in the image, Subfigure
(b) shows an example of detection.

Chapter 1. Introduction 3

methods describe local patches of the object, those regions are located around highly
distinctive spots of the object named keypoints.

Real-world scenes tend to be unstructured environments. This implies that object
recognition systems must not be affected by clutter or partial occlusions. In addition,
they should be invariant to illumination, transforms, and object variations. Those are
the main reasons why local surface feature-based methods have been popular and suc-
cessful during the last years – since they do not need the whole object to describe it
properly, they are able to cope with cluttered environments and occlusions [11].

1.3.2 Usage of 3D Data

Traditionally, those object recognition systems made use of 2D images with intensity
or color information, i.e., Red Green and Blue (RGB) images. However, technological
advances made during the last years have caused a huge increase in the usage of 3D
information. The field of computer vision in general, and object recognition research in
particular, have been slowly but surely moving towards including this richer informa-
tion into their algorithms.

Nowadays, the use of 3D information for this task is in a state of continuous evolu-
tion, still far behind, in terms of maturity, from the systems that make use of 2D images.
Nevertheless, the use of 2D information exhibits a handful of problems which hinder
the development of robust object recognition systems. Oppositely, the use of range
images or point clouds, which provide 2.5D or 3D information respectively, presents
many significant benefits over traditional 2D-based systems. Some of the main ad-
vantages are the following ones [12]: (1) they provide geometrical information thus
removing surface ambiguities, (2) many of the features that can be extracted are not
affected by illumination or even scale changes, (3) pose estimation is more accurate
due to the increased amount of surface information. Therefore, the use of 3D data has
become a solid choice to overcome the inherent hurdles of traditional 2D methods.

However, despite all the advantageous assets of 3D data, researchers had to over-
come certain difficulties or drawbacks. On the one hand, sensors capable of provid-
ing 3D were expensive, limited, and performed poorly in many cases. The advent of
low-cost 3D acquisition systems, e.g., Microsoft Kinect, enabled a widespread adop-
tion of these kind of sensors thanks to their accessibility and affordability. On the other
hand, 3D object recognition systems are computationally intensive due to the increased

2,000 2,002 2,004 2,006 2,008 2,010 2,012 2,014

102

103

104

Year

D
oc

um
en

ts

3D + Computer Vision
2D + Computer Vision
DL + Computer Vision

Figure 1.2: Evolution of the number of academic documents contain-
ing the terms 2D, 3D, and Deep Learning together with Computer Vi-
sion. Search terms statistics obtained from scopus.com.

http://www.scopus.com/

4 Chapter 1. Introduction

dimensionality. In this regard, advances in computing devices like GPUs provided
enough computational horsepower to run those algorithms in an efficient manner. In
addition, the availability of low-power GPU computing devices like the NVIDIA Jet-
son TK1 has supposed a significant step towards deploying robust and powerful object
recognition systems in mobile robotic platforms.

The combination of those three factors (the advantages of 3D data, low-cost sensors,
and parallel computing devices) transformed the field of computer vision in general,
and object recognition in particular. As we can see in Figure 1.2, there has been a
significant dominance of 3D over 2D research in computer vision since the year 2000.

Therefore, creating a robust 3D object recognition system, which is also able to work
in real time, became one of the main goals towards for computer vision researchers [13].
There exist many reviews about 3D object recognition in the literature, including the
seminal works of Besl and Rain [14], Brady et al. [15], Arman et al. [16], Campbell
and Flynn [17], and Mamic and Bennamoun [18]. All of them perform a general re-
view of the 3D object recognition problem with varying levels of detail and different
points of view. The work of Guo et al. [12] is characterized by its comprehensive anal-
ysis of different local surface feature-based 3D object recognition methods which were
published between the years 1992 and 2013. In that review, they explain the main ad-
vantages and drawbacks of each one of them. They also provide an in-depth survey
of various techniques used in each phase of a 3D object recognition pipeline, from the
keypoint extraction stage to the surface matching one, including the extraction of local
surface descriptors. The review is specially remarkable due to its freshness and level
of detail. It is important to remark that all the described methods make use of carefully
designed feature descriptors by experts in the field.

1.3.3 Learning Features Automatically by Means of Deep Learning

From the earliest days of computer vision, the aim of researchers has been to replace
hand-crafted feature descriptors, which require domain expertise and engineering skills,
with multilayer networks able to learn them automatically by using a general-purpose
training algorithm [19]. The solution for this problem was discovered during the 1970s
and 1980s by different research groups independently [20][21][22]. This gave birth to a
whole new branch of machine learning named deep learning.

Figure 1.3: Filters learned by the network proposed by Krizhevsky et
al. [23]. Each of the 96 filters shown is of size 11 × 11 × 3. The filters
have clearly learned to detect edges of various orientations and they
resemble Gabor filters. Image analysis using that kind of filters is
thought to be similar to perception in the human visual system [24].

Chapter 1. Introduction 5

Deep learning architectures usually consist of a multilayer stack of hierarchical
learning modules which compute non-linear input-output mappings. Those modules
are just functions of the input with a set of internal weights. The input of each layer
in the stack is transformed, using the functions defined by the modules, to increase
the selectivity and invariance of the representation. The backpropagation procedure is
used to train those multilayer architectures by propagating gradients through all the
modules. In the end, deep learning applications use feedforward neural network ar-
chitectures which learn to map a fixed-size input, e.g., an image, to a fixed-size output,
typically a vector containing a probability for each one of the possible categories [19].

Figure 1.3 shows some sample filter modules automatically learned by training one
of the most successful deep learning architectures: the deep convolutional neural net-
work proposed by Krizhevsky et al. [23] to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 [25] contest into 1000 different classes.

1.3.4 Convolutional Neural Networks for Image Analysis

In spite of the fact that these kind of architectures showed a huge potential for solving
many computer vision problems, they were ignored by the computer vision commu-
nity during the 1990s. The main reason for that was twofold. It was widely accepted
that learning feature extractors with little prior knowledge was impossible. In addi-
tion, most of the researchers thought that using simple gradient descent techniques to
train those networks would get them inevitably trapped in poor local minima.

In the latter years, certain breakthrough works revived the interest in deep learn-
ing architectures [19]. Recent studies proved that local minima are not an issue with
large neural networks. Following a set of seminal works for the field on training deep
learning networks [26][27], a group of researchers from the Canadian Institute for Ad-
vanced Research (CIFAR) introduced unsupervised learning procedures to create lay-
ers of feature detectors without labelled data, they also pre-trained several layers and
added a final layer of output units; the system was tuned using backpropagation and
achieved a remarkable performance when applied to the handwritten digit recognition
or pedestrian detection problems [28]. In addition, the advent of GPUs, which were
easily programmable and extremely efficient for parallel problems, made possible the
training of huge networks in acceptable time spans [29].

224 × 224 × 3 55 × 55 × 48

55 × 55 × 48
27 × 27 × 128

27 × 27 × 128

13 × 13 × 192

13 × 13 × 192

13 × 13 × 192

13 × 13 × 192

13 × 13 × 19213 × 13 × 192

13 × 13 × 192

1 × 1 × 2048

1 × 1 × 2048

1 × 1 × 2048

1 × 1 × 2048

1 × 1 × 1000

Figure 1.4: Illustration of the architecture of the aforementioned CNN
proposed by Krizhevsky et al.[23] for the ImageNet challenge. Be-
sides the normal components, e.g., convolutional, pooling, and fully
connected layers, this network features two different paths. One GPU
runs the layers at the top while the other runs the layers at the bottom.

6 Chapter 1. Introduction

All those contributions to the field led to the birth of probably the most important
milestone regarding deep learning: the Convolutional Neural Network (CNN). This
special kind of deep network was designed to process data in form of multiple ar-
rays and gained popularity because of its many practical successes. This was due to
the fact that they were easier to train and generalized far better than previous mod-
els. The architecture of a typical CNN is composed by many stages of convolutional
layers followed by pooling ones and non-linearity Rectified Linear Unit (ReLU) filters;
in the end, convolutional and fully connected layers are stacked. The key idea be-
hind using this stack of layers is to exploit the property that many natural signals are
compositional hierarchies, in which higher-level features are obtained by composing
lower-level ones. Figure 1.4 shows a typical architecture of a CNN.

1.4 Proposal and Goals

In this work, we propose the implementation of a 3D object class recognition system
using CNNs. That system will be accelerated using GPUs for both training and classi-
fication. The input of the system consists of segmented regions of point clouds which
contain objects. Those point clouds will be synthetically simulated as if they were gen-
erated by low-cost RGB-Depth (RGB-D) sensors. To accomplish that proposal, we es-
tablished a set of goals to be achieved:

• Analyze the theoretical background of CNNs. In order to implement our system,
or extend existing frameworks to suit our needs, it is mandatory to understand
the underlying principles of CNNs. For this purpose, we will review the core
concepts and ideas that might be used during this work.

• Generate volumetric representations for 3D data. This includes analyzing the state of
the art for successful representations, proposing a suitable and efficient represen-
tation for our kind of data, implementing the means to generate them, and also
choosing a proper dataset.

• Design, implement, and test a 3D CNN. As an intermediate step, 2.5D CNNs will be
studied as well. To achieve this goal, the state of the art of both 2.5D and 3D CNNs
will be reviewed. We will also analyze existing machine learning frameworks to
determine the one that best suits our needs. In addition, a set of experiments will
be carried out to analyze the accuracy and performance of the proposed architec-
tures.

• Assemble and configure a server for training the system. Given the significant com-
putational needs of deep learning system during training, it becomes a matter of
utmost importance to set up an appropriate server for experimenting with differ-
ent configurations.

1.5 Outline

This document is structured as follows. Chapter 2 analyzes the theoretical background
of CNNs. Chapter 3 describes the set of tools, data, and resources used in this work.
Chapter 4 is devoted to volumetric representations for 3D data. Chapter 5 discusses
and experiments with 2.5D and 3D CNNs for object recognition. At last, Chapter 6
draws conclusions, shows the publications derived from this Thesis, and proposes fu-
ture works.

Chapter 2

Convolutional Neural Networks

This chapter provides a theoretical primer to Convolutional Neural Networks, describing the
concepts and techniques that will be used in subsequent chapters of this document for imple-
menting a 3DCNN. We will first introduce CNNs in Section 2.1. Next, in Section 2.2 we will
describe what a convolution operator is. We will also show the typical architecture of a CNN in
Section 2.3. We then discuss how to train a CNN in Section 2.4. At last, we draw some final
remarks and conclusions in Section 2.5.

2.1 Introduction

Convolutional Neural Networks are models inspired by biological neural nets that re-
place dense matrix multiplications, employed by fully connected layers such as the
ones of a Multi-Layer Perceptron (MLP), by convolutions in at least one layer [30].

More specifically, they are a kind of specialized neural network that takes advan-
tage of data with clear topologies, e.g., images as 2D grids of pixels, as a side effect
of that specialization they also turn out to scale reasonably well to large sized mod-
els. CNNs are arguably one of the most important examples of succesfully transferring
knowledge and insights achieved by studying the brain to machine learning. Further-
more, they were pioneer models in deep learning due to their exceptional performance
and also for being easily trained with back-propagation.

2.2 The Convolution Operator

From a mathematical point of view, a convolution is just an operation on two functions
of a real-valued argument which can be expressed as follows

y(t) = (x ∗ w)(t) =
∫
x(τ)w(t− τ)dτ ,

where t ∈ R, τ ∈ R, x : R → R, and w : R → R. The resulting function y : R → R
after applying the convolution operator, typically denoted with an asterisk ∗, to the
functions x and w is defined as the integral of the product of both functions after one is
reversed and shifted (τ). The first function x is usually referred to as the input, whilst
w is a weighthing function known as kernel. The output y is named feature map.

When implementing a convolution operation in a computer, the inputs are discrete
and so has to be the operation. The index t can only take integer values. Assuming
that both the input and the kernel are defined only on t, a discrete convolution can be
defined as

7

8 Chapter 2. Convolutional Neural Networks

y(t) = (x ∗ w)(t) =
τ=∞∑
τ=−∞

x(τ)w(t− τ) .

In practice, within the machine learning field, the input and the kernel are not real-
valued functions but multidimensional arrays of data with discrete sizes for each di-
mension. Those arrays are called tensors. Taking all of this into account, the discrete
convolution can be redefined as a finite summation over tensor elements. For instance,
a 1D convolution is defined as

Y (i) = (X ∗W)(i) =
m∑
X(m)W (i−m) ,

where Y,X, and W are one-dimensional tensors. Similarly, a 2D convolution over
two-dimensional tensors can be written as

Y (i, j) = (X ∗W)(i, j) =

m∑ n∑
X(m,n)W (i−m, j − n) .

Equivalent expressions can be easily derived for n-dimensional convolutions. It
is important to remark that convolution is commutative, so the previous expression
for 2D can be defined in a more straightforward way for a computer implementation
named cross-correlation:

Y (i, j) = (X ∗W)(i, j) =

m∑ n∑
X(i+m, j + n)W (m,n) .

Following up on the 2D case, whose input is presumably an image with a grid-like
topolgy as a 2D array of pixels, a convolution can be seen as a feature detection stage
in which the kernel acts as a filter. By convolving the kernel over the image, different
feature activation values are obtained at each location in the image, thus generating a
feature map as output. Figure 2.1 shows an example of a border detection filter.

(a) Original


−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 8 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1



(b) Filtered

Figure 2.1: Effect of a 5 × 5 edge detection kernel over an input im-
age (a). The output feature map (b) shows activations in white and
supressed locations in black.

Chapter 2. Convolutional Neural Networks 9

Input volume Convolution∗ Activation∗ Pooling1 Output Volume

Convolutional Layer

Figure 2.2: Basic components of a typical Convolutional Neural Net-
work. A CNN is viewed as a stack of convolutional layers which
are composed by a combination of convolution and activation (also
named detector) layers followed by a single pooling layer. Following
this scheme, an input volume is transformed to an output one which
can be provided to the next layer of the network.

2.3 Architecture of a CNN

A CNN typically consists of a set of stacked layers that transform an input volume into
an output one through differentiable functions. The three most common types of layers
are the following ones: convolution, activation, and pooling. In fact, the combination
of those three layers is the building block of a CNN and it is typically referred as a
convolutional layer (see Figure 2.2). Apart from those basic layers, a CNN is followed by
a set of fully connected layers for high-level reasoning. In the end, a loss layer specifies
how the network penalizes the deviation between the predicted and true labels. Each
layer type is discussed further below.

2.3.1 Convolution

The convolution layer embodies the core concept of a CNN: take into account the spa-
tial structure of the input volumes. Typical fully connected neural network architec-
tures treat every element of the input volume in the same way (see Figure 2.3), so the
spatial structure must be inferred by learning. CNN use convolution layers instead
of fully connected ones to process the input volumes and take advantage of their spa-
tial structures. For this purpose, convolution layers feature three basic concepts: local
receptive fields, shared weights, and pooling (which is described in detail in Section 2.3.3).

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.3: Fully connected architecture with three inputs and one
hidden layer. As we can observe, each hidden neuron is connected
with every neuron of the previous layer, thus no inherent spatial
structure is taken into account.

10 Chapter 2. Convolutional Neural Networks

hidden neuron

input

(a) Global receptive field

hidden neuron

input

(b) Local receptive field

Figure 2.4: Global (a) and local (b) receptive fields for a hidden neu-
ron over a 16× 16 input. Each connection (in gray) learns a weight.

Local Receptive Fields

The concept of receptive field of a neuron has a strong biological inspiration. It is
defined as the particular region of the sensory space in which a stimulus will trigger
the firing of that neuron. From the computer vision point of view, the receptive field of
a neuron is the input region which impacts the state of that neuron, i.e., those elements
of the input which are connected to the neuron.

As we have previously stated, a hidden neuron of a fully connected architecture
will be connected to every element coming from the previous layer thus creating a
global receptive field. This fact implies a huge computational cost and immense memory
requirements because of the vast amount of weights featured by the network (one per
each connection). Besides, no spatial structure is enforced by this pattern. On the other
hand, convolution layers do not connect the hidden neuron with every input element.
Instead, they make connections in reduced and localized areas of the input named local
receptive fields. Figure 2.4 shows a comparison of both global and local approaches.

Convolution layers use a local receptive field with a size that corresponds to the
size of the convolution filter. The convolution process consists of sliding the receptive
field across the entire input using a certain stride. For each local receptive field, there is
a hidden neuron connected to it in the next layer. By doing this, the spatial structure of
the input is taken into account. Figure 2.5 shows the sliding process.

input
hidden layer

(a) First hidden neuron

input
hidden layer

(b) Second hidden neuron

Figure 2.5: Sliding a local receptive field of 4 × 4 over an input of
16× 16 elements. A hidden layer of 12× 12 elements is produced by
using a stride of 1× 1 elements.

Chapter 2. Convolutional Neural Networks 11

Shared Weights

Intuitively, and following the conventions of a fully connected scheme, each neuron of
the hidden layer would have a bias, and each connection of the receptive field would
learn a weight. CNNs change this connection scheme so that the same weights and bias
are used for each neuron of the hidden layer. By doing this, the number of parameters
is dramatically reduced. For the example shown in Figure 2.5, only a 4× 4 filter and a
single bias is required for the convolution instead of 4×4×12×12 weights and 12×12
biases if the parameters were not shared.

