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Abstract

We assess here the reliability of orbital optimization for modern

double-hybrid density functionals such as the parameter-free PBE-

QIDH model. We select for that purpose a set of closed- and open-

shell strongly and weakly bound systems, including some standard

and widely used datasets, to show that orbital optimization improves

the results with respect to standard models, notably for electronically

complicated systems, and through first-order properties obtained as

derivatives of the energy.

Key words: double-hybrid density functionals, orbital optimization, open-
shell molecules, polycyclic aromatic hydrocarbons.
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1 Introduction

Orbital-Optimization (OO) has been recently applied to various orders of

Møller-Plesset perturbation theory, especially at the second-order for both

the conventional (MP2) and its spin-component scaled (SCS-MP2) version,

revealing itself as a very powerful tool for dealing with open-shell systems

or when spin contamination is a major issue.1,2 In these cases, the zeroth-

order Slater determinant may be a poor reference, and then the perturbative

expansion becomes divergent and unreliable, while it has been shown that

OO-MP2 repairs those poor zeroth-order orbitals and leads to better results

for reaction barriers and properties involving free radicals.3,4 On the other

hand, MP2-like contribution is a natural ingredient of any Double-Hybrid

(DH) density functional,5–7 although in a weighted contribution to the total

exchange-correlation according to each strategy followed during their devel-

opment, therefore inheriting (partly) the advantages and pitfalls of MP2

theory too. Actually, Peverati and Head-Gordon8 were the first to recognize

(up to the best of our knowledge) the importance of this issue within the

field of Density Functional Theory (DFT), applying consequently an orbital-

optimization scheme to the PBE0-DH9 and PBE0-210 double-hybrid models.

Compared with the large improvement formerly obtained for the OO-MP2

method, they found a more modest impact on their results when going from

DHs to OO-DHs, which was attributed to the fact that this contribution is

weighted in the latter models by a factor always lower than unity.

However, the orbitals effects in DH functionals is gaining interest, with

the performance of some functionals largely relying on the underlying orbitals

used to feed all the energy terms entering into their formulation.11–14 It seems

thus timely to explore the possibilities of orbital-optimization for the last-
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generation of double-hybrid functionals. Therefore, we extend pioneering

studies to the PBE-QIDH form,15 a parameter-free model developed under

the framework of the adiabatic connection model, and perform an additional

benchmark study aiming also to disclose some new results and insights on

challenging applications to conjugated molecules.

2 Theoretical details

As it was said before, we select a recently developed (the PBE-QIDH

exchange-correlation functional) model for several reasons: (i) it has been

extensively benchmarked in last years and, despite being a parameter-free

model, its accuracy becomes fully competitive with that of parameterized

ones;16,17 (ii) it has been shown to provide a rational framework for general-

like hybridization schemes, independently of the underlying exchange-correlation

form selected;18 and (iii) it keeps a relevant contribution (vide infra) of the

added perturbative correlation. The general form of this model is:

Exc = λxE
EXX
x [φ] + (1− λx)Ex[ρ] + λcE

PT2
c [φ, φ′] + (1− λc)Ec[ρ], (1)

where λx = 3−1/3 and λc = 1
3
, both values being rationally obtained with-

out any parameterization, and EPT2
c [φ, φ′] is the second-order perturbation

theory contribution, for which the explicit dependence on both the set of

occupied (φ) and virtual (φ′) orbitals is underlined. This set of orbitals is

normally obtained by iteratively solving the Kohn-Sham (KS) equations and

then using the manifold of orbitals to feed (a posteriori and thus without

further self-consistency) the EPT2
c contribution. The above minimization is

necessarily done in an approximate way, since exactly solving for an orbital-

dependent functional would need to invoke the Optimized Effective Potential
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(OEP) method.19–22

