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Abstract

In this paper, we aim to characterize the structure of hypergraphs in terms of structural complexity

measure. Measuring the complexity of a hypergraph in a straightforward way tends to be elusive

since the hyperedges of a hypergraph may exhibit varying relational orders. We thus transform a

hypergraph into a line graph which not only accurately reflects the multiple relationships exhibited

by the hyperedges but is also easier to manipulate for complexity analysis. To locate the dominant

substructure within a line graph, we identify a centroid vertex by computing the minimum variance

of its shortest path lengths. A family of centroid expansion subgraphs of the line graph is then de-

rived from the centroid vertex. We compute the depth-based complexity traces for the hypergraph

by measuring either the directed or undirected entropies of its centroid expansion subgraphs. The

resulting complexity traces provide a flexible framework that can be applied to both hypergraphs

and graphs. We perform (hyper)graph classification in the principal component space of the com-

plexity trace vectors. Experiments on (hyper)graph datasets abstracted from bioinformatics and

computer vision data demonstrate the effectiveness and efficiency of the complexity traces.
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1. Introduction

There has recently been an increasing interest in the use of hypergraph models for higher

order learning. A hypergraph is a generalization of a graph. Unlike the pairwise nature of edges

in a graph, hypergraph representations allow a hyperedge to encompass an arbitrary number of

vertices, and can hence capture multiple relationships among features.

Most existing methods attempt to approximate a hypergraph by an equivalent graph, and ex-

ploit existing graph based methods for learning higher order models. For instance, Agarwal et

al. [1] have performed hypergraph clustering by partitioning a weighted graph obtained by trans-

forming the original hypergraph using a weighted sum of hyperedges to form edges. Zhou et al.

[2], on the other hand, have presented a similar graph approximation method for hypergraphs by

normalizing the Laplacian matrix of the star expansion of a hypergraph. Wachman et al. [3] have

developed a hypergraph kernel by enumerating similar walks on two hypergraphs. Zass et al. [4]

and Duchenne et al. [5] have separately applied high-degree affinity arrays (i.e. tensors) to for-

mulate hypergraph matching problems using different cost functions. Both methods address the

matching process in an algebraic manner but become intractable to compute if the hyperedges are

not suitably sampled. Shashua et al. [6, 7] have performed visual clustering using tensors to repre-

sent uniform hypergraphs (i.e. those for which the hyperedges have identical cardinality) extracted

from images and videos. Their work has been complemented by He et al.’s [8] algorithm for de-

tecting number of clusters in a tensor-based framework. Similar methods include those described

in [9, 10, 11, 12, 13], in which tensors (uniform hypergraphs) are used to represent the multiple

relationships between objects.

One limitation of most existing methods for hypergraph characterization is that they are usu-

ally restricted to uniform structures and cannot be applied to hypergraphs with arbitrary relational

orders. To address this shortcoming, Ren et al. [14] have exploited a set of polynomial coefficients

obtained from the hypergraph Ihara zeta function for characterizing nonuniform hypergraphs. Un-

fortunately, the computation of the hypergraph Ihara coefficients tends to be computational bur-

densome.

The aim of this paper is to overcome the limitations of existing methods for hypergraph anal-
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ysis by computing a depth-based complexity trace for a hypergraph. We have previously explored

this idea for ordinary graphs [32], but we have not shown how to extend the idea to hypergraphs.

Our idea is to transform a hypergraph into an equivalent directed line graph that accurately captures

the multiple relationship exhibited by the hypergraph. The complexity trace of a hypergraph can

thus be computed by measuring the information content of a family of expansion subgraphs that

are derived from the centroid vertex of its line graph. Specifically, we explore how to characterize

the layer expansion subgraphs using complexity measures as a function of depth.

1.1. Literature Review

Computing the entropy-based complexity of an undirected (sub)graph has attracted significant

attention due to its fundamental practical importance for network analysis [32]. In early work,

Körner [16] developed a classical undirected graph entropy which poses complexity characteriza-

tion as an optimization problem. This approach is based on a probability distribution associated

with the vertices, and the complexity is the minimal cross entropy between the probability distri-

bution and the vertex packing polytype of the graph. Unfortunately, this entropy is not applicable

to more general unweigthed graphs. Mowshowitz [17], Rashevsky [18] and Trucco [19] have

each developed a Shannon entropy for a graph associated with the probability distribution derived

from different partitionings of the vertex set. Unfortunately, determining the partitioning requires

expansive computation, thus the entropy cannot be efficiently computed. To overcome the short-

comings for these classical graph entropies, Dehmer et al. [20, 21] have developed a novel means

of computing entropies of undirected graphs by using information functionals. The information

functionals for an undirected graph are derived from the topological structure of the graph and

quantify the information content of the given graph structure. Moreover, this approach avoids the

combinatorial computations over different vertex partitions by constructing local information sub-

graphs for a given undirected graph, and thus achieves a polynomial time complexity. Anand et

al. [23] and Passerini et al. [22] have applied the von Neumann entropy (or quantum entropy) to

the domain of graphs through a mapping between discrete Laplacians and quantum states [24]. If

the discrete Laplacian [25] is scaled by the inverse of the volume of the graph we obtain a density

matrix whose entropy can be computed using the spectrum of the discrete Laplacian. The mea-

3



sure distinguishes between different structures. For instance it is maximal for random undirected

graphs, minimal for complete ones and takes on intermediate values for star graphs. In addition,

when there is degree heterogeneity then the Shannon (classical) and von Neumann (quantum in-

formation theoretic) entropies are correlated. However, since the von Neumann entropy relies on

the computation of the normalized Laplacian spectrum, its computational complexity is cubic in

the number of vertices.