In this way, the output for the i, j neuron of the hidden layer H is

Hi,j = b+

fw−1∑
k=0

fh−1∑
l=0

Xi+k,j+lWk,l ,

where b is the bias, X is the input, and W is the fw × fh weight matrix or filter. This
means that all neurons of the hidden layer will detect the same feature, since they are
using the same filter, but each one will detect that very same feature in its particular
receptive field. By sliding the receptive fields across the whole image, CNNs do not
only take spatial structure into account but also adapt to translation invariance. In other
words, a feature map is computed for the whole input so the feature to be detected
does not need to be in a certain position of the input.

It is important to notice that the aforementioned examples show how to learn a
single filter to detect a single kind of feature in the input. However, convolution layers
usually learn many detectors to generate feature maps for various kinds of features as
shown in Figure 2.6. This concept is called filter bank.

input

f1 f2 f3 f4

hidden layer

Figure 2.6: A convolution layer which generates 4 feature maps f
whose sizes are 12× 12. Each feature map is generated by a different
4× 4 filter by convolving it over a 16× 16 input (stride= 1).

12 Chapter 2. Convolutional Neural Networks

2.3.2 Activation

For now, the output of the network will just be a linear transformation of the input. This
fact implies that the network will not satisfy the universal approximation theorem [31]. In
other words, the representational power of the network is constrained. To transform
the network into a universal approximator, non-linearities must be introduced.

The purpose of the activation layers is to introduce non-linearities into the network.
Some of the most common activation functions are shown in Figure 2.7. Those func-
tions increase the non-linear properties of the decision function learned by the network,
without affecting the receptive fields of the previous convolution layers.

The sigmoid function has the mathematical form σ(x) = 1/(1 + e−x). The intuitive
interpretation of this non-linearity is that the input gets squashed into the range [0, 1].
It has been widely used due to its biological interpretation as the firing rate of an actual
neuron. However, it is not commonly used because of two major drawbacks that hinder
or render impossible the learning process in some situations: gradient saturation and
not zero-centered outputs.

The tanh non-linearity is similar to the sigmoid one, but it squashes the input to
the range [−1, 1]. It can be expressed as a scaled sigmoid tanh(x) = 2σ(2x) − 1. In
comparison with the sigmoid, it still saturates gradients but the output is zero-centered.
In practice, the tanh has been used as a preferred replacement for the sigmoid.

The ReLU is the most common activation function for CNNs. It basically thresholds
the input at zero f(x) = max(0, x). It has two major advantages: gradient descent train-
ing is significantly accelerated due to its non-saturating properties and it features a low
computational cost in comparison with the sigmoid and tanh which involve expensive
operations. Nonetheless, ReLU units can irreversibly die (the neuron will never acti-
vate again) if the learning rate is not carefully set [32]. In order to solve this problem,
other functions have been proposed, being the most popular ones the Leaky ReLU and
the Parametric Rectified Linear Unit (PReLU) [33].

Activation layers are often placed right after a convolution takes place, but many
combinations are possible. In this case, the output for the i, j neuron of a hidden layer
H after the convolution takes place and the non-linearity, denoted as σ independently
of the chosen activation function, is applied is:

Hi,j = σ(b+

fw−1∑
k=0

fh−1∑
l=0

Xi+k,j+lWk,l) .

−2 0 2

−1

0

1

x

y

Sigmoid

(a) Sigmoid

−2 0 2

−1

0

1

x

y

Tanh

(b) Tanh

−2 0 2

−1

0

1

x

y

ReLU

(c) ReLU

Figure 2.7: Activation functions: Sigmoid (a), Tanh (b), and ReLU (c).

Chapter 2. Convolutional Neural Networks 13

2.3.3 Pooling

In addition to the convolution and activation layers just described, CNNs also contain
pooling layers placed immediately after a combination of convolution and activation
ones. These layers are used to simplify the feature maps produced by the previous
convolution and activation layers.

The intuitive concept supporting this kind of layer lies in the fact that once a feature
has been found by the previous layers, its exact location in the feature map is not as im-
portant as its location relative to other detected features. Pooling layers take advantage
of this reasoning to progressively reduce the spatial size of the representation. This
simplification has many advantages: by reducing the representation size the amount
of parameters to be learned is also reduced, therefore decreasing the computational
cost of the whole network and also diminishing overfitting.

In detail, the pooling layer generates a condensed feature map by summarizing re-
gions of a certain size with a predefined stride. Figures 2.8a and 2.8b show a pooling
example in which a 12× 12 feature map gets condensed into a 4× 4 pooled map, pro-
duced by pooling regions of 4 × 4 neurons with a stride of 4 × 4. The pooling region
is slided over the whole input to generate the pooled map. It is important to remark
that convolution layers can generate many feature maps that are passed through acti-
vation layers to the pooling stage. In this case, pooling is applied to each feature map
separately.

There are many pooling operations, being the most common the one known as max
pooling (see Figure 2.8c). In this operation, each pooling region outputs the maximum
value of the neurons for that region. Other functions such as average pooling (see
Figure 2.8d) or L2-norm pooling can be used as well. Despite the fact that pooling
layers have been commonly used for CNNs in almost every architecture, the current
trend in research tends to reduce the size of the pooling regions or even remove the
pooling layers due to the aggressive reduction of information [34][35].

feature map

pooled map

(a) First output

feature map

pooled map

(b) Second output

5
5
5
5

6
6
6
6

7
7
7
7

8
8
8
8

8

feature map

max-pooled map

(c) Max pooling

5
5
5
5

6
6
6
6

7
7
7
7

8
8
8
8

6.5

feature map

average-pooled map

(d) Average pooling

Figure 2.8: Pooling operation over a 12×12 feature map using a filter
size of 4× 4 and a stride of 4× 4.

14 Chapter 2. Convolutional Neural Networks

feature map

fc1

fc2

scores

Y1
Y2
Y3
Y4

Figure 2.9: Three fully connected layers using a 3 × 3 feature map
produced by a stack of convolution, activation, and pooling layers as
input. Each connection has an associated weight that will be learned.
The last fully connected layer represents the output of the network, a
vector of four scores [s1, s2, s3, s4] (also named logits) for a classifica-
tion problem with four classes or labels.

2.3.4 Fully Connected

After a stack composed by convolution, activation, and pooling layers, the high-level
reasoning of the network is deferred to a set of fully connected layers. Those layers are
identical to the layers in a typical MLP. This means that neurons in a fully connected
layer are connected to every neuron in the previous layer as seen in Figure 2.3.

The last fully connected layer is usually one-dimensional and contains as many
neurons as classes or labels we are trying to classify. The output produced by this layer
is a score per each class. Figure 2.9 shows an example of fully connected layers applied
to a feature map generated by a stack of convolution, activation, and pooling layers.

2.3.5 Loss

In order to train the network – further details about the training process will be dis-
cussed in Section 2.4 – a way to penalize the deviation between the true labels of the
instance that we are trying to classify and the label predicted by the network is needed.
The most common way to do that is using a softmax function to transform the logits
into probabilities and then apply a cross-entropy function to compute the loss which
determines that penalty.

The softmax is a normalized exponential function that squashes the k-dimensional
classifier output vector Y of real values to another k-dimensional vector S(Y) of real
values in the range [0, 1] that add up to 1, i.e., it generates a probability distribution for
the predicted classes. The softmax function is defined as:

S(Yi) = eYi/

k∑
j=0

eYj .

The loss is then computed using the cross-entropy, a natural way to measure the
difference between two probability vectors. Given a probability distribution S(Y), and
a one-hot encoded class label vector L in which Li = 1 for the true label i for the sample
and 0 otherwise, the difference can be expressed as D(S(Y), L) = −

∑k
i=0 Lilog(Si).

Chapter 2. Convolutional Neural Networks 15

2.4 Training a CNN

Throughout the previous sections we introduced two key concepts in the context of
CNNs: a score function which maps the inputs X to class scores Y using a set of
weights W , and a loss function D which measures the quality of the current weights
based on how well the predicted labels S agreed with the ground truth ones L in the
training label. A third key concept arises intuitively: weights W which produce pre-
dictions for inputs X that are consistent with the training labels L have low loss D.
Putting those concepts together, we can formulate training as the optimization process
of finding the set of weights that minimize the loss function.

2.4.1 Gradient Descent

Gradient descent is an iterative optimization technique based on the assumption that
if the function to be minimized f – which uses a set of parameters or weights W –
is defined and differentiable in a neighborhood of a point x, that function decreases
fastest taking a step from x in the direction of the negative gradient of x at x, −∇f(x).
Figure 2.10 shows the surface of a function and its negative gradients.

In the case of a CNN, for the sake of simplicity, we assume that the network, includ-
ing all the convolution, activation, pooling, fully connected, and loss layers, models a
function f which processes a training set X using a set of weights for the layers W and
outputs the loss D = f(W,X,L) for that input. This process is called the forward pass.
Using that loss we can compute the gradients of each layer using backpropagation and
then update the weights using those gradients of the loss functions in what is called
the backward pass. The vanilla version of the weight updating scheme looks as follows:

Wt+1 =Wt − α∇f(Wt, X, L) ,

where Wt is the set of weights for iteration t and Wt+1 is the updated one using the
computed gradients and the current training example. The learning rate α determines
the step size to take in the direction of the negative gradient of the loss function.

−2 −1
0

1
2 −2

0

2

−0.4

−0.2

0

0.2

0.4

(a) Surface
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Gradients

Figure 2.10: Surface of the function ex
2−y2x (a) – which has a mini-

mum at (−1/
√
2, 0) and a maximum at (1/

√
2, 0) – together with the

negative gradients shown in a top-down view (b).

16 Chapter 2. Convolutional Neural Networks

−2 −1
0

1
2 −2

0

2

0

5

10

(a) Surface

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Gradients

Figure 2.11: Surface of the function x2 + 2y2 (a)– which has a mini-
mum at (0, 0) – together with the negative gradients shown in a top-
down view (b).

2.4.2 Stochastic Gradient Descent

Vanilla gradient descent needs to compute the gradients for the whole training set just
to perform a single update or iteration. In other words, an epoch must be performed
for computing the gradients. This poses a problem of utmost importance: gradient
descent is intractable for big datasets that are often required for deep CNNs to avoid
overfitting. Stochastic Gradient Descent (SGD) is an efficient alternative.

Instead of computing the loss and gradients for the whole training set, SGD com-
putes an estimate of it using a mini-batch of n training examples per each iteration.
Since we are only dealing with a small fraction of the training set for each step we take,
we might not advance in the right direction to minimize the loss. In balance, many
more steps might be needed for convergence but each one of them is much cheaper
to compute. In the end, SGD is vastly more efficient than vanilla gradient descent for
large datasets. When applied to the cost function whose surface is shown in Figure
2.11, the difference between both techniques can be observed in Figure 2.12.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Vanilla Gradient Descent

(a) Vanilla

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Stochastic Gradient Descent

(b) Stochastic

Figure 2.12: Vanilla (a) and stochastic (b) gradient descent applied to
the function x2 + 2y2. The contour plots show that SGD is less stable
and takes more steps for convergence to a minimum.

Chapter 2. Convolutional Neural Networks 17

2.4.3 Generalization and Overfitting

One of the most important aspects of machine learning models in general, and CNNs
in particular, is how well they generalize to unseen data. When training a model, one
must be very careful in order to avoid the situation in which the error in the training
set is low but not that good in the test set. When this happens, the model is overfitting
the training data, achieving poor generalization.

In order to illustrate the overfitting concept in a simple manner, we will reduce the
problem to a polynomial approximation of a function. This experiment was replicated
from the one originally carried out by Lawrence et. al [36]. We created a training dataset
consisting of 21 noisy points uniformly sampled from the f(x) = sin(x/3) function in
the [0, 20) domain. This dataset was then used to fit polynomial models with orders
2, 10, 16, and 20. Figure 2.13 shows the target function, the noisy samples, and the
approximations achieved by the polynomial model with increasing order.

0 5 10 15 20

−1

0

1

x

y

Target function
Noisy points
Approximation

(a) Order 2

0 5 10 15 20

−1

0

1

x

y

Target function
Noisy points
Approximation

(b) Order 10

0 5 10 15 20

−1

0

1

x

y

Target function
Noisy points
Approximation

(c) Order 16

0 5 10 15 20

−1

0

1

x

y

Target function
Noisy points
Approximation

(d) Order 20

Figure 2.13: Polynomial interpolation of noisy samples of the func-
tion f(x) = sin(x/3) in the domain [0, 20] and range [−1, 1] as the
order of the fitted model is evaluated at points 2, 10, 16, and 20. The
increasing complexity of the model tends to overfit the noisy data,
thus not generalizing well for the actual function.

18 Chapter 2. Convolutional Neural Networks

As we can observe, when the model has too few parameters (order 2) both training
and generalization errors are high since it needs more expressiveness to fit the training
data. With order 10 the model fits the training data reasonably good and also gener-
alizes well. However, as the number of parameters increases significantly (orders 16
and 20) the model starts fitting the training data with almost no error, but it generalizes
poorly, deviating too much from the target function.

Deep neural networks such as CNNs are very expressive models thanks to their
multiple non-linear hidden layers. At the same time, due to the large number of param-
eters, they are particularly prone to overfitting, especially with limited training data.
In this regard, two critical topics arise: the selection of architectures which maximizes
generalization – determining the optimal network layers, depth, and hyperparameters
– and the development of techniques to prevent overfitting. The process of avoiding
or preventing overfitting is called regularization and some of the most successful tech-
niques include L1 and L2 regularization, maximum norm constraints, dropout, and
early stopping.

Maximum Norm Constraints

One of the most simple forms of regularization consists of enforcing an absolute upper
bound on the magnitude of every weight vector. This is implemented by clamping
each weight vector W to satisfy ||W ||2 < c where c is the constraint value, which is
usually set to 3 or 4. By doing this, the weight vectors cannot explode to high values
even with high learning rates, thus preventing overfitting.

Dropout

Dropout [37] is arguably the most applied technique to avoid overfitting in deep neural
networks. In the particular case of CNNs, dropout operations are performed between
fully connected layers. The key idea is to randomly drop units and connections be-
tween those fully connected layers during training with a certain probability. The goal
is to prevent units from co-adapting. In the end, dropout layers significantly reduce
overfitting. Due to its simplicity and results, it has become one of the most common
regularization methods. Figure 2.14 shows an example of this technique.

(a) Standard Net

×
×

×

(b) After Dropout

Figure 2.14: Dropout model applied to a standard fully connected
network (a), the crossed units have been dropped out randomly to-
gether with their connections (b).

Chapter 2. Convolutional Neural Networks 19

L1, L2, and Elastic Net Regularization

Another common way to avoid overfitting is to add penalties for network parameters
to restrict complexity as maximum norm constraints do. This process is also known as
weight decay, and it is applied on a per layer basis.

In the case of the L1 regularizer, the L1 norm of each set of parameters is com-
puted during the forward pass ||W || and −λ||W || is added to the loss function. On the
other hand, L2 computes the L2 norm ||W ||2 during the forward pass and adds the
term −0.5λ||W ||2 to the loss function. In both cases λ is a regularization coefficient that
determines how dominant the regularization term is, i.e., the magnitude of the penal-
ization. Intuitively, L1 makes the weight vectors become sparse during optimization,
whilst L2 heavily penalizes peaky weight vectors over diffuse ones. It is important to
notice that during the weights update, L2 regularization ultimately decays them lin-
early by adding the term −λW to the update equation.

In addition, both approaches can be combined by adding both L1 and L2 terms to
the loss function −(λ1||W ||+ λ2||W ||2) into what is called elastic net regularization [38].

Early Stopping

It is a good practice to always monitor the error during training not only on the training
set but also on a validation set. In this regard, the training process should be stopped,
applying certain thresholds, when either the validation error is not improving signifi-
cantly or either it starts to increase. This technique, which is illustrated in Figure 2.15,
is known as early stopping.

Shuffling

In order not to bias the optimization algorithm during the descent, it is important to
avoid providing the training batchs in a meaningful order. For this purpose, a common
approach consists of shuffling the whole training set after every epoch.

0 100 200 300 400 500 600 700 800 900 1,000

0

5

10

Ea
rl

y
St

op

Iterations

Er
ro

r

Training
Validation

Figure 2.15: Representation of the early stopping regularization
method. Both training and validation errors are monitored. At some
point – near iteration 450 – validation error starts increasing while
training error keeps decreasing. At that point, training must be
stopped to avoid overfitting.

20 Chapter 2. Convolutional Neural Networks

2.4.4 Vanishing and Exploding Gradient

Neural networks in general, and CNNs in particular are usually trained using gradient-
based methods and backpropagation. Since CNNs have multiple layers, each set of
weights is updated proportionally to the gradient of the loss function with respect to
the current weight in each training iteration. For this purpose, backpropagation com-
putes the gradients using the chain rule, from the last layer to the first. Between the
different layers we can find activation ones such as sigmoid or tanh, whose gradients
are in the range (−1, 1) or [0, 1). Since the chain rule multiplies those small numbers to
propagate the gradient to the first layers, it decreases exponentially, rendering impossi-
ble learning features in early layers because the learning signal that reaches them is too
weak [39]. Figure 2.16 illustrates the vanishing gradients problem using a multi-layer
network with an increasing number of hidden layers. On the contrary, if the activation
function derivatives do not saturate or can take larger values, the gradient can explode.

The vanishing gradient problem can be solved by using ReLU activation functions
which do not saturate, layer-by-layer pretraining so that early layers only need to be
adjusted slightly [40], and also the appearance of faster hardware like GPUs made back-
propagation feasible even with weak signals. The exploding gradient can be alleviated
normalizing the output of each layer so that it cannot saturate higher ones [41]. Fur-
thermore, much effort has been devoted to initializing the weights so that they are less
likely to lead to either vanishing or exploding gradients [42].

