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ABSTRACT 

Recent advances in statistical downscaling have allowed the reconstruction of 

temperatures for the complete 1948-2011 period in a spatial resolution of 90 m and 

without gaps for the Valencian Community (Spain) and bordering areas. It presently 

enables analyses in this region, which allows the determination of recent temperature 

changes at subregional and local scales. The present work focuses on obtaining the 

thermicity index according to Rivas-Martínez, a well-known indicator of different 

thermotypes associated with bioclimatic horizons. The change in this index, which has 

happened in the region between 1948 and 2011, was calculated by generating fine-scale 

maps of the potential extension of different thermotypes. The results show a greater 

regression for the thermotypes in a finicolous position, e.g. Orotemperate, 

Supratemperate and Supramediterranean horizons, which herein indicate greater 

potential vulnerability in climate change. In the absence of, and given the need for, such 

fine-scale information, this work should be useful for specialized researchers to spatially 

limit the potentially most vulnerable biotopes to climate change. 

Key words: Climate change, temperatures, bioclimatic horizons, Rivas-Martínez, 

regressive thermotypes, fine-scale mapping.    
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1.-INTRODUCTION 

1.1 Background 

The latest IPCC reports have indicated that the widest variability and greatest 

uncertainty about the impacts of climate change are on change patterns at regional and 

local levels (IPCC, 2013). This is especially true for Mediterranean regions given their 

spatial and temporal variability of climate, which render studies of climate change and 

impacts on those scales necessary. 

Such a necessity stems from the recently proven general regression trend of the cyclonic 

circumpolar vortex influence, in favor of the Hadley cell, at Mediterranean latitudes 

(Frauenfeld and Davis, 2003; Angell, 2006; Muñoz-Díaz and Rodrigo, 2006; Graff and 

LaCasce, 2012, 2014), which has also led to the identification of a general trend of 

rising temperatures in the Iberian Peninsula (Brunet, et al., 2007; Del-Río et al., 2012). 

Changes in the precipitation patterns in the same area have also been identified 

(Esteban-Parra el al. 1998; Millán et al., 2005; Muñoz-Díaz and Rodrigo, 2006; Estrela 

et al,. 2010; Gonzalez-Hidalgo et al., 2010; Gallego et al., 2011). 

As to the need to research at fine-scale levels (subregional and local), we now benefit 

from the recent advances made in relation to temperatures in a Mediterranean region, 

e.g. Valencia (VC, Spain; Figure 1). This statistical downscaling (SD), from the data 

(daily temperatures) observed from more than 300 stations in the region, and also from 

the NCEP/NCAR data re-analysis, obtained a spatial interpolation (SI) of temperatures 

(T) at a resolution of 90 m for the entire period (no gaps) that covered 1948-2011 (Miró 

et al., 2015, 2016) (hereinafter SDSITVC). This work was carried out by taking into 

account local temperature patterns based on the original information obtained from the 

observed series, and by clustering the observatories related to site characteristics 

(valleys, hillsides, mountains, etc.) with their thermal attributes. The use of a hybrid 

artificial neural network (ANN-MLP and Hebbian) determined the relational patterns 

between the variables obtained from the re-analysis and the data observed in each 

location type, with barely any overfitting. This allows, on the one hand, to refill gaps 

and to reconstruct the series observed for the entire 1948-2011 period (daily, monthly 

and annual data). It also permits the extrapolation of temperature patterns and the 

estimation of temperature values on all the points covered by spatial interpolation. To 

this end, we made full use of ANN’s capacity to filter the inhomogeneity and other 

errors (e.g. instrumental or accidental) of the observed series, with a very acceptable 

final bias (usually ±0.3°C for maximum temperatures and ±0.2°C for minimum 

temperatures for monthly data). Spatial interpolation was subjected to cross-validation 

at the points where the observed data were available, and close to 15% of the stations  

available in the input data were extracted to interpolate validation. Thus a measure of 

expected error for the temperature estimated by spatial interpolation at those points with 

no observed data (station) was obtained. For the yearly data of the 90 m spatial 

interpolation, cross-validation found an expected error of ±0.4ºC for the maximum 

temperatures and of ±0.8ºC for the minimum ones.  
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The results of the temperature trends that derived from the SDSITVC, already obtained 

in the works of Miró et al. (2015, 2016), have indicated important and distinct local 

patterns of temperature change over the study area in recent decades. They indicated a 

much more significant temperature rise in mountainous areas, especially in their apexes. 