To render the computation of the von Neumann entropy more efficient, Han et al. [26] have

shown how the computation can be rendered quadratic in the number of the vertices by approx-

imating the Shannon entropy on the Laplacian eigenvalues using its quadratic counterpart. An

analysis of the quadratic entropy reveals that it can be computed from a number of permutation

invariant matrix trace expressions. This leads to a simple expression for the approximate entropy

in terms of the degrees of the adjacent vertices. Furthermore, to develop this work further, Ye

et al. [28] have shown how the von Neumann entropy for undirected graphs can be extended to

directed graphs. To do this, they commenced by using Chung’s [29] definition of the normalized

Laplacian on a directed graph. According to this definition, the directed graph normalized Lapla-

cian is Hermitian, and so the interpretation of Passerini et al. in [23] still holds for the domain of

directed graphs. The von Neumann entropy is essentially the Shannon entropy associated with the

normalized Laplacian eigenvalues. The resulting von Neumann entropy expression for directed

line graphs depends on the in-degree and out-degree of pairs of vertices connected by edges.

Recently, depth-based representations of undirected graph structures have been widely used

for developing new complexity measures for graphs [30, 31]. One approach is to gauge informa-

tion content flow through K-layer subgraphs of a graph (e.g. subgraphs around a vertex having a

maximum topological distance or minimal path length K) of increasing size and to use the flow

as a structural signature. Following this approach, Bai and Hancock [32, 33, 34] have developed

a fast depth-based complexity trace from the centroid vertex that has the minimum variance of

shortest path lengths to the remaining vertices (i.e., a depth-based representation around the cen-

troid vertex). They decompose a graph into a family of K-layer centroid expansion subgraphs

around the centroid vertex. A complexity trace vector is computed by measuring the entropies on

the individual expansion subgraphs. Since the centroid based method can be used to efficiently
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compute the entropy based complexity measures on a small set of expansion subgraphs rooted at

the centroid vertex, it can be thus computed in a polynomial time. By contrast, the thermodynamic

depth complexity measure developed in [30] requires the expansion subgraphs rooted at each ver-

tex, and computes the intrinsic complexity for each subgraph. It is thus less efficient to compute

on large graphs, e.g., a graph having thousands of vertices.

Unfortunately, all of the above mentioned complexity measures, both entropy-based and depth-

based, are only developed for (un)directed graphs and do not easily accommodate hypergraphs.

The reason for this is that straightforwardly measuring the complexity of a hypergraph tends to

be an elusive problem since the hyperedge in a hypergraph may exhibit varying relational orders.

Therefore, to measure the complexity of a hypergraph, in a manner that can precisely capture the

structural information contained within it, we consider transforming a hypergraph into a directed

line graph using the Perron-Frobenius operator [14]. The Perron-Frobenius operator can repre-

sent both uniform or nonuniform hypergraphs characteristics and can also accurately reflect the

multiple relationships exhibited by hyperedges of different orders. Hence, the directed line graph

representation for a hypergraph provides a convenient framework for complexity analysis.

1.2. Contributions

As previously stated, the aim of this paper is to present a novel framework for characterizing

hypergraphs based on computing depth-based complexity traces. Our starting point is the line

graph obtained by transforming a hypergraph into substructures using the Perron-Frobenius op-

erator. The complexity of the hypergraph is then measured by computing the entropies of the

substructures. We develop two different classes of complexity traces for a hypergraph HG based

on two different decomposition strategies. The first is to establish an undirected line graph GU of

HG from the equivalent directed line graphGDL by simply neglecting the edge directions ofGDL.

We derive a family of expansion subgraphs with increasing layer size K from GU . We construct

an undirected complexity trace of HG by measuring how the undirected entropy measure varies

on the expansion subgraphs with increasingK. The second strategy is to establish a directed com-

plexity trace for HG by measuring the directed graph entropy on a family of expansion subgraphs

derived from the directed line graphGDL ofHG. Since we measure the entropy over the family of
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expansion subgraphs, both methods are efficient and overcome the computational bottlenecks ex-

isting in state-of-the-art methods for network complexity analysis [26, 30]. Our hypergraph com-

plexity traces provide a flexible framework that can be applied to both hypergraphs and graphs.

We perform experiments on several bioinformatics and computer vision datasets. We empirically

demonstrate that our complexity traces not only readily accommodate nonuniform hypergraphs,

but also easily scale to large hypergraphs. The performance of our framework is competitive with

alternative network complexity analysis methods and other hypergraph based methods reported in

the literature.

The remainder of this paper is organized as follows: Section 2 and Section 3 respectively in-

troduce the entropy measures for undirected or directed graphs that will be used in our framework.

For an undirected graph, Section 4 presents a family of centroid expansion subgraph that will

also be used in our framework. Section 5 describes how to compute an undirected or a directed

depth-based complexity trace for a hypergraph. Section 6 provides experimental comparisons be-

tween the proposed hypergraph complexity trace methods and state-of-the-art (hyper)graph based

methods. Section 7 concludes this work and makes suggestions for future work.

2. Entropy Measures on Undirected Graphs

In this section, we review how to compute the entropy for an undirected graph. We commence

by reviewing the concept of von Neumann entropy used in previous work [26]. Here we commence

by explaining how the von Neumann entropy of an undirected graph can be efficiently computed

in terms of the degree statistics using a quadratic approximation to the Shannon entropy. We

also introduce an alternative Shannon entropy using the probability distribution associated with a

steady state random walk on an undirected graph [32, 35].

2.1. Von Neumann Entropy of Undirected Graphs

The von Neumann entropy of an undirected graph is the Shannon entropy associated with the

eigenvalues of the normalized undirected graph Laplacian [22]. We denote the undirected graph

under study by G(V,E) where V is the set of vertices and E ⊆ V × V is the set of undirected
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edges. The symmetric adjacency matrix A for G(V,E) is a |V | × |V | matrix that has elements

A(i, j) =

⎧⎨
⎩

1 if(vi, vj) ∈ E;

0 otherwise.
(1)

The vertex degree matrix of G(V,E) is a diagonal matrix D whose elements are given by

D(vi, vi) = d(i) =
∑

vj∈V A(i, j). From the degree matrix and the adjacency matrix we can

construct the Laplacian matrix L = D − A. The normalized Laplacian matrix is given by