Therefore, contrarily to the standard and widely used approach, we also

self-consistently minimize here the perturbation energy with respect to the

amplitudes and the total energy with respect to changes in orbitals,3 and

thus obtaining orbitals adapted to the perturbative field, leading to a fully

variational perturbation energy that is finally scaled by λc and added to the

previous DFT-based energy contributions.8 In other words, we now inde-

pendently calculate both the orbitals entering into the first three terms of

Eq. (1) and those for the EPT2
c contribution. Results obtained with this

method will be coined as OO-PBE-QIDH in the following. Note that the

computational cost of the latter method is neccesarily higher than that for

PBE-QIDH, since every iteration of the OO-based procedure is as costly as

an MP2 calculation, and that some divergences may also occur, but are nor-

mally cured by choosing an appropriate level shift parameter.23

All the calculations reported here were done with the ORCA package24

(release 3.0.1) using the following criteria: (i) the family of (aug-)cc-pVnZ

basis sets25 was used, with n their cardinal number, together with the corre-

sponding auxiliary basis sets (aug-)cc-pVnZ/C when the ’resolution-of-the-

identity’ (RI) technique was exploited for the (more costly) EPT2
c term;26

(ii) we increased systematically the numerical thresholds for the SCF cal-

culations (i.e., keywords TightSCF, Grid6, NoFinalGrid); (iii) we correlated

all electrons (i.e., keyword NoFrozenCore) for calculating the perturbation

correction; and (iv) spin-unrestricted methods were used for all open-shell

systems.
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3 Results and discussion

3.1 Application to standard databases

We apply first both PBE-QIDH and OO-PBE-QIDH methods to some

datasets of large interest, as originally developed,27,28 such as the AE6 (at-

omization energies of small molecules), IP13 (ionization potentials of small

molecules) and SIE11 (reactions prone to self-interaction errors), with the

very large aug-cc-pVQZ basis set to avoid any basis set incompleteness issue.

We choose as metrics to evaluate the performance of the methods the Mean

Deviation (MD), Mean Absolute Deviation (MAD) and Root Mean-Squared

Deviation (RMSD) with respect to reference results, presenting the results

in Table 1. The overall inspection shows very slight improvement and/or

deterioration of results when using OO-PBE-QIDH instead of PBE-QIDH.

The results provided by both methods are in the range of accuracy expected

for the family of double-hybrid functionals. For instance, the PBE0-DH

and PBE0-2 models yield MAD values of 2.75 and 1.89 kcal/mol, respec-

tively, for the IP13 database.8 Taking now the SIE11 dataset as example,

OO-PBE-QIDH gives a RMSD of 4.75 kcal/mol, compared with the values

provided by the B2-PLYP,29 PWPB95,27 or XYG330 models, which are 6.10,

4.96, and 3.94 kcal/mol, respectively.27

We tackle now the reaction energies for some Diels-Alder reaction cy-

cloadditions (the dataset dubbed DARC4 in Table 1), whose reactants and

products are displayed in Figure 1. These reactions have respectively butadi-

ene and ethene (DARC-1), butadiene and ethyne (DARC-2), cyclopentadiene

and ethene (DARC-3), cyclopentadiene and ethyne (DARC-4), as reactants,

giving the condensed products specified in all cases. These reactions are also

part of the large GMTKN30 database,27 and are known to be challenging
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to modern semilocal density functionals.31 The results of PBE-QIDH and

OO-PBE-QIDH calculations are gathered in Table 2, finding again similar

results for both methods and in line with those obtained using other sophisti-

cated methods,32 although however more accurate results (MAD of 5.01 and

RMSD of 5.31 kcal/mol) are found when employing parameterized double-

hybrid methods like B2-PLYP.

Furthermore, we have also included a representative dataset for forward

and backward heavy-atom transfer reactions, namely HATBH12,33 which

is part of the larger DBH24 database34 and includes the BH6 pioneering

dataset35 together with additional reactions. As can be seen from Table 1,

the MAD and RMSD values are roughly halved for OO-PBE-QIDH (2.96

and 2.92 kcal/mol) with respect to the PBE-QIDH (4.82 and 4.84 kcal/mol)

model. We attribute the larger accuracy of the OO-PBE-QIDH model,

which becomes competitive with other highly accurate ab initio methods like

QCISD(T) or density functionals specifically parameterized for kinetics,33 to

the good description of all kind of species (i.e., neutral or free radicals) in-

volved in the reactions either as reactants, products or transition states.