These works also pointed out a further increase in the maximum temperatures, in spring 

and early summer, while also showing a decoupling of trends in minimum temperatures. 

The latter followed a clear upward trend in mountains, which was attenuated, and even 

reversed in certain cases, at the bottom of inland valleys. This has been related to more 

situations being prone to temperature inversion due to changes in the circulation 

patterns throughout the region. This conclusion has also been drawn for other 

mountainous regions in middle latitudes around the world (Daly et al., 2010; Pepin et 

al., 2011; Dobrowski, 2011), while there is some evidence otherwise in high latitudes 

(Bourne et al., 2010). 

Within the Iberian Peninsula context, a high variability of temperature patterns due to 

geographical and atmospheric factors has been defined (Peña-Angulo et al., 2016). In 

any case, unlike some different result for other regions (Del-Rio, et al., 2005), there is 

also evidence indicating a greater warming in spring and summer linked to changes in 

atmospheric circulation patterns (Fernández-Montes et al., 2013), especially in a 

neighboring region as the Ebro basin (El Kenawy, et al., 2012). But are the recent 

studies employing suites of regional climate models (RCMs) to asses future changes 

those that best fit with the patterns of temperature change already detected in Miro et al. 

(2015). Therefore these indicate a greater tendency to warming at higher altitudes, 

specifically in the Pyrenees and the Iberian System (López-Moreno et al., 2008, 2014; 

Jerez et al., 2012; El Kenawy, et al., 2015). 

The Mediterranean Basin offers extraordinary floristic wealth, which includes up to 

25000 species, 50% of which are endemic (Quezel, 1985). In the study area, the 

presence of endangered endemic species has been reported (Laguna et al., 1998; Serra 

et al., 2004). Many of these endemic and singular species in this region are in a 

finicolous position; that is, they are refugees in end-point sectors of the bioclimatic 

horizons of middle and high elevations after their regression at the end of the last 

glaciation. This makes them potentially very vulnerable to climate change, which would 

cause greater regression, or even the disappearance, of their potential habitat 

(Ohlemueller, 2008). In fact, taxa and sectors in such a finicolous position have been 

defined in the study area (Serra et al., 2004; Peñas et al., 2005; Marco et al., 2006; 

Azorín and Jover, 2010). The above-mentioned vulnerability has been estimated as 

high, even in a mild climate change scenario (Dirnböck et al., 2011).  

Therefore, the results obtained in Miro et al. (2015) suggest that such a change is 

already underway given the faster warming in settlements of medium and high 

elevations than elsewhere in the area. 

The usefulness of bioclimatic indices to study the climate change impact on biotopes 

has already been considered from various perspectives. Although the climate factor 
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(applied to these indices) is not the only one to determine changes in biotopes, it can be 

used as a marker of potential changes (Pearson and Dawson, 2003). 

When taking only temperatures into account, the thermicity index of Rivas-Martínez 

(Rivas-Martínez, 1987; Rivas-Martínez et al., 2011; www.globalbioclimatics.org) is 

generally considered a good indicator of different bioclimatic thermotypes, particularly 

in the Iberian Peninsula and the Mediterranean Basin (e.g., Gavilán, 2005; Loidi et al., 

2007; Azorín and Jover, 2010; Costa et al., 2012; Monteiro-Henriques et al., 2015). 

Indeed this index has begun to be considered an indicator of bioclimatic change in some 

studies about climate change (e.g., Monteiro-Henriques and Espírito-Santo, 2011; 

Ighbareyeh et al., 2015). 

This study aimed to use SDSITVC as an available data source to assess changes in the 

bioclimatic horizons defined by the Thermicity Index of Rivas Martínez (It) in our study 

area between 1948 and 2011 (Figure 1). A spatial resolution of 90 m for SDSITVC 

allows this to be currently done on a fine scale. 