L̂ = D−1/2LD−1/2. The spectral decomposition of the normalized Laplacian matrix is L̂ = Φ̂Λ̂Φ̂T

where Λ̂ = diag(λ̂1, λ̂2, ..., λ̂|V |) is a diagonal matrix with the ordered eigenvalues as elements

(0 = λ̂1 < λ̂2 < ... < λ̂|V |) and Φ̂ = (φ̂1|φ̂2|...|φ̂|V |) is a matrix with the corresponding ordered or-

thonormal eigenvectors as columns. The normalized Laplacian matrix is positive semi-definite and

so has all eigenvalues non-negative. The number of zero eigenvalues is the number of connected

components in G(V,E). The von Neumann entropy of G(V,E) associated with the normalized

Laplacian eigenspectrum [22] is defined as

HV N = −
|V |∑
i=1

λ̂i
|V | log

λ̂i
|V | (2)

The computation of the von Neumann entropy requires a number of operations that is cubic

in the number of vertices |V |, since it requires the solution of the eigendecomposition. Han et

al. [26] have shown how the computation can be computed in quadratic time by a) approximating

the Shannon entropy by its quadratic counterpart, and b) evaluating the traces of L̂ and L̂2 using

vertex degrees. To commence, they approximate the Shannon entropy λ̂i

|V | ln
λ̂i

|V | by its quadratic

counterpart λ̂i

|V |(1− λ̂i

|V |) and obtain

HV N = −
|V |∑
i=1

λ̂i
|V | log

λ̂i
|V | �

|V |∑
i=1

λ̂i
|V |(1−

λ̂i
|V |)

=
1

|V |
|V |∑
i=1

λ̂i − 1

|V |2
|V |∑
i=1

λ̂2i . (3)

Based on the definition by Han et al. in [26],
∑|V |

i=1 λ̂i = Tr[L̂] = |V |, and
∑|V |

i=1 λ̂
2
i = Tr[L̂2] =

|V |+∑
(vi,vj)∈E

1
d(i)d(j)

. Thus, the von Neumann entropy defined in Eq.(3) can be re-written as

HV N(G) = 1− 1

|V | −
1

|V |2
∑

(vi,vj)∈E

1

d(i)d(j)
(4)
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As a result, we can approximate the von Neumann entropy using two measures of an undirected

graph structure. The first is the number of vertices, and the second is based on degree statistics

for pairs of vertices connected by edges. The approximation bypasses calculating the normalized

Laplacian eigenvalues of an undirected graph which is (O(|V |3)). Therefore, we estimate the von

Neumann entropy in time O(|V |2), and this renders the computation more efficient.

2.2. Shannon Entropy of Undirected Graphs

An alternative approach to computing the entropy of G(V,E) is to use a steady state random

walk on G(V,E). The probability of the steady state random walk on G(V,E) visiting vertex vi is

P (i) = d(i)/
∑
vj∈V

d(j) . (5)

Based on Eq.(5), we obtain a probability distributionP associated with the steady state random

walk on G(V,E), and the Shannon entropy for G(V,E) is given by

HS(G) = −
|V |∑
i=1

P (i) logP (i). (6)

For the undirected graph G(V,E), computing the Shannon entropy HS(G) requires O(|V |2)
operations, because it needs to visit all the |V |2 pairs of entries inA to compute the probability of a

steady state random walk visiting each vertex. This indicates that the Shannon entropy associated

with a steady state random walk can be efficiently computed.

3. Entropy Measures on Directed Graphs

The entropy measures defined in Section 2 only apply to graphs with undirected edges. How-

ever, in our study, we also require entropy measures on graphs with directed edges (see Section

5.3 for details). In this section, we introduce two entropy measures for directed graphs. We com-

mence by introducing a directed von Neumann entropy [28]. This method is based on extending

the definition of the von Neumann entropy (i.e., the von Neumann entropy of undirected graphs

defined in Section 2) from undirected to directed graphs, and is expressed in terms of the in-degree

and out-degree statistics of vertices. Moreover, we also introduce an asymptotic entropy in terms

of the heat flow diffusion [30].

8



3.1. Von Neumann Entropy of Directed Graphs

Let GD(VD, ED) is a directed graph with vertex set VD and edge set ED ⊆ VD × VD, and AD

is the adjacency matrix of GD. The in-degree and out-degree of vertex vD;i are

din(i) =

|VD|∑
j=1

AD(j, i), dout(j) =

|VD|∑
j=1

AD(i, j). (7)

With these ingredients, the transition matrix T for the directed graph GD is defined as

T (i, j) =

⎧⎨
⎩

AD(i,j)
dout(i)

if (vD;i, vD;j) ∈ ED

0 otherwise.
(8)

In [29], Cheng has shown that the normalized Laplacian matrix of a directed graph can be written

as

L̃D = I − Φ
1/2
D T Φ

−1/2
D + Φ

−1/2
D T TΦ

1/2
D

2
, (9)

where ΦD = diag(φD;1, φD;2, . . . , φD;|VD|) and φD = (φD;1|φD;2| . . . |φD;|VD|) is the left eigenvec-

tor of L̃D.

Similar to the von Neumann entropy of an undirected graph [22], the von Neumann entropy

for a directed graph can also be approximated using the Shannon entropy associated with the

eigenvalues of its normalized Laplacian matrix. Using the approximation, in [28] Ye at al. have

extended the analysis of Han et al. [26] from undirected to directed graphs. The starting point

is the quadratic approximation to the von Neumann entropy in terms of the traces of normalized

Laplacian and the squared normalized Laplacian, i.e.,

HD
V N =

Tr[L̃D]

|VD| − Tr[L̃2
D]

|VD|2 . (10)

To simplify Eq.(10) one step further, let ED;1 and ED;2 are two disjoint subsets of ED, and satisfy

ED;1 = {(vD;i, vD;j)|(vD;i, vD;j) ∈ ED∧(vD;j , vD;i) /∈ ED} andED;2 = {(vD;i, vD;j)|(vD;i, vD;j) ∈
ED ∧ (vD;j, vD;i) ∈ ED}. ED;1