3.2 Potential energy curves of the O+
2 radical cation

The ground-state (2Π) dissociation of the O+
2 radical cation is a proto-

typical case for studying spatial symmetry-breaking, which is known to be

especially difficult for theoretical methods. The use of a symmetry-broken

Unrestricted Hartree-Fock (UHF) solution as starting point for perturbative

methods (e.g. Møller-Plesset theory) is known to be largely affected by:

(i) a poor behaviour of perturbative expansions at intermediate and large

7
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interatomic distances;36 (ii) spin-contamination issues;37 and (iii) a lack of

convergence for higher orders of perturbation theory.38 On the other hand,

spin-projection for DFT calculations is not recommended neither39 and more

involved approaches (i.e. multiconfigurational) are thus needed,40–42 which

necessarily goes beyond the scope of this study. However, orbital-optimized

double-hybrid methods might constitute an alternative approach for dealing

with open-shell molecules at all distances, and we will thus explore here the

performance of (standard) PBE-QIDH and (novel) OO-PBE-QIDH methods

for this challenging case.

Figure 2 displays the potential energy curve upon bond stretching, as

well as how the dipole moment evolves along bond dissociation. We can

easily see for PBE-QIDH, as well as for other double-hybrid models recently

applied in the literature,8 that the spatial symmetry is broken at around

1.9 Å, featuring concomitantly a discontinuity in those first-order properties

(e.g. dipole moment) computed, similarly to the MP2 case, although once

again necessarily attenuated by the weight of the λc parameter entering into

the formulation of the former methods.43 Interestingly, the OO-PBE-QIDH

method shows continuous results, for both zero- and first-order properties, at

all intermediate and large distances. The latter method also slightly improves

the equilibrium distance (1.106 Å) and harmonic vibrational frequency (1988

cm−1) with respect to the PBE-QIDH results of 1.104 Å and 2017 cm−1, to

be compared with experimental values of 1.116 Å and 1905 cm−1. In other

words, it seems that properties near the equilibrium region are not degraded

with orbital-optimization while they improve at larger internuclear distances.
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3.3 Weakly bound open-shell systems

Interactions of radicals with water molecules are particularly interesting,

not only by their relevance in aquatic or atmospheric chemistry, but also

by the type of the chemical bonding (”hemi-” or ”two-center-three-electron”

bonds) formed.44 We study here the set of H2O · · · F, H2O · · · Cl, H2O

· · · Br, H2O · · · Li, H2O · · · Al, and H2O · · · Be+ weakly bound com-

plexes (see Figure 3a) at the CCSD(T)/aug-cc-pVTZ optimized geometries

taken from Ref.45 The results shown in Table 3 reveal again a good and

robust performance of both the PBE-QIDH and OO-PBE-QIDH methods,

with values of MAD or RMSD slightly below and above, respectively, of the

“chemical accuracy” threshold of ± 1 kcal/mol. Note that these low values

are very competitive compared with those provided by B2-PLYP (MAD of

0.89 kcal/mol) or XYG3 (MAD of 0.98 kcal/mol) models,45 as well as with

respect to other (more costly) ab initio methods like MP3 or CCSD,46 and

that the inclusion of a dispersion correction did not affect the results (MAD

of 1.09 kcal/mol now for B2-PLYP-D) in the right direction.

We finally tackle the non-ionic (C6v) Li-C6H6 weakly bound complex (see

also Figure 3b) which has been thoroughly studied as a model for more com-

plex Li-graphene interactions47 or to disentangle how the different electronic

structure methods can give the correct energy order between the compet-

ing ionic (C2v) and non-ionic models for this interaction.48 Figure 4 displays

the dissociation curve, for which we can estimate an equilibrium distance

of d = 2.11 Å and an energy well of ∆E = −6.00 kcal/mol at the PBE-

QIDH level, noting that the OO-PBE-QIDH only slightly alter these values

(d = 2.12 Å and ∆E = −5.93 kcal/mol), to be favourably compared with

previous estimates at the SCS-MP2/aug-cc-pVTZ level (d = 2.29 Å and

9
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∆E = −5.66 kcal/mol).49 Interestingly, the Lödwin or Mülliken spin pop-