1.2 The Setting 

The Valencia Community is located on the east coast of the Iberian Peninsula, and is 

characterized by a very complex orography. It is placed between the south-centre of the 

arch formed by the Iberian System mountains, and northeastern side of the Pre-Betic 

System mountains (Figure 1). The littoral is occupied by a series of coastal plains. 

The region is divided into three parts, which roughly coincide with the provincial 

administrative demarcation: Castellón, in the North, contains the highest mountains on 

its interior limit (Gúdar and Javalambre, over 2000 m), as well as the most reduced 

coastal plains; Valencia, in the centre, comprises the amplest coastal and pre-coastal 

plains (the Júcar and Turia rivers) and mountains of a medium elevation inland; 

Alicante, in the south, has two distinct parts: northern Alicante, where the Pre-betic 

mountains define a territory of complex terrain relief of maximum elevation, 1558 m, 

with the Aitana mountain; southern Alicante is a flood plain that moves deeply inland 

(the Segura river). This configuration leaves very contrasting climatic attributes 

between coastal plains and inland mountains, as well as complex atmospheric 

interactions (Millán et al., 1998, 2005; Pastor et al., 2015); i.e., a very bold contrast in 

rainfall between northern Alicante (subhumid) and southern Alicante (semiarid), and 

complexities in modeling (Gómez et al., 2014a, 2014b, 2015a, 2015b). There are also 

temperature contrasts: while coastal plains clearly have a mild subtropical 

Mediterranean climate, the inland quickly acquires continental traits or colder traits at 

higher elevations.  

According to the classification system of Rivas-Martínez (used in this study) the region 

is mainly characterized by the Mediterranean macrobioclimate. Although the upper 

parts of the Iberian System (North inland) become a Temperate macrobioclimate with 

submediterranean bioclimatic variant (e.g., Gúdar area, Javalambre peak). Thermo and 

Mesomediterranean thermotypes occupy most of the territory, at least half South and all 
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littoral-prelittoral strip (Piñas et al., 2008; López et al., 2015). Supramediterranean, 

supratemperate and orotemperate thermotypes already usually appear in high redoubts 

and finicolous position for taxa. Although the oromediterranean thermotype could be 

potentially present in the middle South of the region, there are no elevations high 

enough for its presence. Meanwhile, on the South side of Javalambre supratemperate 

and orotemperate thermotypes are on the edge of being oromediterranean (according to 

data derived from the SDSITVC). 

These higher elevations are the only holdouts to provide temperatures and rainfall that 

favor the taxa and types of forest which have disappeared from most of the region by 

not only the arrival of the Holocene period, but also by subsequent human pressure and 

fire events (Gil-Romera et al., 2010). 

Many of these bioclimatic mountainous holdouts are currently protected by Natural 

Parks or protected mountain landscapes. These depend on climatic conditions, and 

somewhat differ from protected coastal areas that depend more on the presence of water 

sheets. 

According to the SDSITVC results reported in Miró et al. (2015, 2016), these areas and 

mountainous Nature Reserves are located in the areas that are more affected by climate 

change in the region. Therefore, apart from the present study covering a wider region, it 

also focuses on a selection of representative Natural Parks and mountains, namely: 

Tinença de Benifassà, Penyagolosa (and the nearby area of Gúdar), Puebla de San 

Miguel, Serra d´Espadà, Mariola, Font Roja and the Aitana Mountain.    
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Figure 1: Study area (the Valencian Community and neighboring areas) 

 

2.-DATA AND METHODS 

According to Rivas-Martínez (1987) and Rivas-Martínez et al. (2011), a thermicity 

index (It) can be used to define spatial areas in temperature-dependent bioclimatic 

regions. It = (T+m+M)10, where T is the average annual temperature, m is the average 

of the minimum temperatures in the coldest month (January in this case) and M is the 

average of the maximum temperatures in the coldest month. Hence this index considers 

low temperatures as the limiting factor where plant taxa are present. 