⋃
ED;2 = ED, and ED;1

⋂
ED;2 = ∅. Based on [28], we have

Tr[L̃D] = Tr[I] = |VD|,

and

Tr[L̃2
D] = |V |+ 1

2
(Tr[T 2] + Tr[T Φ−1

D T TΦD]),

9



where Tr[T 2] =
∑

(vi,vj)∈ED;2

1

dout(i)dout(j)
and Tr[T Φ−1T TΦ] =

∑
(vi,vj)∈ED

φ(i)

φ(i)dout(j)2
. Using

the fact that φD;i

φD;j
≈ din(i)

din(j)
[28], we can approximate the von Neumann entropy of a directed graph

in terms of the in-degree and out-degree of the vertices as follows

HD
V N = 1− 1

|VD| −
1

2|VD|2
{ ∑

(vi,vj)∈ED

(
1

dout(j)dout(i)

+
din(j)

din(i)dout(j)2

)
−

∑
(vi,vj)∈ED;1

1

dout(j)dout(i)

}
, (11)

or equivalently,

HD
V N = 1− 1

|VD| −
1

2|VD|2
{ ∑

(vD;i,vD;j)∈ED

din(i)

din(j)dout(i)2

+
∑

(vD;i,vD;j)∈ED;2

1

dout(i)dout(j)

}
. (12)

Eq.(11) or Eq.(12) can be consequently simplified according to the relative sizes of the sets

ED;1 and ED;2. If GD is a weakly directed graph (|ED;1| � |ED;2|), i.e., few of the edges are not

bidirectional, the approximate von Neumann entropy is defined as [28]

HWD
VN = 1− 1

|VD| −
1

2|VD|2
∑

(vD;i,vD;j)∈ED

din(i)
dout(i)

+ din(j)
dout(j)

dout(i)din(j)
. (13)

On the other hand, ifGD is a strongly directed graph (|ED;2| � |ED;1|), i.e., there are few bidirec-

tional edges, the approximate von Neumann entropy is given by [28]

HSD
V N = 1− 1

|VD| −
1

2|VD|2
∑

(vD;i,vD;j)∈ED

{
1

dout(i)din(j)

}
. (14)

Both the weakly and strongly directed forms of the von Neumann entropy (HWD
VN and HSD

V N )

contain two terms. The first is the graph size while the second one depends on the in-degree

and out-degree statistics of each pair of vertices linked by an edge. Moreover, the computational

complexity of these expressions is quadratic in the graph size.

3.2. Asymptotic (Flow) Entropy of Directed Graphs

Heat kernels are the solutionK(β) to the heat/diffusion equation: ∂K(β)
∂β

= −LK(β), where β

means time [37] and L is the graph Laplacian. Diffusion kernels are doubly stochastic matrices.
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Since K(β) is semi-definite positive we have that the spectral decomposition K(β) = Ψe−βΛΨT

where Λ = diag(λ1, . . . , λ|V |) contains the eigenvalues 0 = λ1 < λ2 < . . . < λ|V | and Ψ =

(ψ1|ψ2| . . . |ψ|V |) the eigenvectors, leads to limβ→∞K(β) = ψ1ψ
T
1 and ψ1 = 1√

|V |e, where eT is

the all ones row vector. Therefore, the latter limit is given the van der Waerden matrix B∗ = eeT

|V | .

An alternative way to formulate entropy is to quantify the amount of heat flowing through the

graph at a particular instant. Given an undirected graph G = (V,E) with unnormalized Laplacian

L = D − A, the amount of entropy is bounded by the maximum entropy of the Birkhoff-von

Neumann decomposition of the heat kernelK(β) = e−βL. This in ensured by the phase-transition

principle described in [30]: every graph is endowed with a phase-transition point corresponding

to the earlier instant where entropy is maximal. In addition, maximal entropy is achieved when

the maximum amount of heat is flowing through the graph.

Instantaneous heat flow as defined in [30] is given by the elements of the matrix product

F (β) = A : K(β), where X : Y =
∑

ij X(i, j)Y (i, j) is the Frobenius product. Hence, we

have that F (∞) = A : K(∞) = A : B∗ = |E|
|V | is associated with the asymptotic entropy log2(n)

of the Birkhoff decomposition for the kernel, and the asymptotic (flow) entropy of an undirected

graph is

HF = F (∞) =
|E|
|V | . (15)

The computational complexity of the asymptotic entropy is quadratic in the graph size, since it

needs to visit all the |V | × |V | entries of the adjacency matrix for G.

Given a directed graph GD(VD, ED), we assume that it it strong connected and aperiodic and

with transition matrix T given by Eq. 8. Otherwise, T is patched as in Pagerank [38] so that a left

eigenvector φD. exists. The stationary distribution is given by PD(i) = φD;i. Then, following [29]

we have that the unnormalized directed Laplacian LD is defined as

LD = Φ
1/2
D L̃DΦ

1/2
D = ΦD − ΦDT + T TΦD

2
= ΦD −W . (16)

Since W (i, j) = (φD;iT (i, j) + φD;jT (j, i))/2, the role of the weight matrix W is to sym-

metrize LD by setting W (j, i) = 1
2
φD;iT (i, j) = W (i, j) when dout(j) = 0, dout(i) > 0,

W (i, j) = 1
2
φD;jT (j, i) = W (j, i) when dout(i) = 0, dout(j) > 0, and W (i, j) = (φD;iT (i, j) +

φD;jT (j, i))/2 = W (j, i) when dout(i) > 0, dout(j) > 0. Therefore, W can be seen as the
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weighted adjacency matrix of an undirected graph GW = (VW , EW ), where VW = VD, EW =

ED

⋃{(i, j) : (j, i) ∈ ED} and the weights W (i, j) are associated to the edges. Thus, if the

original directed graph GD is strongly connected, then so is GW since the latter symmetrization

enables alternative paths between the vertices of VD.