ulation on the Li atom, which should remain nearly constant and close to

unity for a purely non-ionic complex, significantly deviates with the PBE-

QIDH model (see Figure 4), with orbital optimization recovering a smoother

behaviour at all distances in fully agreement with modern orbital-optimized

opposite-spin MP2-based methods.50

3.4 Linear and cyclic (oligo)acenes

Subtle electronic effects dominate the singlet-triplet energy gap of poly-

ciclic aromatic hydrocarbons such as (oligo)acenes.51 If their ground-state is

a closed-shell singlet or an open-shell triplet has been a question of recent

studies,52,53 with some DFT results predicting (wrongly) a cross over and

thus a ferromagnetic (triplet) state as the most stable one. On the other

hand, the projection to pure spin states,54 or carefully performed ab initio

calculations,55 has helped to bracket previous DFT efforts, thus confirming

a singlet ground-state for short and long (oligo)acenes.56,57 We present in

Table 4 the results of our calculations for the adiabatic singlet-triplet en-

ergy gap of fused benzene rings, from benzene to hexacene, and compare

them with experimental values normally obtained in inert matrices.58 The

singlet state is always favoured when the PBE-QIDH method is applied, re-

sulting in a positive value for the singlet-triplet gap for all chain lengths, in

both qualitative and quantitative agreement with previous results at the B2-

PLYP-D/TZVP level (MAD = 4.43 kcal/mol).59 We emphasize the greater

accuracy of the OO-PBE-QIDH method, for which a MAD = 2.58 kcal/mol

is obtained, especially for the longest systems considered here. Actually, the

evolution of the values as a function of the fused benzene rings is graphically

10
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shown in Figure 5, where the corresponding experimental values, as well as

their error bar for pentacene and hexacene, are also included. We can see

how the PBE-QIDH and OO-PBE-QIDH results start to significantly differ

from anthracene onwards, with the latter practically superimposing the ex-

perimental values for tetracene, pentacene, and hexacene (differences lower

than 0.03 eV).

Turning now the attention to the cyclic form of (oligo)acenes,60 we note

first that: (i) due to their highly strained form (see Figure 6) only the longest

oligomers can be envisioned as synthetic targets; and (ii) for closely related

systems, [5.5.6]ncyclacenes, recent investigations questioned the accuracy of

B2-PLYP-D3, with respect to more modern double-hybrid forms (PWRB95)

based on the random phase approximation, and attributed this behaviour

to the PT2 part.61 We thus calculate for the 6-cyclacene molecule (the ana-

logue of the hexacene) an adiabatic singlet-triplet value of 10.74 and 6.76

kcal/mol at the PBE-QIDH and OO-PBE-QIDH levels, respectively. This

positive value predicts a triplet state higher in energy than a closed-shell

ground-state, contrarily to a negative value predicted by standard DFT cal-

culations.62 However, the OO-PBE-QIDH calculated singlet-triplet energy

gap is roughly halved with respect to that of the parent linear compound,

which can anticipate a different evolution of triplet energies with system size

than that obtained for the linear forms.

4 Conclusions

Here we have analyzed the influence of optimizing the orbitals entering

into the perturbative contribution of the parameter-free PBE-QIDH double-
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hybrid functional. These OO-PBE-QIDH results suggest a negligible impact

on the energetics of ground-state systems near their equilibrium geometry.

However, it becomes of primary importance whenever a substantial change

in the orbitals is needed to capture the essential physics of the problem,

and then obtaining accurate estimates of properties beyond the equilibrium

region or for excited-states. We have concomitantly cross-validated the accu-

racy of the original PBE-QIDH model, resulting fully competitive with other

double-hybrid expressions. The above guidelines might be helpful to select

an appropriate methodology for electronically difficult systems and rare sce-

narios, for which orbital-optimized approaches might be certainly useful.
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Adamo, C. Systematic Improvement of Density Functionals through

Parameter-Free Hybridization Schemes. The journal of physical chem-

istry letters 2015, 6, 3540–3545.

[19] Engel, E.; Vosko, S. Accurate optimized-potential-model solutions for

spherical spin-polarized atoms: Evidence for limitations of the exchange-

only local spin-density and generalized-gradient approximations. Physi-

cal Review A 1993, 47, 2800.