0 100 200 300 400
10−4

10−2

100

Epochs

G
ra

di
en

tM
ag

ni
tu

de

First Hidden Layer
Second Hidden Layer

(a) 2 Hidden Layers

0 100 200 300 400
10−4

10−2

100

Epochs

G
ra

di
en

tM
ag

ni
tu

de

First Hidden Layer
Second Hidden Layer
Third Hidden Layer

(b) 3 Hidden Layers

0 100 200 300 400
10−6

10−3

100

Epochs

G
ra

di
en

tM
ag

ni
tu

de

First Hidden Layer
Second Hidden Layer
Third Hidden Layer
Fourth Hidden Layer

(c) 4 Hidden Layers

Figure 2.16: Vanishing gradient in a multi-layer neural network train-
ing with the MNIST dataset. Experiments were replicated from [43].

Chapter 2. Convolutional Neural Networks 21

2.4.5 Challenges and Optimizations

SGD – also known as mini-batch gradient descent – has become the algorithm of choice
for training CNNs due to its efficiency and continuous success. However, there are
many challenges that are yet to be solved regarding the optimization process:

• Suboptimal local minima. Gradient descent guarantees converging to a global min-
imum for convex optimization, but only to local minimums for non-convex prob-
lems such as the cost functions from a CNN. In addition, it has been identified
that the main problem are saddle points [44], which are notoriously hard for SGD
to escape, due to the almost zero gradient in all dimensions.

• Learning rate value. It is hard to choose the right initial value for the learning rate
parameter. A small value will lead to painfully slow convergence, while a large
one might cause overshooting and hinder convergence.

• Learning rate schedules. It is not clear what the step size should be, but there is
a consensus about decreasing it as the training progresses [45]. Lowering the
learning rate over time is known as learning rate decay. However, most of the
schedules are defined in advance so they are unable to adapt to the training set.

• Adaptive learning rate. The learning rate is applied to all parameters with the same
value. In some situations, certain features may be sparse and better results could
be achieved if larger updates are performed for rarely occurring features and vice
versa.

In this section we will review some of the most common optimization algorithms
to address the aforementioned challenges: SGD with momentum, Nesterov accelerated
Gradient (NAG), Adagrad, Adadelta, RMSprop, and Adaptive Moment Estimation.

SGD with Momentum

Momentum [46] is a method which aims to accelerate the convergence of SGD by keep-
ing a running average of the gradient over time, and using it instead of the direction of
the current mini-batch to perform the descent step. The weights are updated using the
momentum term Mt as follows:

Wt+1 =Wt −Mt .

The momentum term for the current iteration t is computed by adding a fraction γ
of the update vector of the last step Mt−1 to the current update vector

Mt = γMt−1 + α∇f(Wt, X, L) .

Essentially, the momentum term increases for dimensions whose gradients point
consistently to the same directions over time and decreases otherwise, thus accelerating
convergence and reducing oscillations.

22 Chapter 2. Convolutional Neural Networks

Nesterov accelerated Gradient

NAG [47] is an improvement over momentum. Using the running average of the pre-
vious updates accelerates the descent blindly following the slope. This blind descent
might get to a region in which the gradient slopes up again. NAG looks ahead by
calculating the gradient with regard to the approximate future position of the weights:

Mt = γMt−1 + α∇f(Wt − γMt−1, X, L) .

Adagrad

Adagrad [48] is another optimizer that improves vanilla SGD by adapting the learning
rate according to the weights, performing smaller updates for frequent features and
larger ones and vice versa. This eliminates the need to manually tune the learning rate.
It uses a different learning rate for each weight Wi at a certain time step t. The weights
update rule is then expressed as follows:

Wt+1,i =Wt,i −
α√

Gt,i + ε
∇f(Wt,i, X, L) ,

where Gt,i ∈ Rd×d is a diagonal matrix where each diagonal element is the sum of
the squares of the gradients with regard to Wi up to time step t. A smoothing term
ε is introduced to avoid divisions by zero. This rule can be vectorized performing an
element-wise matrix-vector multiplication:

Wt+1 =Wt −
α√
Gt + ε

�∇f(Wt, X, L) .

Adadelta

The main problem of Adagrad is the continuous growing of the accumulated sum in
the denominator which eventually causes the learning rate to become infinitesimally
small thus rendering the algorithm unable to learn. Adadelta [49] seeks to overcome
this weakness by restricting the window of accumulated past gradients to a fixed size
w. That sum of gradients E[g2]t is recursively defined as a decaying average of past
gradients, and depends on the previous average and the current gradient:

E[g2]t = γE[g2]t−1 + (1− γ)∇f2(Wt, X, L) .

The weight update rule can be reformulated by simply replacing the diagonal ma-
trix Gt with the decaying average over past squared gradients E[g2]t (which is just the
Root Mean Squared (RMS) error) as follows:

Wt+1 =Wt −
α√

E[g2]t + ε
�∇f(Wt, X, L) =Wt −

α

RMS[g]t
�∇f(Wt, X, L) .

Chapter 2. Convolutional Neural Networks 23

RMSprop [50] is another adaptive learning method which was developed indepen-
dently and around the same time as Adadelta, both aiming to solve Adagrad’s dimin-
ishing learning rate to infinitesimal quantities.

Adam

Adaptive Moment Estimation (Adam) [51] is an improvement over RMSprop and Adadelta
that also keeps an exponentially decaying average of past gradients M ′

t , apart from the
exponentially decaying average of the past squared gradients Mt:

M ′
t = γ′M ′

t−1 + (1− γ′)∇f(Wt, X, L) ,

Mt = γMt−1 + (1− γ)∇f2(Wt, X, L) .

The estimates of the first and second moment of the gradients, Mt and M ′
t respec-

tively, are biased towards zero so corrected versions are necessary:

M̂ ′
t =

M ′
t

1− γ′t
, M̂t =

Mt

1− γt
.

Those moments are used to update the weights using the Adam update rule:

Wt+1 =Wt −
α√
M̂t + ε

M̂ ′
t .

Comparison of Optimizers

Figure 2.17 shows a comparison of some of the most common optimizers explained
above. This comparison evaluates the performance of those optimizers against each
other on the MNIST dataset using ConvNetJS. The benchmark uses a simple two fully
connected hiddden layers with 20 neurons each one and ReLU activation functions
followed up by a softmax output layer. A batch size of 8 samples was used, the learning
rate starts at 0.01, an L2 weight decay of 0.001 was also included, momentum was set
to 0.9. More details about the setup can be consulted here [52].

As we can observe, Adadelta is the one with the best performance, i.e., faster con-
vergence and the lowest loss. Adagrad converges fast during the first samples but then
its performance starts degrading while NAG’s behavior is the opposite. On the other
hand, SGD is the slowest one whilst SGD with momentum is a tad faster and they both
converge to similar final values as NAG.

However, it is important to notice that results and performance might vary signif-
icantly from one dataset to another and even different architectures may affect them.
Also, hyperparameter tuning is mandatory for those solvers which depend on them
in order to achieve good performance. As an empirical established rule, Adagrad and
Adadelta are safer in the sense that they do not depend strongly on the hyperparam-
eters. Nevertheless, well-tuned SGD with momentum or even vanilla SGD usually
converge faster and achieve better results [52].

24 Chapter 2. Convolutional Neural Networks

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0.5

1

1.5

2

2.5

Training Samples

Tr
ai

ni
ng

Lo
ss

SGD
SGD+momentum
NAG
Adagrad
Adadelta

Figure 2.17: Comparison of common optimizers (SGD, SGD with mo-
mentum, NAG, Adagrad, and Adadelta) on the MNIST dataset using
a network architecture with to fully connected hidden layers with 20
neurons followed by a softmax output. A batch size of 8 samples was
used, the learning rate starts at 0.01, an L2 weight decay of 0.001 was
also included, momentum was set to 0.9. The benchmark was imple-
mented using ConvNetJS by Andrej Karpathy [52]. The plot compares
the training loss as the number of training examples provided to the
network increases.

2.5 Conclusion

In this chapter we have laid down the foundations for the rest of this work. First,
we described what the convolution operator is and its formulation when applied to
tensors. We also discussed the architecture of a CNN: its key concepts and layers. At
last, we showed how to train this kind of neural network and we also enumerated
challenges and how recent contributions to the field optimize this process.

This theoretical background provides us with all the concepts that we need to un-
derstand in order to design, implement, and train a 2DCNN. The following chapters
will focus on the implementation of a 2.5DCNN – using well established deep learn-
ing frameworks to express the aforementioned concepts without needing to implement
them from scratch – that will be later modified to perform 3D convolutions. However,
before getting straight to the proposal of this work, we will have to review some pre-
requisites: materials and methods, and volumetric representations.

In that regard, the next chapter is devoted to the description of the different tools,
data, and resources that will be used throughout this work to compute representations,
train networks, and in general carry out any experiment. After that, we will discuss
volumetric representations. As we previously stated in the beginning of this chapter,
CNNs exploit data with clear topologies, i.e., grid-like structures or arrays. Raw 3D
data exhibits no clear topology, e.g., unstructured point clouds provided by 3D acqui-
sition devices. A transformation is needed to generate structured 3D tensors that can
be fed to a CNN. Those matters will be discussed in the following chapters.

Chapter 3

Materials and Methods

In this second chapter we will describe the set of materials and methods employed in this work,
in terms of software, data, and hardware. The chapter is organized as follows. Section 3.1
introduces the purpose of this chapter and puts the materials and methods in context. Section
3.2 reviews a set of popular deep learning frameworks and justifies our chosen one. Section 3.3
analyzes existing object databases and selects one to be used for this work. At last, Section 3.4
describes the hardware setup that was assembled and configured to perform the experiments.

3.1 Introduction

In order to carry out this project, we need the support of many different resources.
First, we need tools for expressing CNNs, which would allow us to design, implement,
train, and test different layers, architectures, and configurations. It is possible to im-
plement them from scratch, but leveraging to a framework eases and streamlines the
development process.

Second, we need a source of data to generate training, test, and validation sets.
That data will be adapted and transformed into a volumetric representation that will
be eventually provided as input to the CNNs. The choice of a dataset is not trivial due
to the special needs of deep architectures.

Third, we require computational resources to experiment with the implemented
CNNs to measure their performance in terms of both execution time and accuracy.
Again, because of the special requirements of deep neural networks, low-end comput-
ers are not a good option so high-end solutions with specialized hardware is a must for
maintaining a competitive edge in this field.

In the following sections we will review each need in detail, focusing on picking a
framework that best suits our needs, an adequate dataset for our purposes, and config-
uring a server to provide proper computational power.

3.2 Frameworks

Deep learning architectures have significantly influenced various application domains,
surpassing by a large margin state-of-the-art methods for computer vision [23], [53],
natural language processing [54]–[56], and speech recognition [57]–[59]. Due to that
significant performance improvement achieved compared to traditional approaches,
the popularity of deep learning methods has significantly increased over the last few
years. Because of that, deep learning frameworks have also experienced a consider-
able growth in order to enable researchers to efficiently design, implement, and deploy
these kind of architectures. Although this meteoric rise has hugely benefited the deep
learning community, it also leads researchers to a certain confusion and difficulties to

25

26 Chapter 3. Materials and Methods

Framework License Core Interface OpenMP CUDA
Torch[60] BSD 3-Clause C, Lua Torch, C, C++/OpenCL Yes Third Party

Theano[61] BSD 3-Clause Python Python Yes Yes
Caffe[62] BSD 2-Clause C++, Python C++, CLI, Python, MATLAB No Yes

CNTK[63] MIT C++ CLI No Yes
TensorFlow[64] Apache 2.0 C++, Python C/C++, Python No Yes

Table 3.1: Comparison of the most popular deep learning frame-
works, taking into account high-level features such as the source
code license, the programming language used to write the core of
the framework, the available interfaces to train, test, and deploy the
models, and whether or not they support OpenMP and CUDA.

decide which framework to use. The fact is that different frameworks aim to optimize
distinct aspects of the development process of deep learning architecture, i.e., choosing
one framework over the others is mainly a matter of adequateness to the task at hand.

The list of available frameworks is vast and it is growing constantly as new frame-
works are developed either to fill the gaps left by other’s weaknesses or to provide
new approaches and tools for researches to ease the development of deep architec-
tures. Arguably, the most popular frameworks nowadays are Theano, Torch, Caffe,
Computational Network Toolkit (CNTK), and TensorFlow. The list is not limited to
those frameworks and also includes other less known ones such as DeepLearning4J,
Neon, PyLearn, MXNet, ConvNet, CUDA-ConvNet, Deepmat, and more too numer-
ous to mention. This section presents an overview of the five aforementioned most
popular frameworks, as well as a brief comparison and discussion about their features
to determine the best one for our purposes. In this regard, Table 3.1 shows a quick
comparison of the five discussed frameworks, taking into account certain high-level
features. This brief comparison serves as a proper starting point to describe each one
of the frameworks in depth throughout the next sections.

3.2.1 Torch

Torch[60] is a scientific computing framework mainly maintained by researchers at
Facebook Artificial Intelligence Research (FAIR) lab, Google DeepMind, Twitter, and
also by a large list of contributors on GitHub1. It is a BSD-licensed C/Lua library that
runs on Lua Just In Time (JIT) compiler with wide support for machine learning al-
gorithms. Its goal is to have maximum flexibility and speed building scientific algo-
rithms while making the process extremely simple thanks to an easy and fast scripting
language, LuaJIT, and an underlying C/CUDA implementation. One of its main high-
lights is its large ecosystem of community-driven packages and documentation.

The most important core features are easiness (it uses a simple scripting language
as LuaJIT as an interface to the C core routines), efficiency (the underlying C/CUDA
implementation provides a strong backend for both CPU and GPU computations with
NVIDIA CUDA Deep Neural Network (cuDNN)[65]), optimized routines (for linear
algebra, numeric optimization, and machine learning), and fast embedding with ports
to iOS, Android and Field Programmable Gate Array (FPGA) backends.

1http://github.com/torch/torch7

http://github.com/torch/torch7

Chapter 3. Materials and Methods 27

3.2.2 Theano

Theano[61], [66], [67] is a mathematical compiler for Python developed by a group of
researches from the University of Montreal Computer Science and Operations (CSO)
department, and maintained by them together with the contributions of a number
users on GitHub2. It is a BSD-licensed framework in the Python programming lan-
guage which can be used to define mathematical functions in a symbolic way, derive
gradient expressions, and compile those expressions into executable functions for ef-
ficient performance in both CPU and GPU platforms. It was conceived as a general
mathematical tool, but its main goal was to facilitate research in deep learning.

The main features of Theano are the following ones: powerful tools for manipu-
lating and optimizing symbolic mathematical expressions, fast to write and execute
thanks to its dependency on NumPy[68] and SciPy[69], CUDA code generators for fast
GPU execution of compiled mathematical expressions, and code stability and commu-
nity support due to its short stable release cycle and exhaustive testing.

3.2.3 Caffe

Caffe[62] is a deep learning framework developed and maintained by the Berkeley Vi-
sion and Learning Center (BVLC) and an active community of contributors on GitHub3.
This BSD-licensed C++ library provides means to create, train, and deploy general-
purpose CNNs and other deep models efficiently, mainly thanks to its drop-in inte-
gration of NVIDIA cuDNN[65] to take advantage of GPU acceleration.

The highlights of this framework are modularity (allowing easy extension by defin-
ing new data formats, layers, and functions), separation of representation and im-
plementation (model definitions are written as configuration files in Protocol Buffer
language), test coverage (all modules have tests which have to be passed to be ac-
cepted into the project), Python/MATLAB bindings (for rapid prototyping, besides the
Command Line Interface (CLI) and C++ API), and pre-trained reference models.

3.2.4 Computational Network Toolkit

The CNTK [63] is a general purpose machine learning framework developed by Mi-
crosoft Research and recently open-sourced under the MIT license on GitHub4. Its
main contribution is providing a unified framework for describing learning systems as
Computational Network (CN), and the means for training and evaluating that series of
computational steps. Despite the fact that it was created as a general toolkit, it mainly
focuses on deep neural networks, so it can be redefined as a deep learning tool that
balances efficiency, performance, and flexibility. The core is written in C++ and the CN
models can be described in both C++ or Network Definition Language (NDL)/Model
Editing Language (MEL).

Thanks to the directed graph representation of the computation steps, it allows to
easily recreate common models and extend them or create new ones from scratch by
combining simple functions in arbitrary ways. It features a significantly modularized
architecture, SGD for training, auto-differentiation to obtain the gradient derivatives,
and parallelization focused on GPU clusters across multiple nodes with CUDA-capable
devices.

2https://github.com/Theano/Theano
3http://github.com/BVLC/caffe
4https://github.com/Microsoft/CNK

https://github.com/Theano/Theano
http://github.com/BVLC/caffe
https://github.com/Microsoft/CNK

28 Chapter 3. Materials and Methods

3.2.5 TensorFlow

TensorFlow[64] is a library for numerical computation using data flow graphs origi-
nally developed by researchers and engineers working on the Google Brain team for
the purposes of conducting machine learning and deep neural networks research, cur-
rently an active community of GitHub users contribute to the source code as well using
its repository 5. Its core is written in C++ and the whole framework is being open sourced
under the Apache 2.0 license. The main goal of this project is to provide an interface,
in both Python and C++, for expressing artificial intelligence or machine learning algo-
rithms, together with an efficient implementation of those algorithms which are flexible
and scalable, i.e., the computations can be executed on a wide variety of devices with
minimal or no changes at all.