As a result, information diffusion constraints existing inGD are relaxed inGW . The constraints

are coupled to graph entropy through the phase-transition principle (the harder the constraints the

smaller the amount of heat flowing through the graph). The analysis of the heat kernel associated

with the directed Laplacian KD(β) = e−βLD = e−β(ΦD−W ) entails the stationary distribution PD,

which is encoded in the diagonal of ΦD. More precisely, we have

KD(β) = e−β(ΦD−W )

= e−βΦD

(
I|VD | + βW +

β2

2!
W 2 +

β3

3!
W 3 + . . .

)

≈
|VD|2∑
k=0

W k e
−βΦDβk

k!
,

(17)

and W k is defined in terms of walks of length k:

W k(i, j) =
∑
Sk

k∏
r=1

(
φD;irT (ir, ir+1) + T (ir+1, ir)φD;ir+1

2

)
, (18)

where Sk = {i1 i2 . . . ik+1} is a sequence of vertices defining a walk of length k. Therefore

W k(i, j) is the sum of all walks of length k connecting i and j (see [39]). As a result of sym-

metrization, many of these walks acquire now non-zero probability. For instance, if (i, j) ∈ ED

but (j, i) �∈ ED, there will be a directed path connecting vertices j and i in GD, since it is strongly

connected. However, in GW we will have W (j, i) > 0. Consequently, GW contributes with

many short links. The byproduct of a diffusion process is to create new links, called transitiv-

ity links. These links (j, i) do not exist in the original graph but are encoded in the components

of the heat kernel Kβ
D(j, i) > 0 as β increases. The spectral decomposition of LD ensures that

limβ→∞KD(β) = B∗ = eeT

|VD | as in the undirected case. However, since limβ→∞ e−βΦβk = 0 for

all k and the smaller φ(i) the less reachable is the i-th vertex in GD, the components Kβ
D(i, j) of
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the kernel will tend to 1
n

faster when they correspond to original directed edges. This means that

the asymptotic directed flow FD(∞) = AD : KD(∞) = AD : B∗ =
|ED|
|VD| is a good approximation

of the entropy trace even for moderate values of β. The reason for this is that it relies on the

density of the original directed graphGD whose edges (and particularly their associated stationary

distribution) drive the diffusion process.

Hence, we have that the asymptotic (flow) entropy of a directed graph is

HFD = FD(∞) =
|ED|
|VD| . (19)

The computational complexity of the asymptotic entropy is quadratic in the number of vertices in

the graph GD.

4. Centroid Expansion Subgraphs

In this section we define a set of centroid expansion subgraphs of an undirected graph. This set

will be used for establishing hypergraph complexity traces in Section 5. To commence, we identify

a centroid vertex and use this as the root vertex. To this end, for an undirected graph G(V,E), we

use Dijkstra’s algorithm to compute the shortest path matrix SG whose element SG(i, j) represents

the shortest path length between vertices vi and vj of G(V,E). The average-shortest-path vector

SV for G(V,E) is a vector with the same vertex order as SG, and with each element SV (i) =∑|V |
j=1 SG(i, j)/|V | representing the average shortest path from vertex vi to the remaining vertices.

We identify the centroid vertex vi for G(V,E) as follows

v̂i = argmin
i

|V |∑
j=1

[SG(i, j)− SV (i)]
2. (20)

The centroid vertex v̂i of G(V,E) is located by selecting the vertex with the minimum variance

of shortest path lengths from all vertices in G(V,E). Therefore, the shortest paths starting from

the centroid vertex v̂i form a steady path set that exhibits the least path length variance compared

with those path sets originating from the remaining vertices. The vertices surrounding the centroid

vertex in G(V,E) lie along different shortest paths from the centroid vertex, and the centroid

vertex has a global view of the vertex path length distribution surrounding it. Let NK
v̂C

be a subset
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of V satisfying

NK
v̂C

= {u ∈ V | SG(v̂C , u) ≤ K}. (21)

For a graphG(V,E)with the centroid vertex v̂C , theK-layer centroid expansion subgraph GK(VK ; EK)
has the vertex set VK and edge set EK as follows

⎧⎨
⎩

VK = {u ∈ NK
vC
};

EK = {(u, v) ⊂ NK
vC

| (u, v) ∈ E}.
(22)

The number of centroid expansion subgraphs is equal to the greatest length of the shortest path

from the centroid vertex to the remaining vertices of the graph.

5. Depth-based Complexity Traces of Hypergraphs

A hypergraph is usually denoted by a pair of sets HG(VH , EH) where VH is a set of vertices

and EH is a set of non-empty subsets of VH called hyperedges. To obtain hypergraph complexity

traces, we first establish a directed line graph using the Perron-Frobenius operator [40, 14]. The

reasons for using this graph representation for a hypergraph are twofold. First, pairwise-order

representations for hypergraphs allow the graph based complexity analysis to be applied to hyper-

graphs. Second, the directed line graph avoids the order ambiguities that arise from the straight-

forward expansion- or clique-based graph representations of a hypergraph [14]. Thus we develop

the complexity traces by computing the entropies of a family of centroid expansion subgraphs

obtained from the directed line graph.

5.1. Directed Line Graph

The directed line graph of a hypergraph is a dual representation in which each hyperedge is rep-

resented by a new vertex. For a hypergraph HG(VH , EH), the directed line graph GD(VD,
−→
ED)

can be established using Algorithm 1. Note that, for step 1 there are potential multiple edges

between two vertices in GH(VG, EG) if the two vertices are encompassed by more than one

common hyperedge in HG(VH , EH). Suppose there are p hyperedges encompassing two ver-

tices in HG(VH , EH). The p hyperedges induce p separated edges between the two vertices in

GH(VG, EG). For step 3, it is important to stress that unlike the edge set E of an undirect graph
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(a) A Hypergraph (b) Clique.

(c) Di-clique. (d) Directed Line Graph.

Figure 1: An example of transformation a hypergraph into a directed line graph.