[20] Grabo, T.; Gross, E. K. Density-functional theory using an optimized

exchange-correlation potential. Chemical physics letters 1995, 240, 141–

150.

[21] Hirata, S.; Ivanov, S.; Grabowski, I.; Bartlett, R. J.; Burke, K.; Tal-

man, J. D. Can optimized effective potentials be determined uniquely?

The Journal of Chemical Physics 2001, 115, 1635–1649.
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• Table 1. Statistics (kcal/mol) for the AE6, IP13, SIE11, DARC4, and

HATBH12 datasets employed along this work, as calculated with the

aug-cc-pVQZ basis set.

• Table 2. Interaction energies (kcal/mol) for H2O · · · X open-shell

weakly bound complexes, as calculated with the aug-cc-pVQZ basis

set.

• Table 3. Adiabatic singlet-triplet energy gap (kcal/mol) for (oligo)acene

molecules, as calculated with the cc-pVTZ basis set.
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Table 1:

PBE-QIDH OO-PBE-QIDH

AE6 MD −1.45 1.31

MAD 4.80 4.96

RMSD 5.66 6.38

IP13 MD 1.95 1.97

MAD 2.09 2.11

RMSD 2.74 2.75

SIE11 MD 3.45 3.89

MAD 3.54 3.94

RMSD 5.05 4.75

DARC4 MD −9.12 −9.14

MAD 9.12 9.14

RMSD 9.28 9.29

HATBH12 MD 3.78 0.18

MAD 4.82 2.96

RMSD 4.84 2.92
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Table 2:

Complex PBE-QIDH OO-PBE-QIDH Referencea

H2O · · · F −2.58 −3.89 −3.83

H2O · · · Cl −3.75 −4.05 −3.69

H2O · · · Br −3.76 −4.00 −3.52

H2O · · · Li −12.96 −13.04 −12.39

H2O · · · Al −9.82 −10.08 −7.59

H2O · · · Be+ −65.59 −65.57 −64.20

MD −0.54 −0.90

MAD 0.96 0.90

RMSD 1.22 1.22
a Values calculated at the CCSD(T)/CBS level (taken
from Ref.45)
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Table 3:

Reaction PBE-QIDH OO-PBE-QIDH Referencea

benzene 93.95 92.32 84.34

naphtalene 67.89 66.16 60.90

anthracene 45.73 44.60 42.60

tetracene 32.18 30.07 29.45

pentacene 22.12 19.69 19.83± 0.70

hexacene 15.21 12.21 12.43± 1.20

MD 4.59 2.58

MAD 4.59 2.58

RMSD 5.26 4.00
a Experimental values (taken from Ref.55)
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• Figure 1. Selected Diels-Alder condensation reactions (from top to

bottom): butadiene + ethene → P1, butadiene + ethyne → P2, cy-

clopentadiene + ethene → P3, cyclopentadiene + ethyne → P4.

• Figure 2. Dissociation curves (top) and associated dipole moment

(bottom) for the O+
2 radical cation, as calculated with the cc-pVTZ

basis set.

• Figure 3. Structures of the: (a) open-shell weakly bound H2O · · ·

X, and (b) C6H6 · · · Li complexes. The distance between Li and the

center of the benzene ring is 2.284 Å; X is a F, Cl, Br, Li, Al, or Be+

atom at distances of 2.118, 2.604, 2.705, 1.888, 2.216, and 1.547 Å,

respectively.

• Figure 4. Dissociation curves (top) and associated spin population

on the Li atom (bottom) for the C6H6 · · ·Li system, as calculated with

the aug-cc-pVQZ basis set.

• Figure 5. Evolution of the adiabatic singlet-triplet energy gap of

(oligo)acenes.

• Figure 6. Structures of the linear and cyclic ([6]cyclacene) forms of

the hexacene molecule.
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REACTANTS PRODUCT

Figure 1.
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(a)

(b)

Figure 3.
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EOO−PBE−QIDH
xc = λxE

EXX
x [φ] + (1− λx)Ex[ρ] + (1− λc)Ec[ρ]

︸ ︷︷ ︸

KS orbitals

+λcE
PT2
c [φ, φ′]

︸ ︷︷ ︸

Optimized MP2 orbitals
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