It should be noted that for the middle latitudes rules the Compensated Thermicity Index 

(Itc), that is 'It' is compensated by a continentality index. Itc = It ± C, where C is a 

compensation value that applies only if the average range between the temperatures of 

the warmest and coldest months of the year (Ic) is higher than 18 or less than 8. This is 

not the case in the study area, except for specific sectors at inland limits of Valencia 
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sector, where Ic slightly exceeds a value of 18. Although there are almost no differences 

between the use of 'It' or 'Itc' in the study area, it has been applied the last one, 

according to the rule:  if(18.0 < Ic <= 21.0) then C = (Ic-18.0)*5  (Rivas-Martínez et al., 

2011). 

Additionally, when the Itc is lower than 120 then the value of the positive annual 

temperature (Tp) replaces the Itc in order to calculate thermotypes. Tp is the sum in 

tenths of degrees centigrade of the average monthly temperatures (Ti) when these are 

higher than 0ºC. That is, Tp = (∑ Ti  ≥  0º) 10. 

In order to calculate Itc´s spatial distribution, information about T, m, M and C has been 

used, which derived from SDSITVC. An algebraic operation that describes Itc was then 

applied to the different layers obtained from the spatial interpolations of T, m, M and C, 

which SDSITVC offers. The same applies to Tp (Itc < 120). These interpolations were 

obtained by ordinary Kriging (OK), and by bearing in mind that the number of points 

(stations) with available data, and their good presence toward the edges of the spatial 

interpolation, were suitable for OK (Miró et al., 2015, 2016). 

Based on the results obtained for temperature trends reported in Miró et al. (2015, 

2016), two periods were computed: a reference period and a test period. These results 

(Figure 2) indicated an initial period between 1948 and 1979, with no significant 

temperature changes, particularly because there were still no changes in the spatial 

patterns of temperature, but inter-decennial oscillations. Thus it was taken herein as the 

reference period. For the 1980-1998 period, faster temperature warming was recorded 

throughout the region, but still made a transition to a decoupled state of spatial 

temperature change patterns, which will be subsequently consolidated. Warming slowed 

thereafter, but in the past 15 years (1997-2011) a profound change in the spatial patterns 

of temperatures toward decoupling has occurred; i.e., hillsides and mountain peaks 

continued with a marked warming trend, which was not so marked in valleys, and with 

increasing differences between valleys and mountains. This is reason why the last 15 

years, available for SDSITVC (1997-2011), was taken as a test period, which was also 

the case in Miró et al. (2015, 2016). 

Obtained directly from SDSITVC, Figure 2 summarizes these trends, which explain 

subsequent grouping by decennia. 
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Figure 2: Temperature anomalies by decennia during the reference 1961-90 period, as calculated from 

SDSITVC (Miró, 2014) 

 

After obtaining the spatial information layers of Itc for the reference and test periods, 

the differences in Itc units were calculated, which the test period showed on the 

reference period. The resulting mapping covered the VC and surrounding areas (Figure 

1), but was split into several parts to properly display them: Castellón to the north, 

Valencia in the center and Alicante to the south, and focused on five mountainous areas 

of high natural value, which were already mentioned (Figures 3-10). 

As the data that derived from SDSITVC have an error margin, we took into account the 

uncertainty introduced by the mean absolute error. To do this, we added the error that 

showed the monthly-annual data of SD (Esd) and the error shown by the SI in the cross-

validation (Esi) in order to obtain the total error (Et) as Et = ±(Esd+Esi). Therefore, the Itc 

(It) error (EtIt) was obtained by averaging the total error for T (EtT), m (Etm) and M 

(EtM); thus EtIt= ±((EtT+Etm+EtM)/3)10.   

The spatial areas in which EtIt was greater than the Itc change between the test and 

reference periods were considered doubtful changes. These areas were properly marked 

on the generated maps that expressed the Itc change.  