G(V,E),
−→
ED is a set of directed edges of the directed graph GD(VD,

−→
ED). The adjacency matrix

TH of GD(VD,
−→
ED) is the Perron-Frobenius operator of the original hypergraph. For the (i, j)th

entry of TH , TH(i, j) is 1 if there is a simple edge directed from the vertex i to the vertex j in the

directed line graph, and otherwise it is 0. Unlike the adjacency matrix of an undirected graph, the

Perron-Frobenius operator for a hypergraph is not a symmetric matrix. This is because the con-

straint in Eq.(24) arises in the construction of directed edges. Specifically, any two directed edges

induced by the same hyperedge in the original hypergraph are not allowed to establish a directed

edge in the directed line graph.

An example of transforming a hypergraph into a directed line graph has been shown in Fig.1.
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Algorithm 1: Establishing a directed line graph for a hypergraph
Input: A hypergraph HG(VH, EH) where VH is a set of vertices, and E is a set of

non-empty subsets of VH .

Output: A Perron-Frobenius operator of HG(VH , EH) (i.e. the adjacency matrix TH of a

directed line graph GD(VD,
−→
ED) for HG(VH , EH)).

1: Establish the clique expansion graph for HG(VH, EH).

• Establish the clique expansion graph GH(VG, EG) for G(V,E) by connecting each pair of

vertices in ei through an edge for each hyperedge ei ∈ E, the vertex and edge sets are
⎧⎨
⎩

VG = V ;

EG = {(u, v) ⊂ ei | ei ∈ E}.
(23)

2: Establish the associated symmetric digraph for GH(VG, EG).

• For GH(VG, EG), establish the associated symmetric digraph DGH(VG, Ed) by replacing

each edge of GH(VG, EG) by a directed edge pair in which the two directed edge are

inverse to each other.

3: Establish the directed line graph of GH(VG, EG) through DGH(VG, Ed).

• Establish the directed line graph GD(VD,
−→
ED) of HG(VH , EH) based on DGH(VG, Ed).

The vertex set VD and edge set
−→
ED of the GD(VD,

−→
ED) are defined as

⎧⎨
⎩

VD = Ed;
−→
ED = {(u, v)i, (v, w)j ∈ Ed × Ed | i �= j}.

(24)

where the subscripts i and j denote the indices of the hyperedges from which the directed

edges (u, v) and (v, w) are induced respectively.
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For the example hypergraph HG(VH , EH) shown in Fig.1(a), the clique graph GH(VG, EG) is

shown in Fig.1(b). In GH(VG, EG), the edges belonging to the common clique are indicated by

the same colour while the different cliques are coloured differently. Furthermore, there are two

different edges between v4 and v5, and these edges are induced by the hyperedge e3 and e4 of

HG(VH, EH), respectively. The associated symmetric digraph DGH(VG, Ed) of GH(VG, EG)

is shown in Fig.1(c), and the resulting directed line graph GD(VD,
−→
ED) from DGH(VG, Ed) is

shown in Fig.1(d).

The transformation of the hypergraph HG(VH , EH) into the directed line graph GD(VD,
−→
ED)

requires time complexity O(|VD|2). This is because the construction of the adjacency matrix of

GD(VD,
−→
ED) relies on visiting all the |VD| (|VD| = |Ed|) edges inDGH(VG, Ed) and establishing

all |VD|2 entries in the incidence matrix of GD.

5.2. Theoretical Properties

The directed line graph and its Perron-Frobenius operator have several interesting properties.

a) Compared to the (hyper)graph adjacency or Laplacian matrix, the Perron-Frobenius operator

spans a higher dimensional feature space where it may expose richer (hyper)graph characteristics.

This property is a result of the fact that the cardinality of the vertex set for the directed line graph

is much greater than, or at least equal to, that of the original (hyper)graph. Hence, the adjacency

matrix (i.e. the Perron-Frobenius operator) of the directed line graph is described in a higher

dimensional space than the original (hyper)graph.

b) The directed line graph represents a (hyper)graph in a complete manner such that it naturally

avoids the information loss arising in the spectral truncation [10] or the clique graph approximation

[2]. This property is due to the constraint in Eq.(24), i.e., the connecting edge pair induced by the

same hyperedge in the original hypergraph cannot establish a directed edge in the directed line

graph. Actually this induces a bi-partition in the vertices of VD. In other words, such a directed

line graph can distinguish different edges derived from the same hyperedge. This property is

illustrated in Fig.1(d). On the other hand, the clique expansion graph GH(VG, EG) from the

original hypergraphHG(VH , EH) only records adjacency relationships between vertex pairs of the

hypergraph, and cannot distinguish whether or not two edges are derived from the same hyperedge.
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(a) (b)

Figure 2: Hypergraph examples.

This property is illustrated in Fig.1(b). Hence, for two different hypergraphs (e.g., the hypergraphs

shown in Figs.2(a) and (b)) they may have the same clique expansion graph, and thus the same

resulted adjacency and Laplacian matrices resulting from the clique expansion graph. On the other

hand, the directed line graph defined in Eq.(24) may still produce total different structures for the

two hypergraphs. In Fig.2(b) we have an unique hyperedge e1 that encodes the same clique which

defines the graph in Fig.2(a).

These properties indicate that the direct line graph and its Perron-Frobenius operator can offer

us an elegant way for hypergraph complexity analysis which can not only capture precise hyper-

graph complexity information but can also reflect richer characteristics of hypergraphs.

5.3. Depth-based Complexity Traces of Hypergraphs

We define a depth-based complexity trace for a hypergraph based on its directed line graph.

Simply establishing subgraphs with increasing layer size along the shortest paths on a directed line

graph tends to ignore certain topological information. The reason for this is that a path may not

exist between two given vertices in a connected directed line graph. To overcome this problem,

we identify the centroid vertex for the undirected line graph of a hypergraph. The undirected

line graph GU(VU , EU) of hypergraph HG(VH, EH) can be obtained by replacing each pair of

inversely directed edges in GDL(VDL,
−→
EDL) by an undirected edge. Then we develop two classes

of complexity traces for HG(VH, EH), which we refer to as the undirected complexity trace and

directed complexity trace respectively.
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Definition 1 (Undirected complexity trace) For a hypergraph HG(VH , EH) and its undirected

line graph GU(VU , EU), the undirected complexity trace CT U is an Lmax dimensional vector

CTU = [H(GU 1), · · · , H(GUK), · · · , H(GULmax)]T . (25)

where Lmax is the greatest length of the shortest paths from the centroid vertex v̂UC to the remaining

vertices in GU(VU , EU), GUK is the K-layer centroid expansion subgraph of GU(VU , EU), and

H(GUK) is the entropy of GUK . �

Here the entropy function H(·) could be either the von Neumann entropy HV N(·) given in

Eq.(4) or the Shannon entropy HS(·) given in Eq.(6).