This library features deep flexibility (every computation that can be expressed as
a data flow graph can be implemented using TensorFlow), portability and scalability
(training, testing, and deployment run on both CPUs and GPUs and they scale from
single nodes to large-scale systems, besides it allows users to freely assign compute
elements of the graph to different devices), research and production (deploying experi-
mental systems is an easy task and requires minimal changes), and auto-differentiation
(the derivatives needed for the data flow graph when expressing gradient based ma-
chine learning algorithms are computed automatically).

3.2.6 Other Frameworks

Other less known but still important frameworks that are currently being use by the
research community are (among others) Keras 6, DeepLearning4j 7, Marvin 8, and Mat-
ConvNet [70] 9.

3.2.7 Picking a Framework

Picking the right framework depends on many factors, e.g., speed, extensibility, main
language, the community, etc. In our case, our main concern is speed since the system
is intended to be eventually deployed in an embedded platform for real-time recogni-
tion. Related to this point, it is important for us the compatibility of the framework to
export and load models in embedded boards for classification. Another major concern
is extensibility to create our own data layers and extend convolutions from 2D to 3D.
And last, but not least, having an active community is a must for choosing a framework
in order to effectively deal with problems and improve the current code base.

Taking all of this into account, we picked Caffe as our framework of choice due
to its long standing community, extensibility, speed – thanks to C++ and CUDA –, and
its well-tested deployment in embedded platforms. The framework was extended this
framework to support 3D convolutions and pooling. In addition, we also added a data
layer to load our volumetric representations that will be discussed in Chapter 4.

5https://github.com/tensorflow/tensorflow
6https://github.com/fchollet/keras
7https://github.com/deeplearning4j/deeplearning4j
8https://github.com/PrincetonVision/marvin
9https://github.com/vlfeat/matconvnet

https://github.com/tensorflow/tensorflow
https://github.com/fchollet/keras
https://github.com/deeplearning4j/deeplearning4j
https://github.com/PrincetonVision/marvin
https://github.com/vlfeat/matconvnet

Chapter 3. Materials and Methods 29

3.3 Datasets

Deep neural network architectures are usually composed by many layers which in turn
mean many weights to be learned. Because of that, there is a strong need of large-scale
datasets to train those networks in order to avoid overfitting the model to the input
data. Nowadays, large-scale databases of real-world 3D objects are scarce, some of
them do not have that high number of objects [71][72][73], or were incomplete by the
time this work was performed [74]. A possible workaround to this problem consists of
using Computer Aided Design (CAD) model databases – which are virtually unlimited
– and processing those models to simulate real-world data.

The Princeton ModelNet project is one of the most popular large-scale 3D object
dataset. Its goal, as their authors state, is to provide researchers with a comprehensive
clean collection of 3D CAD models for objects, which were obtained via online search
engines. Employees from the Amazon Mechanical Turk (AMT) service were hired to
classify over 150 000 models into 662 different categories.

At the moment, there are two versions of this dataset publicly available for down-
load10: ModelNet-10 and ModelNet-40. Those are subsets of the original dataset which
only provide the 10 and 40 most popular object categories respectively. These subsets
are specially clean versions of the complete dataset.

On the one hand, ModelNet-10 is composed of a collection of over 5000 models
classified into 10 categories and divided into training and test splits. In addition, the
orientation of all CAD models of the dataset was manually aligned. On the other hand,
ModelNet-40 features over 9800 models classified into 40 categories, also including
training and test sets. However, the orientations of its models are not aligned as they
are in ModelNet-10. Figure 3.1 and Table 3.2 show the model distribution per each class
of both subsets taking into account the training and test splits. Figure 3.2 shows some
model examples from ModelNet-10.

10http://modelnet.cs.princeton.edu/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0

100

200

300

400

500

600

700

800

900

1,000

Class

M
od

el
s

ModelNet-10 training
ModelNet-10 test

ModelNet-40 training
ModelNet-40 test

Figure 3.1: Model distribution per object class or category for both
ModelNet-10 and ModelNet-40 training and test splits.

http://modelnet.cs.princeton.edu/

30 Chapter 3. Materials and Methods

Figure 3.2: ModelNet10 samples.

Chapter 3. Materials and Methods 31

Category Training (10) Test (10) Training (40) Test (40)

Desk 200 86 200 86
Table 392 100 392 100
Nighstand 200 86 200 86
Bed 515 100 515 100
Toilet 344 100 344 100
Dresser 200 86 200 86
Bathtub 106 50 106 50
Sofa 680 100 680 100
Monitor 465 100 465 100
Chair 889 100 889 100
Airplane 0 0 626 100
Bench 0 0 173 20
Bookshelf 0 0 572 100
Bottle 0 0 335 100
Bowl 0 0 64 20
Car 0 0 197 100
Cone 0 0 167 20
Cup 0 0 79 20
Curtain 0 0 138 20
Door 0 0 109 20
FlowerPot 0 0 149 20
GlassBox 0 0 171 100
Guitar 0 0 155 100
Keyboard 0 0 145 20
Lamp 0 0 124 20
Laptop 0 0 149 20
Mantel 0 0 284 100
Person 0 0 88 20
Piano 0 0 231 100
Plant 0 0 240 100
Radio 0 0 104 20
RangeHood 0 0 115 100
Sink 0 0 128 20
Stairs 0 0 124 20
Stool 0 0 90 20
Tent 0 0 163 20
TVStand 0 0 267 100
Vase 0 0 475 100
Wardrobe 0 0 87 20
XBox 0 0 103 20

Table 3.2: Model distribution per object class or category for both
ModelNet-10 and ModelNet-40 training and test splits.

For this work, we will use of the ModelNet-10 subset, which contains a reasonable
amount of models for both training and validation, mainly because this dataset was
completely cleaned and the orientation of the models were manually aligned.

32 Chapter 3. Materials and Methods

3.4 Hardware

Deep learning algorithms take tremendous computational resources to efficiently pro-
cess huge amounts of data. To that end, it becomes mandatory to experiment in a
powerful and energy-efficient computing solution. The Asimov server was assembled
and configured for that purpose. It was built with the NVIDIA Digits DevBox [75] as
inspiration, so most of its components were chosen based on the DevBox’s ones.

The full hardware configuration is shown in Table 3.3. The main features of the
server are the three NVIDIA GPUs which were targeted at different goals. The Titan X
will be devoted to deep learning, whilst a Tesla K40 was also installed for scientific com-
putation purposes thanks to its exceptional performance with double precision floating
point numbers. In addition, a less powerful GT730 was included for visualization and
offloading the Titan X from that burden.

Regarding the software information, the server runs Ubuntu 16.04 LTS with Linux
kernel 4.4.0 − 21−generic for x86_64 architecture. The GPUs are running on NVIDIA
driver version 361.42 and CUDA 7.5.

Other relevant software includes Caffe RC3, Point Cloud Library (PCL) 1.8 (master
branch 9260fa2), Vtk 5.6, and Boost 1.58.0.1. All libraries and tools were compiled
using GNU Compiler Collection (GCC) 5.3.1 and the CMake 3.5.1 environment with
release settings for maximum optimization.

Asimov
Motherboard Asus X99-A 11

Intel X99 Chipset
4× PCIe 3.0/2.0× 16(×16,×16/× 16,×16/× 16/× 8)

CPU Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz 12

3.3 GHz (3.6 GHz Turbo Boost)
6 cores (12 threads)
140 W TDP

GPU (visualization) NVIDIA GeForce GT730 13

96 CUDA cores
1024 MiB of DDR3 Video Memory
PCIe 2.0
49 W TDP

GPU (deep learning) NVIDIA GeForce Titan X 14

3072 CUDA cores
12 GiB of GDDR5 Video Memory
PCIe 3.0
250 W TDP

GPU (compute) NVIDIA Tesla K40c 15

2880 CUDA cores
12 GiB of GDDR5 Video Memory
PCIe 3.0
235 W TDP

RAM 4× 8 GiB Kingston Hyper X DDR4 2666 MHz CL13
Storage (Data) (RAID1) Seagate Barracuda 7200rpm 3TiB SATA III HDD 16

Storage (OS) Samsung 850 EVO 500GiB SATA III SSD 17

Table 3.3: Hardware specifications of Asimov.

Chapter 3. Materials and Methods 33

Figure 3.3: Asimov’s SSH banner message and welcome screen with
server info.

In addition, the server was configured for remote access using Secure Shell (SSH).
The installed version is OpenSSH 7.2p2 with OpenSSL 1.0.2. Authentication based
on public/private key pairs was configured so only authorized users can access the
server through an SSH gateway with the possibility to forward X11 through the SSH
connection for visualization purposes. Figure 3.3 shows an SSH connection to Asimov.

At last, a mirrored Redudant Array of Independent Disks (RAID)1 setup was con-
figured with both Hard Disk Drives (HDDs) for optimized reading and redundancy to
tolerate errors on a data partition to store all the needed datasets, intermediate results,
and models. The Solid State Drive (SSD) was reserved for the operating system, swap,
and caching.

11https://www.asus.com/Motherboards/X99A/specifications/
12http://ark.intel.com/products/82932/Intel-Core-i7-5820K-Processor-15M-

Cache-up-to-3_60-GHz
13http://www.geforce.com/hardware/desktop-gpus/geforce-gt-730/

specifications
14http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
15http://www.nvidia.es/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-

Spec-BD-06902-001_v05.pdf
16http://www.seagate.com/es/es/internal-hard-drives/desktop-hard-drives/

desktop-hdd/?sku=ST3000DM001
17http://www.samsung.com/us/computer/memory-storage/MZ-75E500B/AM

https://www.asus.com/Motherboards/X99A/specifications/
http://ark.intel.com/products/82932/Intel-Core-i7-5820K-Processor-15M-Cache-up-to-3_60-GHz
http://ark.intel.com/products/82932/Intel-Core-i7-5820K-Processor-15M-Cache-up-to-3_60-GHz
http://www.geforce.com/hardware/desktop-gpus/geforce-gt-730/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gt-730/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
http://www.nvidia.es/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.es/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.seagate.com/es/es/internal-hard-drives/desktop-hard-drives/desktop-hdd/?sku=ST3000DM001
http://www.seagate.com/es/es/internal-hard-drives/desktop-hard-drives/desktop-hdd/?sku=ST3000DM001
http://www.samsung.com/us/computer/memory-storage/MZ-75E500B/AM

Chapter 4

Volumetric Representations

This chapter is devoted to volumetric representations for data that will be used as input for train-
ing and testing 2.5D and 3D CNNs. Firstly, we will describe what a volumetric representation
is, which are the most common ones, and what are their advantages and weaknesses in Section
4.1. Next, in Section 4.2, we will review state-of-the-art representations that are currently being
used together with CNNs. We will also discuss what a good representation should be and then
propose novel ways of expressing this kind of data in Section 4.3. After that, in Section 4.4, we
will carry out a set of experiments to determine the efficiency of those proposed representations.
In the end, we will draw conclusions about the representations, we will show our expectations,
and we will introduce the usage of the proposed representations in 2.5DCNNs.

4.1 Introduction

In the previous chapter, we showed how CNNs can learn filters and recognize objects
using 2D images as input. In the following chapters, we will explore the possibilities
of recognizing object classes using 2.5D and 3D CNNs. For this purpose, we need
volumetric data to feed the networks. Arguably, the most popular representations for
volumetric data are 3D meshes or point clouds, shown in Figure 4.1a and 4.1b respec-
tively. A mesh consists of a collection of vertices (points in a three-dimensional (3D)
coordinate system), edges (connections between those vertices), and faces (closed sets
of edges, usually triangles) that defines the shape of an object. A point cloud is just a set
of points defined by x, y, and z coordinates in a three-dimensional coordinate system
that model the surface of an object. However, those representations are unbounded and
barely structured since they contain an arbitrary number of components, e.g., vertices
or points, and no particular ordering is enforced for those entities.

(a) Mesh (b) Point cloud (c) Voxel grid

Figure 4.1: Common volumetric representations: polygonal mesh (a),
point cloud (b), and voxel grid (c) of a chair model.

35

36 Chapter 4. Volumetric Representations

(a) 15× 15× 15 (b) 30× 30× 30 (c) 60× 60× 60

Figure 4.2: Effect of the leaf size on binary voxel grids. All grids have
the same cubic size: 300× 300× 300 units. Leaf sizes vary from 5, 10,
and 20 units, resulting in binary grids of 15× 15× 15 (a), 30× 30× 30
(b), and 60× 60× 60 voxels (c) respectively.

This fact poses a problem since CNNs require a fixed-size representation for the
input data. In order to overcome this limitation, alternative volumetric representations
must be used to provide samples to the network for both training and testing. The
most common volumetric representation which allows a structured and bounded defi-
nition of an object shape is the voxel grid. A voxel (word contraction of volume element
or volumetric pixel) is the 3D equivalent to a 2D pixel, i.e., it is the minimal unit of a
three-dimensional matrix. A volumetric object can be represented as a 3D matrix of
voxels, whose positions are relative to other voxels while points and polygons must be
represented explicitly by 3D coordinates. In this regard, voxels are able to efficiently
represent regularly sampled 3D spaces that are also non-homogeneously filled, while
meshes and point clouds are good for representing 3D shapes with empty or homo-
geneously filled space. It is important to notice that a voxel is just a data point in
a three-dimensional grid, so its value may represent many different properties. The
most popular and simple voxel grid type is the binary one (see Figure 4.1c) in which
each voxel contains a binary value depending on whether the object’s surface intersects
or is partially contained in the voxel’s volume.

Despite the fact that a binary voxel grid representation allows us to feed a CNN
with volumetric data coming from different sources (point clouds provided by range
sensors or polygonal meshes from 3D models can be easily converted into voxel grids)
a significant amount of information from the original representation is lost. This loss
depends on the resolution of the grid, i.e., the voxel size which is usually referred as
the leaf size. Figure 4.2 shows how the resolution of the voxel grid can be tuned to
obtain more accurate or more compact volumetric representations. Although an ar-
bitrary precision can be obtained by changing the leaf size, it is hard to determine a
specific size which describes with enough detail all the possible inputs for the CNN
without sacrificing the compactness of the grid. Because of that, other representations
which maintain the properties of the voxel grid, but include additional information in
the values of the cells are needed. In this chapter we will review existing volumetric
representations for learning with CNNs and we will propose alternative ones for this
purpose. Our focus will be kept on balancing the accuracy of the representations and
the runtime needed to compute them from other data sources, e.g., point clouds or
polygonal meshes.

Chapter 4. Volumetric Representations 37

(a) Object model (b) Depth map (c) Voxel grid

Figure 4.3: 3DShapeNets representation proposed by Wu et al. as
shown in their paper [76]. An object (a) is captured from a certain
point of view and a depth map is generated (b) which is in turn used
to generate a point cloud that will be represented as a voxel grid (c)
with empty voxels (in white, not represented), unknown voxels (in
blue), and surface or occupied voxels (red).

4.2 Related Works

In this section we will review the most recent and popular ways of representing 3D
data for CNNs. The first step was taken by Wu et al. [76], their work 3DShapeNets was
the first to apply CNNs to pure 3D representations. Their proposal (shown in Figure
4.3) represents 3D shapes, from captured depth maps that are later transformed into
point clouds, as 3D voxel grids of size 30 × 30 × 30 voxels – 24 × 24 × 24 data voxels
plus 3 extra ones of padding in both directions to reduce convolution artifacts – which
can represent free space, occupied space (the shape itself), and unknown or occluded
space depending on the point of view. Neither the grid generation process, nor the leaf
size is described but the voxel grid relies on prior object segmentation.

(a) Object (b) Point cloud (c) TSDF grid

Figure 4.4: TSDF representation proposed by Song and Xiao as shown
in their paper [77]. An object (a) is captured by a range sensor as a
point cloud (b) and then a TSDF grid is generated (red indicates the
voxel is in front of surfaces and blue indicates the voxel is behind the
surface; the intensity of the color represents the TSDF value).

38 Chapter 4. Volumetric Representations

(a) LIDAR data (b) Voxnet grid (c) RGBD data (d) Voxnet grid

Figure 4.5: Volumetric occupancy grid representation used by VoxNet
as shown in their paper [78]. For LIDAR data (a) a voxel size of 0.1m3

is used to create a 32 × 32 × 32 grid (b). For RGB-D data (c), the
resolution is chosen so the object occupies a subvolume of 24×24×24
voxels in a 32× 32× 32 grid (d).

Song and Xiao [77] proposed to adopt a directional TSDF encoding which takes a
depth map as input and outputs a volumetric representation. They divide a 3D space
using an equally spaced voxel grid in which each cell holds a three-dimensional vector
that records the shortest distance between the voxel center and the three-dimensional
surface in three directions. In addition, the value is clipped by 2δ, being δ the grid size
in each dimension. A 30× 30× 30 voxels grid is fitted to a previously segmented object
candidate. Figure 4.4 shows a graphical representation of this approach.