The primary purpose of obtaining Itc was to limit bounded thermotypes, so that each 

thermotype would respond to an Itc range. According to the thermotype classification of 

Rivas-Martínez et al. (2011), the following appear in the study area (Table 1): 
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THERMOTYPIC HORIZONS ABBREVIATION It/Itc RANGE Tp RANGE 

Mediterranean macrobioclimate 

Lower Thermomediterranean Tmei 400-450  

Upper Thermomediterranean Tmes 350-400  

Lower Mesomediterranean Mmei 285-350  

Upper Mesomediterranean Mmes 220-285  

Lower Supramediterranean Smei 150-220  

Upper Supramediterranean Smes 120-150  

Oromediterranean Omei <120 675-900 

Temperate macrobioclimate (submediterranean bioclimatic variant) 

Lower Mesotemperate Mtei 240-290  

Upper Mesotemperate Mtes 190-240  

Lower Supratemperate Stei 120-190  

Upper Supratemperate  Stes 
<120 

800-1100 

Lower Orotemperate Otei 590-800 
Table 1: Thermotypic horizons (Rivas-Martínez et al., 2011) present in the study area 

On the one hand, a cartography was generated that reflected the distribution of the 

thermotypic horizons expressed by Itc during the reference and test periods in order to 

visually locate the distribution of the horizons and their changes between the two 

periods. On the other hand, a cartography was produced that reflected only the change 

which occurred between both periods, expressed in It units, which also reflected the 

areas in which this change was doubtful according to the considered error margins. 

It must be considered that not the complete study area is classified within the 

Mediterranean macrobioclimate (Table 1) since the Temperate macrobioclimate appears 

at North inland. This determines different thermotypes with a same Itc value. The 

difference between Mediterranean and Temperate macrobioclimates is characterized by 

a summer drought of at least two consecutive months in which P < 2T (where P is the 

rainfall amount and T temperature mean of each month). If this condition is not reached, 

thus macrobioclimate is considered Temperate instead Mediterranean (Rivas-Martínez 

et al., 2011). 

Although this study focuses on the Itc, an estimation of the area occupied by temperate 

macrobioclimate has been included in the cartography to better differentiate the mapped 

thermotypes. For this purpose, information on monthly rainfall in the area has been 

taken from observed series available for the periods 1948-1979 and 1997-2011 

(observed period >= 15 years for 1948-1979, and observed period >= 7 years for 1997-

2011). These series derive from AEMET, SIAR and CEAM stations networks, and were 

subjected to a quality control. However up to now, for precipitation is not available a 

fine-scale data source (with continuous homogeneous data without gaps) similar to 

SDSITVC. Thus that the available data density changes over time and are not reliable 

for analysis of fine-scale tendencies. Therefore its use here as a marker of bioclimatic 

change is uncertain and must be taken with caution. 
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3.-RESULTS 

In general, the results showed (Figures 3, 4 and 5) a predominance of upward trends for 

the Itc-dependent thermotypic horizons. However, this upward trend was more marked 

in hilly areas, especially in mountain peaks and hillsides with greater slopes. As a 

whole, the temperature increase was more pronounced in the Iberian System part; that is 

in the area of Gúdar and its surroundings (Figure 3), and also in the Pre-betic System, 

around Aitana (Figure 5). Thus a rise of up to 23 Itc units in the higher parts of Gúdar 

and Aitana was obtained. As a result, a strong regression was observed for the 

Orotemperate (Otei), Supratemperate (Stes, Stei) and Supramediterranean (Smes, Smei) 

thermotypic horizons. 

Lower lands, flat areas and coastal sectors generally showed a weaker upward trend in 

the thermotypic horizons. Although increases still dominated in most of these areas, the 

uncertainty introduced by the error involved considering a doubtful change (an Itc 

change < ±8 as a rule).  

The areas around river beds, and lowest parts of valleys and flat lands (especially those 

inland) even showed negative trends. These are areas in which cold conditions were 

linked to the frequency of temperature inversions subject to stable weather. However, 

these trends were doubtful so can not be inferred that there has been a significant 

change. We can thus consider that these areas may act as potential refuge areas for some 

taxa to face climate change, which is in line with Dobrowski (2011).  
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Figure 3: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). North region (the areas of Castellón and 

Ademuz). 
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Figure 4: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). Central region (the area of Valencia). 
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Figure 5: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). South region (the area of Alicante). 
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Figure 6 shows a zoom in on the Tinença de Benifassà Natural Park sector (the northern 

end of the region). Here a major regression of the thermotypic horizon Stei, and 

Mediterranean equivalent Smes, stands out, which occurred between the reference and 

test periods. This means that they tend to disappear from the area if this trend continues 

in future, especially if the macrobioclimate changes to be mostly Mediterranean 

(maximum elevation of 1235 m). Therefore, the results confirm a potential risk for taxa 

in a finicolous position. 