Next we describe how to extend these ideas to a directed complexity trace for the hypergraph

HG(VH, EH). For the directed line graph GDL(VDL,
−→
EDL) of HG(VH, EH), it is impossible

to establish a K-layer centroid expansion subgraph according to Eq.(22), because the edges of

GDL(VDL,
−→
EDL) are directed. For a hypergraph HG(VH , EH), given the K-layer centroid expan-

sion subgraph GUK(VUK ; EUK) of GU(VU , EU), we develop a K-layer pseudo centroid expansion

subgraph GDK(VDK ;
−→EDK) of GDL(VDL,

−→
EDL) with vertex and edge sets as follows⎧⎨

⎩
VDK = VUK ;
−→EDK = {(u, v) ∈ −→

ED | (u, v) ∈ EUK}.
(26)

Note that there is a strict order for any pair of vertices (u, v) ∈ −→EDK .

Definition 2 (Directed complexity trace) For a hypergraph HG(VH, EH) together with its di-

rected line graphGDL(VDL,
−→
EDL) and undirected line graphGU(VU , EU), the directed complexity

trace CTD is an Lmax dimensional vector defined as

CTD = [HD(GD1), · · · , HD(GDK), · · · , HD(GDLmax)]T . (27)

where Lmax is the greatest length of the shortest paths from the centroid vertex v̂UC to the re-

maining vertices in GU(VU , EU), GDK is the K-layer pseudo centroid expansion subgraph of

GDL(VDL,
−→
EDL), and HD(GDK) is the entropy of the directed subgraph GDK . �

Based on the definition in Section 5.1, the directed line graph of a (hyper)graph is a strongly

directed graph. Hence the entropy function HD(·) should be the strongly directed von Neumann

entropy HD
VN (·) in Eq.(14).
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Hypergraphs of Different Sizes: Note that, the Lmax layer expansion subgraph is the undirected

line graph itself. The dimension of a hypergraph complexity trace vector is thus equal to the

greatest layer Lmax. However, the complexity trace vectors for hypergraphs of different sizes may

exhibit various lengths. To compare these hypergraphs by using complexity trace vectors, we

need to make the vector lengths uniform. This is achieved by padding out the dimensions of the

complexity trace vectors. Hence, for complexity trace vectorsCTi andCTj of the two hypergraphs

HGi and HGj with dimensions Lp and Lq respectively, where Lp > Lq, we use the Lq-th element

value of CTj as the added padding value for the extended Lq + 1-th to Lp-th elements of CTj .

5.4. Disscussions of the Hypergraph Complexity Traces

The two proposed depth-based complexity traces possess the following key features. a) Eq.(4)

indicates that the von Neumann entropyHV N is associated with the degrees of connected vertices.

Accordingly, the undirected complexity trace CT U is sensitive to changes of edge structures (e.g.

edge deletions) associated with vertices of low degrees in GU(VU , EU). Such edges usually form

bridges between vertex clusters in GU(VU , EU). Hence, the proposed undirected complexity trace

CTU associated with the von Neumann entropy HV N is sensitive to the interconnections between

vertex clusters within GU(VU , EU). b) Eq.(6) indicates that for the Shannon entropy HS vertices

with large degrees dominate the value of the entropy. Hence, the undirected complexity trace

CTU associated with HS is suited to characterizing hypergraphs with strongly intra-connected

structures. c) Eq.(14) indicates that the von Neumann entropy HSD
VN depends on the in-degree

and out-degree statistics of each pair of vertices linked by an edge. Hence, the directed com-

plexity trace CTD associated with HSD
V N is sensitive to the in-degree and out-degree of each pair

of vertices connected within GDL(VDL,
−→
EDL). d) As a result of the properties of a directed line

graph stated in Section 5.1, the proposed complexity traces from line graphs can reflect precisely

the rich complexity information for both uniform and nonuniform hypergraphs. e) Eq.(25) and

Eq.(27) indicate that the depth-based complexity traces provide a multi-dimensional complexity

characterization via the increasing layer substructures of the line graph from the centroid vertex.

Furthermore, since a hypergraph is a generalization of a graph and a graph can also be trans-

formed into a directed line graph, the construction of the complexity trace for a graph is just a
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special case of our hypergraph method. On the other hand, the complexity trace for a graph can

be directly constructed from the original graph by identifying its centroid vertex and establishing

the centroid expansion subgraphs on it (e.g., the depth-based complexity traces for graph defined

in [32]). However, the proposed complexity traces for a graph through its line graph can cap-

ture richer characteristics of complexity than those obtained from the original graph, because the

Perron-Frobenius operator can extract (hyper)graph characteristics in a higher dimensional feature

space than that of the original (hyper)graph. The proposed complexity traces for (hyper)graphs fo-

cus on measuring how the entropy based complexities of their subgraphs from the line graphs (i.e.

graphs transformed from the original (hyper)graphs) vary with increasing layer size. Such com-

plexity traces reflect high dimensional depth-based complexity characteristics of (hyper)graphs

and can be used for (hyper)graph clustering or classification. By contrast, the depth-based com-

plexity measure in [30], the Shannon entropy measures in [21] and the von-Neumann entropy

measure in [26] are based on the global structure of the original graph, and only provide an uni-

dimensional complexity characterization.