Maturana and Scherer [78] use occupancy grids in VoxNet to maintain a probabilis-
tic estimate of the occupancy of each voxel to represent a 3D shape. This estimate is
a function of the sensor data and prior knowledge. They propose three different oc-
cupancy models: binary, density, and hit. The binary and density models make use of
raytracing to compute the number of hits and pass-throughs for each voxel. The former
one assumes that each voxel has a binary state, occupied or unoccupied. The latter one
assumes that each voxel has a continuous density, based on the probability it will block
a sensor beam. The hit grid ignores the difference between unknown and free space,
only considering hits; it discards information but does not require the use of raytracing
so it is highly efficient in comparison with the other methods. They also propose two
different grids for Light Detection and Ranging (LIDAR) and RGB-D sensor data. For
the RGB-D case, they use a fixed occupancy grid of 32 × 32 × 32 voxels, making the
object of interest – obtained by a segmentation algorithm or given by a sliding box –
occupy a subvolume of 24 × 24 × 24 voxels. The z axis of the grid is aligned with the
direction of gravity. Figure 4.5 shows the occupancy grids used by VoxNet.

4.3 Proposed Representations

As is clear from the previous sections, a volumetric representation to be fed to a 2.5D or
3DCNN must encode the 3D shape of an object as a 3D tensor of binary or real values.
This is due to the fact that raw 3D data is sparse, i.e., a 3D shape is only defined on its
surface, and CNNs are not engineered for this kind of data.

In this regard, our proposal is twofold. First, we implemented two different ways of
generating the structure of the tensor – position, grid size, and leaf size – using a fixed
grid and an adaptive one. Second, we developed three possible occupancy measures
for the volumetric elements of the tensor. Those proposals build up on the previously
reviewed representations, cherry-picking their strengths.

Chapter 4. Volumetric Representations 39

In this section we will describe how to adapt a dataset of choice to train the CNNs
to our representation input, including ways to artificially augment the dataset for a
proper training process. After that, we will show the grid generation process using the
adapted data. In the end, we will discuss the computation of the occupancy of each
voxel considering the three proposed alternatives.

4.3.1 Dataset Adaptation

In order to train and test the 2.5D and 3D CNNs that will be described in the following
sections, we decided to use the Princeton ModelNet object dataset. It is a collection of
CAD models of household objects in Object File Format (OFF). More details about the
dataset are provided in Chapter 3. The main reason for choosing this dataset is the fact
that training deep neural networks, such as a CNN, requires a huge amount of exam-
ples to obtain good generalization capabilities. Because of that fact, and considering
the lack of large scale 3D datasets of real-world objects, using synthetic datasets with a
significant number of instances is justified. However, those datasets should be adapted
to resemble the expected input for the system coming from the sensors scanning real-
world objects.

Since the final goal of the CNNs is to provide means to recognize objects onboard
a mobile robotic platform which features RGB-D sensors, it is logical to transform the
full mesh representation provided by the dataset into the representation provided by
the sensors. RGB-D cameras output depth maps which can be used to generate 3D
point clouds of the scene viewed by the camera. Then it is clear that the input of our
system will be point clouds which are partial views of the actual scene, i.e., what we see
depends on the Point of View (POV) of the camera. In this regard, we will transform
each CAD object of the dataset into partial point clouds from different POVs.

CAD Model

Rendered views Cloud views

Merged cloud

Figure 4.6: From CAD models to point clouds. The object is placed
in the center of a tessellated sphere, views are rendered placing a vir-
tual camera in each vertex of the icosahedron, the z-buffer data of
those views is used to generate point clouds, and the point clouds are
transformed and merged at last.

40 Chapter 4. Volumetric Representations

For this purpose, we converted the OFF models into Point Cloud Data (PCD) clouds
using a raytracing-based process. The object is placed in the center of a 3D sphere,
which is tessellated to a certain level, and a virtual camera pointing to the center of
the sphere is placed in each vertex of that truncated icosahedron. Then those partial
views are rendered and their z-buffer data, which contains the depth information, is
used to generate point clouds from each POV. In the end, those views are translated
and rotated, depending on their POV, and merged into a cloud for the full object.

Figure 4.6 shows a diagram of the aforementioned process. For the conversion, we
used the first tessellation level of the sphere, which generates 42 vertices or POVs. A
resolution of 256×256 pixels was used for rendering the views. A voxel grid filter with
a leaf size of 0.7 × 0.7 × 0.7 units is applied to the merged cloud to equalize the point
density, which is higher in certain zones due to view overlapping.

Noise

The partial views generated using the previously described process are not a good
simulation of the result that we would obtain by using a low-cost RGB-D sensor. Those
systems are noisy, so the point clouds produced by them are not a perfect represen-
tation of the real-world objects. Taking this fact into consideration, it is reasonable to
think that it is useful to make the synthetic views noisy. The benefits are twofold: we
can train our network using artificial data that resembles sensor output and the dataset
can be augmented using different levels of noise to avoid overfitting.

In order to properly simulate the behavior of a sensor, a model is needed. In
our case, we are dealing with low-cost RGB-D sensors such as Microsoft Kinect and
Primesense Carmine. A complete noise model for those sensors, specifically for the
Kinect device, must take into account occlusion boundaries due to distance between
the Infrarred (IR) projector and the IR camera, 8-bit quantization, 9×9 pixel correlation
window smoothing, and z-axis or depth Gaussian noise [79].

We will make use of a simplification of this model, only taking into account the
Gaussian noise since it is the most significant one for the generated partial views. In
this regard, the synthetic views are augmented by adding Gaussian noise to the z di-
mension of the point clouds with mean µ = 0 and different values for the standard
deviation σ to quantify the noise magnitude. Figure 4.7 shows the effect of this noise
over a synthetic partial view of one object of the dataset.

(a) σ = 0 (b) σ = 0.1 (c) σ = 1

Figure 4.7: Different levels of noise (σ = 0 (a), σ = 0.1 (b), and σ = 1
(c)) applied to the z-axis of every point of a table partial view.

Chapter 4. Volumetric Representations 41

Occlusion

Adding noise is a good alternative for augmenting the dataset and, at the same time,
synthetically generate training data that is somehow similar to the actual output of
RGB-D sensors. However, besides modelling the sensor to improve our synthetic data,
it is important to also take the environment into account. In a real-world scenario,
objects are not usually perfectly isolated and easily segmented; in fact, it is common
for them to be occluded by other elements of the scene.

In order to introduce more variability in our training set and avoid overfitting, we
will include occluded versions of the previously generated partial views. Furthermore,
the test and validation sets will also be occluded to determine the robustness of the
CNNs when dealing with incomplete or missing data.

The occlusion process consists of picking a random point of the cloud with a uni-
form probability distribution. Then, a number of closest neighbors to that point are
picked. At last, both the neighbors and the point are considered occluded surface
and removed from the point cloud. The number of neighbors to pick depends on the
amount of occlusion ψ we want to simulate. For instance, for an occlusion ψ = 25% we
will remove neighbors until the rest of the cloud contains a 75% of the original amount
of points, i.e., we will remove a 25% of the original cloud. Figure 4.8 shows the effect of
the random occlusion process with different occlusion factors ψ over a synthetic partial
view of a table object of the dataset.

It is important to notice the randomness of the occlusion process. This means that
even with a high ψ it is possible not to remove any important surface information and
vice versa. In other words, it is possible for some objects to remove a 50% of their points
and still be recognizable because the removed region was not significant at all, e.g., a
completely flat surface. However it is possible to render an object unrecognizable by
removing a small portion of its points if the randomly picked surface is significant for
its geometry. This remark is specially important when testing the robustness of the
system. In order to guarantee that an appropriate measure of the robustness against
missing information is obtained, a significant amount of testing sets must be generated
and their results averaged so that it is highly probable to test against objects which
have been occluded all over their surface across the whole testing set.

(a) ψ = 0% (b) ψ = 25% (c) ψ = 50%

Figure 4.8: Different levels of occlusion (ψ = 0% (a), ψ = 25% (b), and
ψ = 50% (c)) applied randomly to a table partial view.

42 Chapter 4. Volumetric Representations

4.3.2 Grid Generation

Once the dataset has been properly adapted to simulate real-world sensor data, we
need to generate a discretized representation of the unbounded 3D data to feed the
network. As we previously stated, each view will be represented as a 3D tensor. For
that purpose, we need to spawn a grid to subdivide the space occupied by the point
clouds. Two types are proposed: one with fixed leaf and grid sizes, and another one
which will adapt those sizes to fit the data.

Fixed

This kind of grid sets its origin at the minimum x, y, and z values of the point cloud.
Then the grid is spawned, with fixed and predefined sizes for both grid and voxels.
After that, the cloud is scaled up or down to fit the grid. The scale factor is computed
with respect to the dimension of maximum difference between the cloud and the grid.
The cloud is scaled with that factor in all axes to maintain the original ratios. As a
result, a cubic grid is generated as shown in Figure 4.9.

Adaptive

The adaptive grid also sets its origin at the minimum x, y, and z values of the point
cloud. Next, the grid size is adapted to the cloud dimensions. The leaf size is also
computed in function of the grid size. Knowing both parameters, the grid is spawned,
fitting the point cloud data. As a result, a non-cubic grid is generated. As shown in
Figure 4.10, all voxels have the same size, but they are not necessarily cubic.

It is important to remark that, in both cases (fixed and adaptive), the number of
voxels in the grid is fixed. Figures 4.9 and 4.10 show examples for both types using
8× 8× 8 voxels for the sake of a better visualization.

It is also important to notice that each representation serves a purpose. The fixed
grid will not always fit the data perfectly so it might end up having sparse zones with
no information at all (as seen in Figure 4.9a on the first column). However, it can be
used right away for sliding box detection. On the contrary, the adaptive grid fits the

(a) Front (b) Side
(c) Perspective

Figure 4.9: A fixed occupancy grid (8 × 8 × 8 voxels) with 40 units
leaf size and 320 units grid size in all dimensions. The grid origin is
placed at the minimum x, y, and z values of the point cloud. Front
(a), side (b), and perspective (c) views of the grid over a partial view
of a segmented table object are shown.

Chapter 4. Volumetric Representations 43

data to achieve a better representation. Nonetheless, it relies on a proper segmentation
of the object to spawn the grid.

(a) Front (b) Side (c) Perspective

Figure 4.10: An adaptive occupancy grid (8 × 8 × 8 voxels) with
adapted leaf and grid sizes in all dimensions to fit the data. The grid
origin is placed at the minimum x, y, and z values of the point cloud.
Front (a), side (b), and perspective (c) views of the grid over a partial
view of a segmented table object are shown.

An important feature to add to both representations is the so called padding. It is
a good practice to pad the input data with zeros to avoid convolution artifacts when
the filter interacts with the boundaries [80]. In our case, padding helps the CNN retain
the spatial dimensions of the input. In this regard, when using a filter size of 3× 3× 3
it becomes obvious that a padding of 1 voxel will avoid the CNN altering the spatial
dimensions of the input. The same applies when using a 5× 5× 5 filter and a padding
of 2 voxels. Figure 4.11 shows a padded example of the previously shown adaptive
grid in Figure 4.10.

(a) Front (b) Side (c) Perspective

Figure 4.11: An adaptive occupancy grid (8 × 8 × 8 voxels) with
adapted leaf and grid sizes in all dimensions to fit the data. One cell
padding is enforced so that the grid contains a halo of empty cells
around the actual data. Front (a), side (b), and perspective (c) views
of the grid over a partial view of a segmented table object.

44 Chapter 4. Volumetric Representations

(a) Front (b) Side (c) Perspective

Figure 4.12: Occupied voxels in an adaptive 8 × 8 × 8 grid gener-
ated over a partial view point cloud. Those voxels with points inside
are shown in a wireframe representation. Empty voxels are omitted.
Occupied voxels must be filled with values which represent the con-
tained shape.

4.3.3 Tensor Computation

After spawning the grid to generate a discrete space, we need to determine the values
for each cell or voxel of the 3D tensor. In order to do that, we must encode the geometric
information of the point cloud into each occupied cell (see Figure 4.12). In other words,
we have to summarize as a single value, the information of all points which lie inside
a certain voxel. One way to do that is using occupancy measures. For that purpose, we
propose three different alternatives: binary occupancy, normalized density, and surface
intersection.

Binary

The binary tensor is the simplest representation that can be conceived to encode the
shape. Voxels will hold binary values, they will be considered occupied if at least a
point lies inside, and empty otherwise. Figure 4.13 shows an example of this tensor.

(a) Front (b) Side (c) Perspective

Figure 4.13: Binary tensor computed over a point cloud of a partial
view of an object (shown in Figure 4.12). Occupied voxels are shown
in blue, empty voxels are omitted for the sake of simplicity.

Chapter 4. Volumetric Representations 45

(a) Front (b) Side (c) Perspective

Figure 4.14: Normalized density tensor over a point cloud of a partial
view of an object (shown in Figure 4.12). Denser voxels are darker
and sparse ones are shown in light blue. Empty voxels were removed
for visualization purposes.

Normalized Density

Binary representations are simple and require low computational power. However,
complex shapes may get oversimplified so useful shape information gets lost. This rep-
resentation can be improved by taking into account more shape information. A possi-
ble alternative consists of computing the point density inside each voxel, i.e., counting
the number of points that fall within each cell.

It is important to notice that point density directly depends on the cloud resolution
which in turn depends on many factors involving the camera and the scene, e.g., it
is common for RGB-D to generate denser shapes in closer surfaces. To alleviate this
problem, we can normalize the density inside each voxel dividing each value by the
maximum density over the whole tensor. An example of normalized density tensor is
shown in Figure 4.14.

(a) Low density (b) Medium density (c) High density

Figure 4.15: Triangulation with varying point densities. The total sur-
face or area remains the same despite the fact that the number of ver-
tices is increasing.

46 Chapter 4. Volumetric Representations

(a) Point cloud (b) Triangulated mesh (c) Triangle intersections

Figure 4.16: Surface intersection tensor calculation steps. A partial
view point cloud (a) is triangulated to generate a mesh (b). Then the
value of each voxel corresponds to the area of intersection of the mesh
and that particular voxel; for each voxel the intersecting triangles are
clipped and the areas of the resulting polygons are added up (c).

Surface Intersection

Despite the fact that the normalized density representation is an improvement over the
binary tensor, it is still sensitive to varying resolutions depending on the point of view
and other factors. To overcome this problem, we can leverage to higher level shape in-
formation such as the very same surface. We can compute the amount of shape surface
that intersects – falls within – a certain voxel and use it as an occupancy measure. By
doing this, we gain robustness against density variations (see Figure 4.15).

Unfortunately, by increasing the robustness of the representation, we also incur in
a computational cost penalty because of the need of triangulating the point cloud to
obtain that higher level of surface information. For a certain partial view, a triangle
mesh based on projections of the local neighborhoods is obtained by applying a greedy
surface triangulation algorithm proposed by Marton et al. [81]. Once the surface has
been triangulated, we compute the area of intersection between the mesh and each

(a) Front (b) Side (c) Perspective

Figure 4.17: Surface intersection tensor over a point cloud of a partial
view of an object (shown in Figure 4.12). Those voxels with more
surface intersection area are darker. Empty voxels were removed for
visualization purposes.

Chapter 4. Volumetric Representations 47

voxel. Those triangles which partially intersect a voxel are clipped and then the area of
the resulting polygon is computed. Figure 4.16 illustrates the described process.

An example of surface intersection tensor is shown in Figure 4.17. As we can ob-
serve, the surface-based tensor exhibits more details than the previous ones and repre-
sents better the original point cloud.

4.4 Experimentation

One of the main concerns of our target system, besides accuracy, is performance. In
order to be able to process sensor data in real-time, the calculation of the volumetric
representation must be efficient and it should scale properly. To determine the perfor-
mance of our implementations, we carried out a set of experiments. Those tests con-
sisted of two different benchmarks, each one measuring the influence of two distinct
variables: the cloud point count and the grid size.

On the one hand, we tested how performance is affected when increasing the point
count of a cloud. For this purpose, we used a partial view of the previously shown
table object. That view was originally generated using a resolution of 1080 × 1080
pixels for the render. This generated a cloud with approximately 300k points. We
then downsampled this cloud to reduce the point count as shown in Figure 4.18 using
uniform sampling. For this benchmark, we used an adaptive grid with 16 × 16 × 16
voxels and 2 padding cells.

On the other hand, we also tested the performance scaling when increasing the grid
size. We started from a small grid of 8 × 8 × 8 voxels and then increased its size by 1
voxel until we reached the maximum size of 64×64×64 voxels. For this experiment we
used one of the downsampled clouds of the previous experiment with an intermediate
point count of roughly 12k points. The grid was also adaptive.

It is important to remark that the difference, in terms of computational cost, be-
tween using the fixed and the adaptive grids is almost negligible since both implemen-
tations make use of essentially the same operations. Furthermore, the grid spawning
process has constant complexity. Because of that, there is no need to test the scaling of
those processes.

(a) Low count (b) Medium count (c) High count

Figure 4.18: Partial view point cloud with varying point count to test
occupancy computation performance scaling as the number of points
increases. Clouds with low (a), medium (b), and high (c) point counts
are shown.

48 Chapter 4. Volumetric Representations

103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of Points

Ti
m

e
(s

)

Binary
Normalized Density
Surface Intersection

(a)

20 40 60

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Grid Side

Ti
m

e
(s

)

Binary
Normalized Density
Surface Intersection

(b)

Figure 4.19: Results of the experimentation carried out to test the
performance scaling of volumetric representations. The first plot (a)
shows the scaling of the three occupancy computation methods (bi-
nary, normalized density, and surface intersection) when the number
of points of the cloud increases (using an adaptive grid of 16×16×16
voxels with 2 padding cells). The second plot (b) shows the scaling of
the same three methods using a cloud with a fixed number of points
but increasing the grid size.

4.4.1 Results and Discussion

The results of the experimentation are shown in Figure 4.19. As expected, the binary
method is the fastest one in all experiments, followed by the normalized density one.
The surface intersection method exhibits a computational cost which is orders of mag-
nitude above both of them.