The results are more pronounced in Figure 7, which focuses on the Penyagolosa Natural 

Park and the area of Gúdar (entire area within Temperate macrobioclimate). In this 

case, a strong regression of the Otei and Stes horizons was observed. Otei have already 

disappeared in the Gúdar section that has been mapped (up to 1900 m) between the 

reference and test periods.  While in Penyagolosa (maximum elevation of 1813 m) Stei 

diminished by 60% and Stes almost disappeared (75%) during the test period. The 

regression for the Mtes horizon was also quite remarkable.  

Figure 8 focuses on the Puebla de San Miguel Natural Park sector, to the east of 

Ademuz. Once again, a clear regression of the Otei-Stes (≈ Ome) and Smes (≈ Stei)  

horizons was noted inside the park (maximum elevation of 1836 m in the park, and 

2020 m further northeast of the park in Javalambre) which gave way to Smei and Mmes 

in lower park sections. Very remarkable is that Otei horizon has dropped more than 

90% in the highest area of Javalambre. In contrast, a different manner was observed in 

the lower valley section, which lies further west of the park, where the Turia River 

crosses the area of Ademuz. In this continentalized setting, and very close to the river 

bed, some sectors even showed a negative Itc change, although not significant. 

Once again similar results were found for Figure 9, which focused on the Serra 

d´Espadà Natural Park. In this case the Smei horizon appeared in higher park sections, 

and  do not appear upper horizons (as the higher elevations there do not go beyond 1106 

m). However, the regression of this horizon (Smei) was very clear, while the Mmei 

horizon extended to lower park sections. 

Finally, Figure 10 focuses on the main Natural Parks (Mariola and Font Roja) and the 

higher elevation (Aitana – 1558 m) in the Pre-betic sector, located to the south of the 

study area. According to the results, the clear presence of the Smes horizon in the upper 

sections and  peak of Aitana mountain (reference period) almost disappeared during the 

test period. In this case, the presence of taxa in a finicolous position has been well 

reported (Marco et al. 2006).  

The strong regression of the Smei horizon, which occupied the upper Font Roja and 

Mariola Natural Park parts (maximum elevation of 1356 m and 1390 m, respectively) 

was noteworthy. In the latter (Mariola), Smei diminished by 60% between the reference 

and test periods. 
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Figure 6: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). It focuses on the Tinença de Benifassà Natural 

Park. 
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Figure 7: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). It focuses on the Penyagolosa Natural Park and 

the Gúdar mountains. 
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Figure 8: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). It focuses on the Puebla de San Miguel natural 

park. 
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Figure 9: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). It focuses on the Serra d´Espadà Natural Park. 
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Figure 10: The Itc change during the test period compared with the reference period (up). The Itc of the 

reference and test periods is shown (center and bottom). It focuses on the Mariola and Font Roja Natural 

Parks, and the Aitana mountain. 
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4.-DISCUSSION AND CONCLUSIONS 

The availability of SDSITVC, based on a complete homogeneous period (1948-2011), 

allowed the fine-scale mapping of changes in Itc (and the associated bioclimatic 

horizons) between a reference period (1948-1979) and a recent testing period (1997-

2011). This, therefore, provides an account of a non estimated change in the future, but 

one that has already happened, which may now have potential consequences on 

biotopes, particularly those in a finicolous position. 

The present results revealed a greater regression for the thermotypic horizons that 

occupy the middle and upper parts of mountain reliefs, as well as mountainous Natural 

Parks, and between both periods. This regression became more pronounced for the Otei-

Stes, Stei and Smes horizons, but also for Smei in mountains with a lower elevation or 

latitude. In some cases, horizons were present and exhibited finicolous characteristics 

that could completely disappear (Gúdar, Javalambre, Penyagolosa, Aitana). In other 

cases their space reduced significantly (Tinença de Benifassà, Serra d´Espadà, Mariola, 

etc.). Conversely valleys, flat lands and low elevation areas showed less marked 

changes, which were doubtful when considering the uncertainty range of SDSITVC.  