As we can observe in Figure 4.19a, when the number of points increases, the three
methods scale linearly. It is important to notice that, for small clouds, the normalized
density method is slower than the binary one due to the necessity of normalizing the
whole grid. However, once the execution time becomes neglectable, there is no dif-
ference between those methods. In addition, and despite its linear scaling, the surface
intersection method is orders of magnitude slower than the other ones due to the tri-
angulation and clipping processes.

Regarding to the grid size scaling, the first thing we can observe in Figure 4.19b is
the constant cost of the binary method. This is due to the fact that the implementation
loops over the point cloud, but finding their corresponding voxel is computed in con-
stant time. In this case, the normalized density grid does not behave as the binary one
because the normalization process loops over all voxels so the execution time of that

Chapter 4. Volumetric Representations 49

process scales at the same rate as the grid size. The surface intersection method scales
badly with the grid size since we have to check each voxel individually to determine
which triangles intersect them.

4.5 Conclusion

In this chapter we have proposed and analyzed multiple volumetric representations
for 3D data that will be used by our CNNs later in this work. First, we described what
a volumetric representation is and why do we need them to feed a CNN. Later, we
reviewed common volumetric representations used for CNNs in the literature. After
that, we determined what a good representation should be and presented a set of al-
ternatives for our data. We also explained how to adapt our dataset of choice to those
representations. At last, we carried out an empirical study to analyze the efficiency of
the implemented representations.

This study provided us insight about the performance of those representations in
terms of execution time needed to be computed. We found out a tradeoff between so-
phistication and computational cost. In other words, those representations which pro-
vide more accurate or more robust information require extra processes that add up run
time. In conclusion, the density grid offered a good balance between representation ac-
curacy and computational cost. In the extremes, the binary grid is plain but extremely
fast whilst the surface intersection one is richer but its cost might be prohibitive. Those
proposals will be further tested after implementing 2.5D and 3D CNNs to determine
which ones are more suitable for our problem in terms of accuracy.

In the next chapter we will discuss 2.5DCNNs as a previous step towards pure
3DCNNs. This first approach will be useful to start gaining insight about the per-
formance of the different representations and to start designing a proper architecture
before diving deep into the complexity of 3DCNNs.

Chapter 5

3D CNN for Object Recognition

In this chapter we gather all the knowledge and conclusions extracted from previous
ones to design, implement, and train a 3D CNN. In Section 5.1, we will first in-
troduce the concept of 2.5D and 3D CNNs and why do we expect a gain by moving
from 2D to 3D. After that, in Section 5.2, we will explore the related works about
2.5D CNNs and its evolution to 3D CNNs. Next, in Section 5.3, we will design,
implement, and train a 2.5D and a 3D CNNs using full object models. We will also
conduct a detailed study of the effect of noise and occlusion over the accuracy of the
networks. At last, we will draw conclusions about the experiments in Section 5.4.

5.1 Introduction

In the previous chapters, we showed how CNNs are able to recognize objects in 2D
images by learning convolution filters to detect features. We also introduced the pos-
sibility of adding a new dimension to this problem by using 3D data instead of plain
images. In order to do that, we stated that we need a way to encode that 3D informa-
tion into a volumetric and structured representation that can be provided as input to
the CNN. We also designed and implemented a set of representations after reviewing
the state of the art. Those representations were tested to determine their performance
and scalability. All of that provided us with all we need to start designing, implement-
ing, and training 3D CNNs. But before diving deep into that, we will first lay down the
differences between 2D CNNs and 3D ones, using 2.5D CNNs as an intermediate step.

C
Grayscale input: (256× 256)× 1 channel

2D feature map

convolution filter

Figure 5.1: Applying a 2D convolution to a single-channel 2D input,
in this case a grayscale image, results in a 2D feature map. The filter
(in dark blue) has a fixed width and height and it is slided across the
width and height of the input image, producing a 2D feature map as
a result of the matrix multiplications of the filter and the input.

51

52 Chapter 5. 3D CNN for Object Recognition

R
G

B
D

RGB-D input: (256× 256)× 4 channels

2D feature map

convolution filter

Figure 5.2: Applying a 2D convolution to a multi-channel input, in
this case RGB-D with four channels, results in a 2D feature map.
The filter (in dark blue) has a fixed width and height, but it extends
through the full depth of the input volume. During the forward pass,
the filter is slided across the width and height of the input volume,
producing a 2D activation or feature map.

5.1.1 2.5D Convolutional Neural Networks

Figure 5.1 shows an example of applying a 2D convolution to an image with a single
channel. In that case, sliding the kernel over the whole image as described in Chapter
2 produces a 2D feature map. However, most images do not have a single channel
but three (usually red, green, and blue). In that case, the filter is extended through all
channels but it is still slided across the width and height of the input volume, not across
the channels or depth.

This behavior can be exploited to feed the CNN with 2.5D data by adding a depth
channel to a common RGB image, creating an RGB-D input volume with four chan-
nels. The convolution filter will then be extended through the four channels, creating
a somewhat volumetric kernel as shown in Figure 5.2. Furthermore, we could take a
volumetric representation like the ones proposed in Chapter 4 and slice it in the depth
dimension into channels. Then we could feed that representation directly to a CNN.
However, this approach will not slide the filter across the depth of the input volume.

3D input: (256× 64× 32)

3D feature map

convolution filter

Figure 5.3: Applying a 3D convolution to a single-channel volumetric
input, in this case a 256×64×32 grid, results in a3D feature map. The
filter (in dark blue) has a fixed width, height, and depth. During the
forward pass, the filter is slided across the width, height, and depth
of the input volume, producing a 3D activation map.

Chapter 5. 3D CNN for Object Recognition 53

5.1.2 3D Convolutional Neural Networks

On the other hand, 3D convolutions use kernels with fixed width, height, and depth.
That filters are slided across the width, height, and depth of an input volume. By doing
that, 3D convolutions model spatial information better than 2.5D counterparts which
only extend the kernel over the depth dimension but do not slide it over that dimension
thus losing spatial information. As shown in Figure 5.3, a 3D convolution is applied to
a single-channel input volume producing a volumetric feature map.

5.2 Related Works

After clarifying the differences between 2D, 2.5D, and 3D convolutions, we will review
the literature to analyze state-of-the-art 2.5D and 3D approaches. Due to the successful
applications of CNNs to 2D image analysis, several researchers decided to increase the
dimensionality of the input by adding depth information as an additional channel to
conform 2.5D CNNs.

Socher et al. [82] introduced a model based on a combination of CNNs and Recursive
Neural Networks (RNNs) to learn features and classify RGB-D images. That model
aims to learn low-level and translation invariant features with the CNN layers, those
features are then given as inputs to fixed-tree RNNs to compose higher order features.
Alexandre et al. [83] explore the possibility of transferring knowledge [84][85] between
CNNs to improve accuracy and reducing training time when classifying RGB-D data.
Hoeft et al. [86] proposed a four-stage CNN architecture, derived from the work of
Schulz and Behnke [87], to semantically segment RGB-D scenes, providing the depth
channel as feature maps representing components of a simplified histogram of oriented
depth operator. Wang et al. [88] combined a CNN, to extract representative image fea-
tures from RGB-D, with a Support Vector Machine (SVM) to classify objects in those
images. Schwarz et al. [89] went one step beyond. They presented a system for object
recognition and pose estimation using RGB-D images and transfer learning between a
pre-trained CNN for image categorization and another CNN to classify colorized depth
images. The features are then classified into instances and categories by SVMs and the
pose is estimated via using another RBF kernel SVM.

In spite of the fact that those methods extend the traditional CNN, they do not
employ a pure volumetric representation and therefore they do not make full use of
the geometric information in the data. What is more, they do not use 3D convolutions.
This is why they fall in the 2.5D CNNs category. In order to improve 2.5D CNNs,
several authors proposed pure volumetric approaches or the so called 3D CNNs. These
architectures apply spatially 3D convolutions fully utilizing geometric data.

The seminal work of Wu et al. [76] introduced a system that supports joint object
recognition and shape completion from 2.5D depth maps that are transformed into a
3D shape representation which consists of a probability distribution of binary values
on a 3D voxel grid. A Convolutional Deep Belief Network (CDBN) is used to recog-
nize categories, complete 3D shapes, and predict next best views if the recognition is
uncertain. Maturana and Scherer [78] proposed a 3D CNN for landing zone detec-
tion from LIDAR data. In that work, they also introduced a volumetric representation
for that data using a density occupancy grid. Later, they extended that work creating
VoxNet [90] a 3D CNN architecture for real-time object classification using volumetric
occupancy grids to represent point clouds.

Other remarkable works are the multi-view system by Su et al. [91], the panoramic
network by Shi et al. [92], and the orientation-based voxel nets by Sedaghat et al. [93].

54 Chapter 5. 3D CNN for Object Recognition

5.3 Model-based CNN

In order to design, implement, and test our object recognition system, we are going
to take a model-based approach which will be trained with full model clouds recon-
structed from the extracted partial views. In that regard, we need two components: a
proper 2.5D network architecture and data.

On the one hand, the network architecture of choice is shown in Figure 5.4. This
network is a slightly tuned version of the one introduced in PointNet [94], which was
inspired in VoxNet and 3D ShapeNets. It has been implemented using Caffe (see Sec-
tion ??). The model definition can be consulted in Appendix A.

On the other hand, we need data to train the network and validate the results.
For this approach we will merge the point clouds generated from the partial views
– as shown in Chapter 4 – to create full model clouds. That model clouds will be
transformed into the corresponding volumetric representations to feed the CNN using
a custom data layer implemented in Caffe.

5.3.1 Experimentation

In order to assess the performance of the proposed model-based CNN we carried out
an extensive experimentation to determine the accuracy of the model and its robustness
against occlusions and noise – situations that often occur in real-world scenes. For that
purpose we started using the normalized density grids (see Chapter 4) since they offer
a good balance between efficiency and representation. We also investigated the effect
of both fixed and adaptive grids using different sizes. Further experimentation was
performed to compare the normalized density grids with the binary ones.

The networks were trained for a maximum of 5000 iterations – weights were snap-
shotted every 100 iterations so in the end we selected the best sets of them as if we were
early stopping – using Adadelta as optimizer with δ = 1 ·10−8. The regularization term
or weight decay in Caffe was set to 5 · 10−3. A batch size of 32 training samples was
chosen. The Caffe solver file which we used to train the networks can be consulted in
Appendix A.

Data Layer C(48, 3, 1) ReLU C(128, 5, 1) ReLU P(2,2) IP(1024) ReLU DP(0.5) IP(10)

Figure 5.4: 2.5D Convolutional Neural Network architecture used for
the experiments. This network is an extension of the one presented
in PointNet [94]. It consists of a convolution layer – 48 filters, 3 × 3
filter with stride 1 –, a ReLU activation, another convolution layer –
128 filters, 5 × 5 filters with stride 1 –, followed by a ReLU activa-
tion, a pooling layer – 2 × 2 max. pooling with stride 2 –, a fully
connected or inner product layer with 1024 neurons and ReLU acti-
vation, a dropout layer – 0.5 rate –, and an inner product layer with
10 neurons as output. The network accepts 3D tensors as input.

Chapter 5. 3D CNN for Object Recognition 55

Data was divided into training and validation sets as provided by Modelnet10. The
training set was shuffled upon generation. The validation set was processed to add
different levels of noise and occlusions as shown in Chapter 4 in order to test the ro-
bustness of the network.

5.3.2 Results and Discussion

Figure 5.5 shows the accuracy results of the network for both grid types and increasing
sizes. The peak accuracies for the fixed grids are ≈ 0.75, ≈ 0.76, and ≈ 0.73 for sizes 32,
48, and 64 respectively. In the case of the adaptive one, the peak accuracies are ≈ 0.77,
≈ 0.78, and ≈ 0.79 for the sizes 32, 48, and 64 respectively.

Taking those facts into account, we can extract two conclusions. First, the adaptive
grid is able to achieve a slightly better peak accuracy in all cases; however, the fixed
grid takes less iterations to reach accuracy values close to the peak in all cases. Second,
there is no significant difference in using a bigger grid size of 64 voxels instead of a
smaller one of 32.

The most important fact that can be observed in the aforementioned figures is that
there is a considerable gap between training and validation accuracy in all situations.
As we can observe, all networks reach maximum accuracy for the training set whilst
the validation one hits a glass ceiling at approximately 0.80. We hypothesize that the
network suffers overfitting even when we thoroughly applied measures to avoid that.
The most probable cause for that problem is the reduced number of training examples.
In the case of ModelNet10 the training set consists of only 3991 models. Considering
the complexity of the CNN, it is reasonable to think that the lack of a richer training set
is causing overfitting.

0 2,000 4,000

0

0.2

0.4

0.6

0.8

1

Iteration

A
cc

ur
ac

y

g32 (training)
g32 (validation)
g48 (training)
g48 (validation)
g64 (training)
g64 (validation)

(a) Fixed Grid

0 2,000 4,000

0

0.2

0.4

0.6

0.8

1

Iteration

A
cc

ur
ac

y

g32 (training)
g32 (validation)
g48 (training)
g48 (validation)
g64 (training)
g64 (validation)

(b) Adaptive Grid

Figure 5.5: Evolution of training and validation accuracy of the
model-based CNN using both fixed (a) and adaptive (b) normalized
density grids. Different grid sizes (32, 48, and 64) were tested.

56 Chapter 5. 3D CNN for Object Recognition

Another visualization format that would allow us to gain insight about the behavior
of our network is the confusion matrix. Table 5.1 shows a confusion matrix of the
validation results achieved by the best performing network in our experiments. As we
can observe, there is a lot of confusion between desks and tables (see Figure 5.6). In
addition, night stands get usually misclassified as dressers (see Figure 5.7). The other
notable fact is that many sofas are misclassified as beds (see Figure 5.8). If we take a
closer look at the confused classes it is reasonable to think that the network is not able
to classify them properly because some samples are extremely similar.

Desk Table Nstand Bed Toil. Dresser Bath. Sofa Moni. Chair

52 9 1 4 0 5 1 5 0 9
25 69 0 1 0 0 0 0 1 4
1 2 60 1 4 8 0 0 2 8
4 0 0 80 0 0 3 11 1 1
1 0 3 1 84 0 1 3 2 5
3 0 14 0 0 61 0 1 6 1
0 1 0 3 0 0 34 8 3 1
1 0 1 4 1 2 0 88 1 2
1 1 1 1 0 5 1 1 87 2
1 2 1 2 1 1 0 1 1 90

Table 5.1: Confusion matrix of the validation results achieved by the
best set of weights for the adaptive grid with a grid size of 64 voxels.
Darker cells indicate more predictions while lighter ones indicate less.

Figure 5.6: A desk class sample together with a table class one.

Figure 5.7: A night stand class sample together with a dresser one.

Chapter 5. 3D CNN for Object Recognition 57

Figure 5.8: A sofa class sample together with a bed class one.

Occlusion Resilience Concerning the robustness against occlusion, we took the best
networks after training and tested them using the same validation sets as before but in-
troducing occlusions in them (up to a 30%). Figure 5.9 shows the accuracy of both grid
types with different sizes as the amount of occlusion in the validation model increases.
As we can observe, occlusion has a significant and negative impact on the fixed grid
– bigger grid sizes are less affected – going down from ≈ 0.75 accuracy to 0.40 − 0.50
approximately in the worst and best case respectively when a 30% of the model is oc-
cluded. On the contrary, the adaptive grid does not suffer that much – it goes down
from ≈ 0.78 to ≈ 0.60 in the worst case – and there is no significant difference between
grid sizes. In conclusion, the adaptive grid is considerably more robust to occlusion
than the fixed one.

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Occlusion (%)

A
cc

ur
ac

y

g32
g48
g64

(a) Fixed Grid

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Occlusion (%)

A
cc

ur
ac

y

g32
g48
g64

(b) Adaptive Grid

Figure 5.9: Evolution of validation accuracy of the model-based CNN
using both fixed (a) and adaptive (b) normalized density grids as the
amount of occlusion in the validation models increases from 0% to
30%. Three grid sizes were tested (32, 48, and 64).

58 Chapter 5. 3D CNN for Object Recognition

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

Gaussian Noise (σ)

A
cc

ur
ac

y

g32
g48
g64

(a) Fixed Grid

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

Gaussian Noise (σ)
A

cc
ur

ac
y

g32
g48
g64

(b) Adaptive Grid

Figure 5.10: Evolution of validation accuracy of the model-based
CNN using both fixed (a) and adaptive (b) normalized density grids
as the standard deviation of the Gaussian noise introduced in the z-
axis of the views increases from 0.001 to 10. The common grid sizes
were tested (32, 48, and 64).

Noise Robustness Regarding the resilience to noise, we also tested the best networks
obtained from the aforementioned training process using validation sets with different
levels of noise (ranging from σ = 1 · 10−2 to σ = 1 · 101). Figure 5.10b shows the results
of those experiments. It can be observed that adding noise has a significant impact
on the fixed grid, even small quantities, reducing the accuracy from ≈ 0.75 to ≈ 0.60,
≈ 0.4, and ≈ 0.2 for σ = 1 · 10−1, σ = 1 · 100, and σ = 1 · 101 respectively. On the other
hand, the adaptive one shows remarkable robustness against low levels of noise (up to
σ = 1 · 10−1), barely diminishing its accuracy.

In the end, both grids suffer huge penalties in accuracy when noise levels higher
than σ = 1 ·10−1 are introduced, being the adaptive one less affected. The grid size has
little to no effect in both cases, only in the fixed grid bigger sizes are slightly more robust
when intermediate to high levels of noise are introduced. In conclusion, the adaptive
grid is significantly more resilient to low levels of noise, and slightly outperforms the
fixed one when dealing with intermediate to high ones.

Binary Occupancy After testing the performance of the normalized density grid, we
also trained and assessed the accuracy of the binary one in the same scenarios. This
test intended to show whether there is any gain in using representations which include
more information about the shape – at a small penalty to execution time.

For this experimentation we picked the best performer in the previous sections: the
adaptive grid. We also discarded the intermediate size (48 voxels) since there was no
significant difference between it and the others. Figure 5.11a shows the accuracy results
of the network trained using binary grids. As we can observe, there is no significant
difference between grid sizes neither. However, using this representation we achieved

Chapter 5. 3D CNN for Object Recognition 59

a peak accuracy of approximately 0.85, using 64 voxels grids, which is better to some
extent than the normalized density one shown in Figure 5.5.

Occlusion and noise tolerance (shown in Figures 5.11b and 5.11c respectively) is
mostly similar to the robustness shown by the normalized density adaptive grid (see
Figures 5.9b and 5.10b) except from a small offset caused by the higher accuracy of the
binary grid network.

In conclusion, the less-is-better effect applies in this situation and turns out that the
simplification introduced by the binary representation helps the network during the
learning process. It is pending to check if this statement is still valid if the validation
accuracy is not bounded by network overfitting.

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

Iteration

A
cc

ur
ac

y

g32 (training)
g32 (validation)
g64 (training)
g64 (validation)

(a) Training

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Occlusion (%)

A
cc

ur
ac

y

g32
g64

(b) Occlusion

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

Gaussian Noise (σ)

A
cc

ur
ac

y

g32
g64

(c) Noise

Figure 5.11: Evolution of training and validation accuracy of the
model-based CNN using adaptive binary grids (a). Evolution of val-
idation accuracy for the best network weights after training as the
amount of occlusion in the validation set increases (b) and different
levels of noise are introduced (c).

60 Chapter 5. 3D CNN for Object Recognition

3D Convolutions At last, we extended Caffe to support pure 3D convolutions and
pooling operations. In fact, this implementation is generalized to nD convolutions and
pooling layers, so the system could be easily extended to support sequences of 3D
inputs for instance. We kept the same network architecture shown in Figure 5.4 but
extended its convolution and pooling layers to three dimensions. The model definition
can be consulted in Appendix A.

We then trained the network using adaptive binary grids (since they were the ones
with the best performance throughout the experimentation), and monitored the vali-
dation and training set accuracies during that process. The result is shown in Figure
5.12. As we can observe, the network does not perform as good as the 2.5D ones.

We trained the network for five times more iterations (25000) and the training ac-
curacy slowly increased up to ≈ 0.65. However, the validation accuracy was stuck on
≈ 0.4 throughout the whole process.

In conclusion, porting the 2.5D network directly to 3D using the same datasets that
produced good results in the former one does not achieve a comparable outcome in the
latter. We hypothesize different causes for this problem.

On the one hand, the data representation might not be adequate for such fine-
grained convolutions and bigger sizes or occupancy schemes might improve accuracy.

On the other hand, the complexity of the network skyrocketed after including that
extra dimension to the convolutions, considerably increasing the number of weights
and thus making the network harder to train with so few examples. This last assump-
tion is backed up by the fact that the training accuracy keeps increasing while the vali-
dation one is stuck. This would eventually lead to a perfect fit to the training set but low
accuracy on the validation examples. In other words, due to the excessive complexity
of the network and the lack of training examples, the network suffers overfitting.

0 0.5 1 1.5 2 2.5

·104

0

0.2

0.4

0.6

0.8

1

Iteration

A
cc

ur
ac

y

g32(training)
g32(validation)

Figure 5.12: Evolution of training and validation accuracy of the
model-based CNN with 3D convolutions, using adaptive binary
grids with size 32× 32× 32 voxels.

Chapter 5. 3D CNN for Object Recognition 61

Grid Size Fixed Density 2.5D Adaptive Density 2.5D Adaptive Binary 2.5D Adaptive Binary 3D
32× 32× 32 0.75 0.77 0.80 0.43
48× 48× 48 0.76 0.78 N/A N/A
64× 64× 64 0.73 0.79 0.85 N/A

Table 5.2: Summary of the experimentation results.

5.4 Conclusion

In this chapter we have discussed the differences between 2D, 2.5D, and 3D convolu-
tions. We also reviewed state-of-the-art CNNs which make use of 2.5D and 3D convo-
lutions. After that, we designed, implemented, and tested a 2.5D CNN using the vol-
umetric representations proposed in Chapter 4. That network was trained and tested
using fixed and adaptive grids with normalized density and binary occupancy mea-
sures. In addition, we tested the robustness of the network in adverse conditions by
introducing occlusions and noise to the validation sets. After that, we extended the
2.5D network to 3D using the same data. A summary of the experimentation results is
shown in Table 5.2.

To sum up, we determined that the adaptive grid slightly outperforms the fixed
one in normal conditions. The same happens with the grid size, obtaining marginally
better results with bigger sizes. However, when it comes down to noise and occlusion
robustness, the adaptive grid exceeds the accuracy of the fixed grid by a large margin
for low levels of occlusion and noise, whilst for intermediate and high levels the impact
on both grids is somewhat similar. The grid size had barely any effect on those tests.
In other words, the adaptive grid is better than the fixed one and it is preferable to use
a bigger grid size if the performance impact can be afforded.

It is important to remark that the binary occupancy measure performed better than
the normalized density one, both using adaptive grids, while maintaining similar re-
silience against noise and occlusions. The best network trained with normalized den-
sity grids reached a peak accuracy of ≈ 0.79 while the best binary one achieved ap-
proximately a 0.85 accuracy on the validation set.

Nevertheless, all networks exhibited a considerable amount of overfitting. This
was due to the fact that the dataset has few training examples considering the com-
plexity of the network and the classes are not completely distinguishable (for instance,
many samples from the table class can be easily confused as desks). In this regard,
the dataset must be augmented introducing noise, translations, rotations, and varia-
tions of the models to avoid overfitting and learn better those models that can be easily
misclassified.

At last, we extended the network to support 3D convolutions and trained the same
architecture as before using adaptive binary grids. The results were negative in the
sense that the overfitting problem was accentuated due to the increased complexity of
the network. By adding a third dimension to the convolutions, much more weights
have to be learned, making the network prone to overfitting. In conclusion, despite the
favorable properties of 3D convolutions, just extending a 2.5D network that works rea-
sonably well, with a particular dataset, to perform 3D convolutions might not perform
better as expected since training becomes harder.

Chapter 6

Conclusion

This chapter discusses the main conclusions extracted from the work presented in this Thesis.
The chapter is organized in three sections: Section 6.1 presents and discusses the final conclu-
sion of the work presented in this document. Next, Section 6.2 lists the publications derived
from the presented work. Finally, Section 6.3 presents future works: open problems and topics
that remain for further research.

6.1 Conclusions

In this Thesis, we first reviewed the state of the art of object recognition methods. After
that study, we can state that deep learning is surpassing traditional pipelines based
on hand-crafted descriptors. In addition, we observed that 3D-based methods usually
outperform 2D-based ones thanks to the additional dimension of information. This
review laid down the motivation for this work: explore the possibilities of 3D object
class recognition using CNNs.

After that, we carried out a detailed study about the theoretical background of
CNNs. We introduced the intuitive ideas behind that kind of network, and the differ-
ences between CNNs and fully connected ones. Furthermore, we described the basic
architecture of a CNN and discussed training theory, considerations, and best practices
that would be later applied in the implemented system.

As a prerequisite before diving deep into design and implementation phases, we
conducted a study to select essential materials and methods for our work. In that re-
gard, we selected ModelNet as the 3D object dataset to train our network, Caffe as the
framework to develop our system, and we assembled and configured Asimov, a server
to provide hardware support to this work.

Next, we discussed how to transform 3D data into volumetric representations with
grid-like structures to feed CNNs. We reviewed existing proposals and stated what
characterizes a good representation. After that study, we proposed several methods to
represent 3D data as 3D tensors of real-valued components. In addition, we showed
how to convert the dataset of choice to those representations simulating real-world
sensor data. We also carried out a brief experimentation to analyze the efficiency and
scaling of the proposed methods. On the one hand, there was no significant difference
between the grid spawning methods. On the other hand, a tradeoff was detected be-
tween the information considered by the representation and time needed to compute
it. We determined that the density-based representation offered a good balance in both
terms, efficiency and quality.

At last, we described the difference between 2D, 2.5D, and 3D CNNs. We stated
that a significant gain was expected from 3D convolutions with respect to 2.5D ones
since the filters are also convolved in the depth dimension. We then designed, imple-
mented, and tested a 2.5D CNN using the proposed volumetric representations. An

63

64 Chapter 6. Conclusion

in-depth study was carried out to determine their performance in adverse scenarios
(noise and occlusions). The adaptive grid outperformed the fixed one, whilst the bi-
nary occupancy measure obtained better accuracy than the normalized density one –
the surface triangulation method was excluded due to its prohibitive cost. In the end,
a 2.5D CNN using adaptive binary grids of 64 × 64 × 64 voxels achieved a 85% suc-
cess rate when classifying object classes in the ModelNet10 dataset. In addition, that
network showed significant robustness against low levels of noise and occlusion that
characterize real-world scenarios. However, the final accuracy was limited due to over-
fitting. In the end, that successful network was extended to support 3D convolutions
and trained again using the dataset with adaptive binary grids. The results showed
that the 3D CNN was significantly harder to train than its 2.5D counterpart. In fact, its
inherent complexity aggravated the overfitting problem so the network was not able to
achieve good recognition rates.

6.2 Publications

The following publication was achieved as a result of the research carried out during
the Master’s Thesis:

A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. OrtsEscolano, M. Cazorla, J.
Azorin-Lopez. PointNet: A 3D Convolutional Neural Network for Real-Time Object
Class Recognition. International Joint Conference on Neural Networks, IJCNN 2016,
Vancouver, Canada.

6.3 Future Work

Due to the time constraints imposed on this project, many possible improvements and
ideas were left out for future works. Here we summarize them to conclude this Thesis.

• The surface triangulation method was left out of the experimentation due to its
prohibitive computational cost. Improving its efficiency by means of redesigning
the algorithmic structure or developing a parallel implementation could allow
us to experiment with that representation that might outperform the binary and
density ones.

• In the same way, improving the efficiency of the binary and density representa-
tions with a parallel implementation using CUDA unlock its potential application
to real-time problems.

• In order to avoid overfitting, the dataset must be augmented introducing noise,
and variations of the existing models (rotations, translations, crops). Then the
same architecture can be tested and check if that reduces overfitting.

• Preliminary experiments were carried out using a view-based 3D CNN instead
of a model-based one. However, the initial results were not good enough. Deter-
mining the source of the problem for that approach and tackling it might provide
better results than a model-based architecture. What is more, it could be directly
applied to real-world data.

• The current system can be included in a full recognition pipeline, taking scenes
from an RGB-D sensors, segmenting the objects, and applying the network to
recognize them.

Appendix A

Caffe Models

A.1 Solver

train_net: "[training.prototxt]"
test_net: "[test.prototxt]"
test_net: "[train_test.prototxt]"
test_interval: 100
test_iter: 908
test_iter: 3991
base_lr: 1.0
weight_decay: 0.005
lr_policy: "fixed"
display: 100
max_iter: 25000
snapshot: 1000
snapshot_prefix: "[snapshots folder]"
solver_mode: GPU
solver_type: ADADELTA
delta: 1e-8

65

66 Appendix A. Caffe Models

A.2 2.5D CNN Training Model

name: "PointNet"
layer{

name: "data"
type: "OCCData"
occ_data_param {
source : "[manifest tile]"
batch_size: 32
voxel_grid_size: [input grid size]
leaf_size: [input leaf size]
shuffle: 0
occupancy: [occupancy type]

}
top: "data"
top: "label"
include {
phase: TRAIN

}
}

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
convolution_param {
num_output: 48
kernel_size: 3
stride: 1
weight_filler {

type: "xavier"
}
bias_filler {

type: "constant"
}

}
}

layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"

Appendix A. Caffe Models 67

}

layer {
name: "conv2"
type: "Convolution"
bottom: "conv1"
top: "conv2"
param {

lr_mult: 1
}
param {

lr_mult: 2
}
convolution_param {

num_output: 128
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"

}
bias_filler {
type: "constant"

}
}

}

layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}

layer {
name: "pool1"
type: "Pooling"
bottom: "conv2"
top: "pool1"
pooling_param {

pool: MAX
kernel_size: 2
stride: 2

}
}

layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool1"
top: "ip1"

68 Appendix A. Caffe Models

param {
lr_mult: 1

}
param {
lr_mult: 2

}
inner_product_param {
num_output: 1024
weight_filler {

type: "xavier"
}
bias_filler {

type: "constant"
}

}
}

layer {
name: "relu3"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}

layer {
name: "drop1"
type: "Dropout"
bottom: "ip1"
top: "drop1"
dropout_param {
dropout_ratio: 0.5

}
}

layer {
name: "ip2"
type: "InnerProduct"
bottom: "drop1"
top: "ip2"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
inner_product_param {
num_output: 10
weight_filler {

type: "xavier"
}

Appendix A. Caffe Models 69

bias_filler {
type: "constant"

}
}

}

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
loss_weight: 1

}

70 Appendix A. Caffe Models

A.3 3D CNN Training Model

name: "PointNet"
layer{

name: "data"
type: "OCCData"
occ_data_param {
source : "[manifest tile]"
batch_size: 32
voxel_grid_size: [input grid size]
leaf_size: [input leaf size]
shuffle: 0
occupancy: [occupancy type]

}
top: "data"
top: "label"
include {
phase: TRAIN

}
}

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
convolution_param {
num_output: 48
kernel_size: 3
kernel_size: 3
kernel_size: 3
stride: 1
weight_filler {

type: "xavier"
}
bias_filler {

type: "constant"
}

}
}

layer {
name: "relu1"
type: "ReLU"

Appendix A. Caffe Models 71

bottom: "conv1"
top: "conv1"
}

layer {
name: "conv2"
type: "Convolution"
bottom: "conv1"
top: "conv2"
param {

lr_mult: 1
}
param {

lr_mult: 2
}
convolution_param {

num_output: 128
kernel_size: 5
kernel_size: 5
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"

}
bias_filler {
type: "constant"

}
}

}

layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}

layer {
name: "pool1"
type: "Pooling"
bottom: "conv2"
top: "pool1"
pooling_param {

pool: MAX
kernel_size: 2
kernel_size: 2
kernel_size: 2
stride: 2

}
}

72 Appendix A. Caffe Models

layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool1"
top: "ip1"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
inner_product_param {
num_output: 1024
weight_filler {

type: "xavier"
}
bias_filler {

type: "constant"
}

}
}

layer {
name: "relu3"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}

layer {
name: "drop1"
type: "Dropout"
bottom: "ip1"
top: "drop1"
dropout_param {
dropout_ratio: 0.5

}
}

layer {
name: "ip2"
type: "InnerProduct"
bottom: "drop1"
top: "ip2"
param {
lr_mult: 1

}
param {
lr_mult: 2

Appendix A. Caffe Models 73

}
inner_product_param {

num_output: 10
weight_filler {
type: "xavier"

}
bias_filler {
type: "constant"

}
}

}

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
loss_weight: 1

}

Appendix B

Source Code

The source code of this Master’s Thesis is available online in GitHub 1 licensed under
the GNU General Public License v3.0 (GNU GPLv3), the most widely used free soft-
ware license with a strong copyleft requirement. The repository holds a C++ project
organized as follows.

masterthesis-src

include

scripts

src

CMakeLists.txt

README.txt

.gitignore

B.1 Dependencies

The following dependencies must be met in order to compile the project:

• g++ ≥ 4.8

• CMake ≥ 2.6

• Boost ≥ 1.5

• Point Cloud Library ≥ 1.7

• Vtk ≥ 5.8

B.2 Compilation

The project can be compiled using CMake and the provided CMakeLists.txt file as
follows (assuming that the current working directory pwd is the root directory of the
project):

mkdir build
cd build
cmake ..
make -jX

1https://github.com/Blitzman/masterthesis-src

75

https://github.com/Blitzman/masterthesis-src

Bibliography

[1] Alberto Garcia-Garcia. Towards a real-time 3D object recognition pipeline on mobile
GPGPU computing platforms using low-cost RGB-D sensors. Bachelor Thesis. 2015.

[2] Alberto Garcia-Garcia, Sergio Orts-Escolano, Jose Garcia-Rodriguez, et al. “In-
teractive 3D object recognition pipeline on mobile GPGPU computing platforms
using low-cost RGB-D sensors”. In: Journal of Real-Time Image Processing (2016).

[3] Miguel Cazorla, José Garcıa-Rodrıguez, José Marıa Canas Plaza, et al. “SIRMAVED:
Development of a comprehensive monitoring and interactive robotic system for
people with acquired brain damage and dependent people”. In: ().

[4] Alexander Andreopoulos and John K. Tsotsos. “50 Years of object recognition:
Directions forward”. In: Computer Vision and Image Understanding 117.8 (2013),
pp. 827–891.