In any case, the translocation of thermotypic horizons to higher parts of terrain relief 

dominated in most parts of the study area. Yet certain locations could also act as a 

potential 'refuge' against change, which coincided with the bottom of valleys and river 

beds, which are in a more continental position; that is, where more proneness was 

shown to cold conditions linked to the presence of temperature inversions associated 

with stable anticyclonic weather and calm winds. These trends fall in line with those 

observed in other mountainous parts of the world at mid latitudes (Daly et al., 2010; 

Pepin et al., 2011; Dobrowski, 2011), which has also been justified by circumpolar 

vortex migration to higher latitudes (Frauenfeld and Davis, 2003; Angell, 2006), and the 

increased frequency of episodes with calm winds on the Iberian Peninsula and in the 

study area (Azorín-Molina et. al., 2014; Miró et al. 2015).   

A genuine rising trend of bioclimatic horizons in specific cases has already reported for 

the Iberian Peninsula (Sanz-Elorza et al. 2003), which thus reinforces the hypothesis of 

a potential change in bioclimatic horizons in our study area. In addition, the climate 

estimations made in different climate change scenarios contemplated by the IPCC have 

been applied to the bioclimatic classifications of Rivas-Martínez (Monteiro-Henriques 

and Espírito-Santo, 2011), with results that matched the basic results obtained herein. 

In any case, the results obtained in this study are no real proof of changes in biotopes 

linked to the aforementioned horizons, but rather act as an indicator of potential change. 

This could be a useful tool for the scientific community that specializes in ecology and 

biogeography to help locate real changes that have occurred or are underway in the taxa 

distribution in the region. 

Although this study addresses only Rivas-Martínez’s Itc (in order to constitute a 

bioclimatic marker as such), its overweighting at winter temperatures must be 
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considered. In fact, more pronounced warming trends beyond winter for the region have 

been reported (Miró et al., 2006), which have been better established in the SDSITVC 

results shown in Miró et al. (2015). These warming trends are especially strong in the 

second half of spring and the first half of summer, and June is the month with the most 

positive trend (Figure 11). 

 

 
Figure 11: The change magnitude (ºC) of the mean temperature for June during the test period (1997-

2011) vs. the reference period (1948-1979) according to SDSITVC (Miró et al., 2015). 

 

Therefore, for those cases in which high temperatures (or their temporal extension) are 

the limiting bioclimatic factor, the impact would be greater than any of those inferred by 

the Itc change displayed herein. 

A similar fine-scale instrument to SDSITVC for precipitation is not currently available 

for the region. Yet if we take into account the results made available by studies 

conducted in the area on the observed series and precipitation types, a worrying scenario 

emerges in light of the results presented herein. They precisely indicate negative trends 

in precipitation toward the inland and hilly parts of the region (the Iberian System), 

which match the areas with the highest rise in temperature (SDSITVC), as opposed to 
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littoral areas (Millán, et al., 2005; Estrela et al., 2010; Miró et al., 2010; Miró et al., 

2015). In fact, the total area occupied by the temperate macrobioclimate in the Iberian 

System section also could be in regression according to the additional data to Itc 

presented here. Although this last fact is precipitation dependent so it can not yet be 

well inferred at fine-scale, unlike the Itc. This implies considering future studies into a 

change in bioclimatic horizons by means of an index that also weights precipitation in 

order to better assess the role of increased water stress as a marker of change. To do 

this, obtaining a fine-scale data source for precipitation that complements SDSITVC is 

currently pending. 
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HIGHLIGHTS 

 

Change for the thermicity index of Rivas-Martínez (It) between a reference period 

(1948-1979) and a test period (1997-2011). The It (Itc) was calculated from average 

temperature of the maximum and minimum of the coldest month and annual mean 

temperature, obtained from statistical downscaling and temperatures interpolation 

performed in Miró et al. (2014). The results show a greater regression for the 

thermotypes in a finicolous position, e.g. Orotemperate (Otei) and Supratemperate 

(Stes-Stei) horizons, as well as Supramediterranean Itc equivalents (Smes, Smei). This 

indicates greater potential vulnerability in climate change for biotopes and taxa located 

over the highest mountains. Location and elevation is included (left) for reference. 