[5] David G. Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International journal of computer vision 60.2 (2004), pp. 91–110.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust fea-
tures”. In: Computer vision–ECCV 2006. Springer, 2006, pp. 404–417.

[7] Michael Calonder, Vincent Lepetit, Christoph Strecha, et al. “Brief: Binary ro-
bust independent elementary features”. In: Computer Vision–ECCV 2010 (2010),
pp. 778–792.

[8] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary ro-
bust invariant scalable keypoints”. In: Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on. IEEE. 2011, pp. 2548–2555.

[9] Ethan Rublee, Vincent Rabaud, Kurt Konolige, et al. “ORB: an efficient alternative
to SIFT or SURF”. In: Computer Vision (ICCV), 2011 IEEE International Conference
on. IEEE. 2011, pp. 2564–2571.

[10] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. “FREAK: Fast retina
keypoint”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on. Ieee. 2012, pp. 510–517.

[11] David G. Lowe. “Object recognition from local scale-invariant features”. In: Com-
puter vision, 1999. The proceedings of the seventh IEEE international conference on.
Vol. 2. Ieee. 1999, pp. 1150–1157.

[12] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, et al. “3D object recognition
in cluttered scenes with local surface features: A survey”. In: Pattern Analysis and
Machine Intelligence, IEEE Transactions on 36.11 (2014), pp. 2270–2287.

[13] Jean Ponce, Svetlana Lazebnik, Fredrick Rothganger, et al. “Toward true 3D ob-
ject recognition”. In: Reconnaissance de Formes et Intelligence Artificielle. 2004.

[14] Paul J. Besl and Ramesh C. Jain. “Three-dimensional object recognition”. In: ACM
Computing Surveys (CSUR) 17.1 (1985), pp. 75–145.

77

78 BIBLIOGRAPHY

[15] Jim P. Brady, Nagaraj Nandhakumar, and Jake K. Aggarwal. “Recent progress
in object recognition from range data”. In: image and vision computing 7.4 (1989),
pp. 295–307.

[16] Farshid Arman and Jake K. Aggarwal. “Model-based object recognition in dense-
range imagesa review”. In: ACM Computing Surveys (CSUR) 25.1 (1993), pp. 5–43.

[17] Richard J. Campbell and Patrick J. Flynn. “A survey of free-form object represen-
tation and recognition techniques”. In: Computer Vision and Image Understanding
81.2 (2001), pp. 166–210.

[18] George Mamic and Mohammed Bennamoun. “Representation and recognition
of 3D free-form objects”. In: Digital Signal Processing 12.1 (2002), pp. 47–76.

[19] Yann Le Cun, Yoshua Bengio, and Geoffrey E. Hinton. “Deep learning”. In: Na-
ture 521.7553 (2015), pp. 436–444.

[20] Paul J. Werbos. “Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences”. PhD thesis. Harvard University, 1974.

[21] Yann Le Cun. “A learning scheme for asymmetric threshold networks”. In: Pro-
ceedings of Cognitiva 85 (1985), pp. 599–604.

[22] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Cognitive modeling 5 (1988), p. 3.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[24] Stjepan Marčelja. “Mathematical description of the responses of simple cortical
cells”. In: JOSA 70.11 (1980), pp. 1297–1300.

[25] Alex Berg, Jia Deng, and Fei-Fei Li. ImageNet large scale visual recognition challenge
2010. 2010.

[26] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algo-
rithm for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[27] Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. “Greedy layer-wise training
of deep networks”. In: Advances in neural information processing systems 19 (2007),
p. 153.

[28] Pierre Sermanet, Koray Kavukcuoglu, Sandhya Chintala, et al. “Pedestrian de-
tection with unsupervised multi-stage feature learning”. In: Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE. 2013, pp. 3626–3633.

[29] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. “Large-scale deep unsuper-
vised learning using graphics processors”. In: Proceedings of the 26th annual inter-
national conference on machine learning. ACM. 2009, pp. 873–880.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. Book in
preparation for MIT Press. 2016. URL: http://www.deeplearningbook.org.

[31] Balázs Csanád Csáji. “Approximation with artificial neural networks”. In: Faculty
of Sciences, Etvs Lornd University, Hungary 24 (2001), p. 48.

[32] Bing Xu, Naiyan Wang, Tianqi Chen, et al. “Empirical evaluation of rectified ac-
tivations in convolutional network”. In: arXiv preprint arXiv:1505.00853 (2015).

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2015, pp. 1026–1034.

http://www.deeplearningbook.org

BIBLIOGRAPHY 79

[34] Benjamin Graham. “Fractional max-pooling”. In: arXiv preprint arXiv:1412.6071
(2014).

[35] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, et al. “Striving for
simplicity: The all convolutional net”. In: arXiv preprint arXiv:1412.6806 (2014).

[36] Steve Lawrence, Lee C. Giles, and Ah Chung Tsoi. “Lessons in neural network
training: Overfitting may be harder than expected”. In: AAAI/IAAI. Citeseer. 1997,
pp. 540–545.

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, et al. “Dropout: A sim-
ple way to prevent neural networks from overfitting”. In: The Journal of Machine
Learning Research 15.1 (2014), pp. 1929–1958.

[38] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic
net”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2
(2005), pp. 301–320.

[39] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: International conference on artificial intelligence
and statistics. 2010, pp. 249–256.

[40] Dumitru Erhan, Yoshua Bengio, Aaron Courville, et al. “Why does unsupervised
pre-training help deep learning?” In: The Journal of Machine Learning Research 11
(2010), pp. 625–660.

[41] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[42] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, et al. “Data-dependent Initial-
izations of Convolutional Neural Networks”. In: arXiv preprint arXiv:1511.06856
(2015).

[43] Why are deep neural networks hard to train?
http://neuralnetworksanddeeplearning.com/chap5.html. Accessed:
09-05-2016.

[44] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, et al. “Identifying and at-
tacking the saddle point problem in high-dimensional non-convex optimization”.
In: Advances in neural information processing systems. 2014, pp. 2933–2941.

[45] Christian Darken, Joseph Chang, and John Moody. “Learning rate schedules for
faster stochastic gradient search”. In: Neural networks for signal processing. Vol. 2.
Citeseer. 1992.

[46] Ning Qian. “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1 (1999), pp. 145–151.

[47] Yurii Nesterov. “A method of solving a convex programming problem with con-
vergence rate O (1/k2)”. In: Soviet Mathematics Doklady. Vol. 27. 2. 1983, pp. 372–
376.

[48] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for
online learning and stochastic optimization”. In: The Journal of Machine Learning
Research 12 (2011), pp. 2121–2159.

[49] Matthew D. Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv
preprint arXiv:1212.5701 (2012).

http://neuralnetworksanddeeplearning.com/chap5.html

80 BIBLIOGRAPHY

[50] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude”. In: COURSERA: Neural Networks
for Machine Learning 4 (2012), p. 2.

[51] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[52] ConvNetJS trainer demo on MNIST. http://cs.stanford.edu/people/
karpathy/convnetjs/demo/trainers.html. Accessed: 07-05-2016.

[53] Olga Russakovsky, Jia Deng, Hao Su, et al. “Imagenet large scale visual recogni-
tion challenge”. In: International Journal of Computer Vision 115.3 (2015), pp. 211–
252.

[54] Ronan Collobert and Jason Weston. “A unified architecture for natural language
processing: Deep neural networks with multitask learning”. In: Proceedings of the
25th international conference on Machine learning. ACM. 2008, pp. 160–167.

[55] Ronan Collobert, Jason Weston, Léon Bottou, et al. “Natural language process-
ing (almost) from scratch”. In: The Journal of Machine Learning Research 12 (2011),
pp. 2493–2537.

[56] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Domain adaptation for large-
scale sentiment classification: A deep learning approach”. In: Proceedings of the
28th International Conference on Machine Learning (ICML-11). 2011, pp. 513–520.

[57] Li Deng, Geoffrey Hinton, and Brian Kingsbury. “New types of deep neural net-
work learning for speech recognition and related applications: An overview”. In:
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE. 2013, pp. 8599–8603.

[58] Li Deng, Jinyu Li, Jui-Ting Huang, et al. “Recent advances in deep learning for
speech research at Microsoft”. In: Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE. 2013, pp. 8604–8608.

[59] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recogni-
tion with deep recurrent neural networks”. In: Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on. IEEE. 2013, pp. 6645–6649.

[60] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. “Torch7: A matlab-
like environment for machine learning”. In: BigLearn, NIPS Workshop. EPFL-CONF-
192376. 2011.

[61] James Bergstra, Frédéric Bastien, Olivier Breuleux, et al. “Theano: Deep learning
on gpus with python”. In: NIPS 2011, BigLearning Workshop, Granada, Spain. 2011.

[62] Yangqing Jia, Evan Shelhamer, Jeff Donahue, et al. “Caffe: Convolutional archi-
tecture for fast feature embedding”. In: Proceedings of the ACM International Con-
ference on Multimedia. ACM. 2014, pp. 675–678.

[63] Amit Agarwal, Eldar Akchurin, Chris Basoglu, et al. An Introduction to Computa-
tional Networks and the Computational Network Toolkit. Tech. rep. MSR-TR-2014-112.
2014. URL: http://research.microsoft.com/apps/pubs/default.
aspx?id=226641.

[64] Martın Abadi, Ashish Agarwal, Paul Barham, et al. “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015”. In: Software available from tensor-
flow. org (2015).

http://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
http://research.microsoft.com/apps/pubs/default.aspx?id=226641
http://research.microsoft.com/apps/pubs/default.aspx?id=226641

BIBLIOGRAPHY 81

[65] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, et al. “cudnn: Efficient
primitives for deep learning”. In: arXiv preprint arXiv:1410.0759 (2014).

[66] James Bergstra, Olivier Breuleux, Frédéric Bastien, et al. “Theano: a CPU and
GPU Math Expression Compiler”. In: Proceedings of the Python for Scientific Com-
puting Conference (SciPy). Oral Presentation. Austin, TX, June 2010.

[67] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, et al. Theano: new features and
speed improvements. Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop. 2012.

[68] Stefan Van Der Walt, Chris S. Colbert, and Gael Varoquaux. “The NumPy array:
a structure for efficient numerical computation”. In: Computing in Science & Engi-
neering 13.2 (2011), pp. 22–30.

[69] Eric Jones, Travis Oliphant, and Pearu Peterson. “{SciPy}: open source scientific
tools for {Python}”. In: (2014).

[70] Andrea Vedaldi and Karel Lenc. “MatConvNet: Convolutional neural networks
for matlab”. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Con-
ference. ACM. 2015, pp. 689–692.

[71] Kevin Lai, Liefeng Bo, Xiaofeng Ren, et al. “A large-scale hierarchical multi-view
rgb-d object dataset”. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE. 2011, pp. 1817–1824.

[72] Ashutosh Singh, Jin Sha, Karthik S. Narayan, et al. “Bigbird: A large-scale 3d
database of object instances”. In: Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on. IEEE. 2014, pp. 509–516.

[73] Bo Li, Yijuan Lu, Chunyuan Li, et al. “Shrec14 track: extended large scale sketch-
based 3D shape retrieval”. In: Eurographics Workshop on 3D Object Retrieval. 2014,
pp. 121–130.

[74] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, et al. “A Large Dataset of Object
Scans”. In: CoRR abs/1602.02481 (2016).

[75] DIGITS DevBox: User Guide. http://docs.nvidia.com/deeplearning/
pdf/DIGITS_DEVBOX_User_Guide.pdf. Accessed: 19-05-2016.

[76] Zhirong Wu, Shuran Song, Aditya Khosla, et al. “3D ShapeNets: A Deep Rep-
resentation for Volumetric Shape Modeling”. In: Proc. CVPR, to appear. Vol. 1. 2.
2015, p. 3.

[77] Shuran Song and Jianxiong Xiao. “Deep Sliding Shapes for Amodal 3D Object
Detection in RGB-D Images”. In: CoRR abs/1511.02300 (2015). URL: http://
arxiv.org/abs/1511.02300.

[78] Daniel Maturana and Sebastian Scherer. “3D Convolutional Neural Networks for
Landing Zone Detection from LiDAR”. In: ICRA. 2015.

[79] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, et al. “BlenSor: blender sen-
sor simulation toolbox”. In: Advances in Visual Computing. Springer, 2011, pp. 199–
208.

[80] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. “Best practices for convolu-
tional neural networks applied to visual document analysis”. In: null. IEEE. 2003,
p. 958.

http://docs.nvidia.com/deeplearning/pdf/DIGITS_DEVBOX_User_Guide.pdf
http://docs.nvidia.com/deeplearning/pdf/DIGITS_DEVBOX_User_Guide.pdf
http://arxiv.org/abs/1511.02300
http://arxiv.org/abs/1511.02300

82 BIBLIOGRAPHY

[81] Zoltan C. Marton, Radu B. Rusu, and Michael Beetz. “On Fast Surface Recon-
struction Methods for Large and Noisy Datasets”. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA). Kobe, Japan, 2009.

[82] Richard Socher, Brody Huval, Bharath Bath, et al. “Convolutional-recursive deep
learning for 3d object classification”. In: Advances in Neural Information Processing
Systems. 2012, pp. 665–673.

[83] Luís A. Alexandre. “3D object recognition using convolutional neural networks
with transfer learning between input channels”. In: Proc. the 13th International
Conference on Intelligent Autonomous Systems. 2014.

[84] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: Knowledge
and Data Engineering, IEEE Transactions on 22.10 (2010), pp. 1345–1359.

[85] Dan C. Cireşan, Ueli Meier, and Jürgen Schmidhuber. “Transfer learning for Latin
and Chinese characters with deep neural networks”. In: Neural Networks (IJCNN),
The 2012 International Joint Conference on. IEEE. 2012, pp. 1–6.

[86] Nico Höft, Hannes Schulz, and Sven Behnke. “Fast Semantic Segmentation of
RGB-D Scenes with GPU-Accelerated Deep Neural Networks”. In: KI 2014: Ad-
vances in Artificial Intelligence. Springer, 2014, pp. 80–85.

[87] Hannes Schulz and Sven Behnke. “Learning Object-Class Segmentation with Con-
volutional Neural Networks.” In: ESANN. 2012.

[88] Jianhua Wang, Jinjin Lu, Weihai Chen, et al. “Convolutional neural network for
3D object recognition based on RGB-D dataset”. In: Industrial Electronics and Ap-
plications (ICIEA), 2015 IEEE 10th Conference on. IEEE. 2015, pp. 34–39.

[89] Max Schwarz, Hannes Schulz, and Sven Behnke. “RGB-D object recognition and
pose estimation based on pre-trained convolutional neural network features”. In:
Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE. 2015,
pp. 1329–1335.

[90] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition”. In: (2015).

[91] Hang Su, Subhransu Maji, Evangelos Kalogerakis, et al. “Multi-view convolu-
tional neural networks for 3d shape recognition”. In: Proc. ICCV. 2015.

[92] Baoguang Shi, Song Bai, Zhichao Zhou, et al. “DeepPano: Deep panoramic rep-
resentation for 3-D shape recognition”. In: Signal Processing Letters, IEEE 22.12
(2015), pp. 2339–2343.

[93] Nima Sedaghat, Mohammadreza Zolfaghari, and Thomas Brox. “Orientation-
boosted Voxel Nets for 3D Object Recognition”. In: arXiv preprint arXiv:1604.03351
(2016).

[94] Alberto Garcia-Garcia, Francisco Gomez-Donoso, Jose Garcia-Rodriguez, et al.
“PointNet: A 3D Convolutional Neural Network for Real-Time Object Class Recog-
nition”. In: Neural Networks (IJCNN), The 2016 International Joint Conference on.
IEEE. 2016.

	Abstract
	Resumen
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Motivation
	Related Works
	Feature-based Object Recognition
	Usage of 3D Data
	Learning Features Automatically by Means of Deep Learning
	Convolutional Neural Networks for Image Analysis

	Proposal and Goals
	Outline

	Convolutional Neural Networks
	Introduction
	The Convolution Operator
	Architecture of a CNN
	Convolution
	Local Receptive Fields
	Shared Weights

	Activation
	Pooling
	Fully Connected
	Loss

	Training a CNN
	Gradient Descent
	Stochastic Gradient Descent
	Generalization and Overfitting
	Maximum Norm Constraints
	Dropout
	L1, L2, and Elastic Net Regularization
	Early Stopping
	Shuffling

	Vanishing and Exploding Gradient
	Challenges and Optimizations
	SGD with Momentum
	Nesterov accelerated Gradient
	Adagrad
	Adadelta
	Adam
	Comparison of Optimizers

	Conclusion

	Materials and Methods
	Introduction
	Frameworks
	Torch
	Theano
	Caffe
	Computational Network Toolkit
	TensorFlow
	Other Frameworks
	Picking a Framework

	Datasets
	Hardware

	Volumetric Representations
	Introduction
	Related Works
	Proposed Representations
	Dataset Adaptation
	Noise
	Occlusion

	Grid Generation
	Fixed
	Adaptive

	Tensor Computation
	Binary
	Normalized Density
	Surface Intersection

	Experimentation
	Results and Discussion

	Conclusion

	3D CNN for Object Recognition
	Introduction
	2.5D Convolutional Neural Networks
	3D Convolutional Neural Networks

	Related Works
	Model-based CNN
	Experimentation
	Results and Discussion

	Conclusion

	Conclusion
	Conclusions
	Publications
	Future Work

	Caffe Models
	Solver
	2.5D CNN Training Model
	3D CNN Training Model

	Source Code
	Dependencies
	Compilation

	Bibliography