5.5. Analysis of Computational Complexity

Suppose the line graph, either GDL(VDL,
−→
EDL) or GU(VU , EU), extracted from HG(VH , EH)

has n vertices. The computational complexities for constructing the proposed complexity traces

for HG(VH, EH) are governed by the following processes. 1) The construction of the centroid ex-

pansion subgraphs which involves using Dijkstra algorithm to compute the shortest path matrix to

locate the centroid vertex and implementing the transformation from the hypergraphHG(VH , EH)

into the line graph. The Dijkstra algorithm takes time O(n2). The transformation to the line graph

has time complexity O(n2). As a result the construction of the representation has time complex-

ity O(n2). 2) The computations of a) the von Neumann entropy in Eq.(4) and b) the Shannon

entropy in Eq.(6) for the centroid expansion subgraphs from GU(VU , EU) (i.e., for the undirected

complexity trace), or c) the von Neumann entropy in Eq.(14) and d) the asymptotic (flow) en-

tropy in Eq.(19) for the centroid expansion subgraphs from GDL(VDL,
−→
EDL) (i.e., for the directed

complexity trace). Through the definitions in Sections 2, 3 and 4, these entropies all require time

complexityO(n2Lmax).
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Lmax is equal to the greatest length of shortest paths from the centroid vertex of GU(VU , EU),

and Lmax < n. Therefore, the worst-case time complexities of our undirected and directed com-

plexity traces for HG(VH , EH) using the four required entropies are all O(n3).

As a result, our depth-based complexity traces can be computed in polynomial time. The

reason for this is that we efficiently compute the required entropies on a small set of expansion

subgraphs rooted at the centroid vertex of a line graph. By contrast, the depth-based complexity

measure described in [30] establishes expansion subgraphs for each vertex of a given undirected

graph (e.g. a graph having n vertices) and then computes the intrinsic complexities on the sub-

graphs. It hence requires time complexity O(n7).

6. Experimental Evaluations

6.1. Hypergraph and Graph Datasets

We demonstrate the performance of our complexity traces on several (hyper)graph datasets.

We use a hypergraph based dataset abstracted from the COIL image database and five standard

graph based datasets abstracted from bioinformatics databases [30, 43, 44, 42] for the experimental

evaluations. These datasets are COIL (for hypergraphs), MUTAG, CATH1, CATH2 and PPIs (for

graphs).

COIL: The COIL database consists of images of 100 3D objects. In our experiments, we use

selected images for three similar cups, three similar bottles and three pieces of similar vegetables.

For each object we employ 18 images captured from different viewpoints. The hypergraphs are

abstracted using the feature hypergraph method [14]. Details about the feature hypergraph method

can be found in [14]. The maximum, minimum and average vertices of the COIL dataset are 549,

213 and 412.5 respectively.

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical compounds. The

maximum, minimum and average number of vertices are 28, 10 and 17.93 respectively. The edges

of each compound are labeled with a real number, we transform these graphs into unweighted

graphs.

CATH1 and CATH2: The CATH1 dataset consists of proteins in the same class (i.e Mixed Alpha-

Beta), but has different architectures (i.e. Alpha-Beta Barrel vs. 2-layer Sandwich). CATH2 has
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proteins in the same class (i.e. Mixed Alpha-Beta), architecture (i.e. Alpha-Beta Barrel), and

topology (i.e. TIM Barrel), but in different homology classes (i.e. Aldolase vs. Glycosidases).

The CATH2 dataset is harder to classify, since proteins in the same topology class are structurally

similar. The protein graphs are 10 times larger in size than chemical compounds, with 200 − 300

vertices. There are 712 and 190 testing graphs in the CATH1 and CATH2 datasets.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs). The graphs de-

scribe the interaction relationships between histidine kinase in different species of bacteria. Histi-

dine kinase is a key protein in the development of signal transduction. If two proteins have direct

(physical) or indirect (functional) association, they are connected by an edge. There are 219 PPIs

in this dataset and they are collected from 5 different kinds of bacteria. We select Proteobacte-

ria40 PPIs and Acidobacteria46 PPIs as the testing graphs. The maximum, minimum and average

number of vertices of the selected testing graphs are 232, 3 and 109.60 respectively.

6.2. Evaluation of Interior Complexity Traces

We commence by illustrating the representational power of the proposed complexity traces

for hypergraphs. We demonstrate that they can be used to distinguish different hypergraphs. The

evaluation utilizes 36 hypergraphs abstracted separately from the images of two different objects,

namely a box and a cup in the COIL image database. For each object we use 18 images captured

from different viewpoints. The hypergraphs for individual images are established by using the

feature hypergraph method. For each hypergraph, we locate the centroid vertex of its (un)directed

line graph, and construct the proposed complexity traces. Figs.3(a), (b), (c) and (d) show the

mean values of the undirected complexity traces using the Shannon entropy (UCTS) and the von

Neumann entropy (UCTV), together with the directed complexity traces using the von Neumann

entropy (DCTV) and the asymptotic (flow) entropy (DCTA), respectively. In Fig.3 the x-axis

represents the order of the K-layer centroid expansion subgraph for each hypergraph, while the

y-axis represents the mean entropy value as a function of the expansion subgraph order. Here the

blue and red lines represent the mean entropy values of the complexity traces for the hypergraphs

abstracted from the box and cup objects respectively. The main feature to note is that the mean

entropy values for the different objects are quite dissimilar.
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Figure 3: Mean Entropy Values of Complexity Traces.
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6.3. Experiments on Image Hypergraphs

6.3.1. Experimental setup

We illustrate the performance of our proposed complexity traces UCTS, UCTV, DCTV and

DCTA on a hypergraph classification problem. The hypergraph dataset for testing is again ab-

stracted from the COIL image database. We also compare our methods with several alternative

state-of-the-art hypergraph based learning methods. These methods include 1) the Ihara coef-

ficients for hypergraphs (HCIZF) [14], 2) the truncated Laplacian spectra (TLS) and truncated

normalized Laplacian spectra (TNLS) [2]. We compute the feature vectors of test hypergraphs

using both our own methods and the alternatives. We then perform 10-fold cross-validation using

the Support Vector Machine (SVM) Classifier associated with the Sequential Minimal Optimiza-

tion (SMO) [45] and the Pearson VII universal kernel (PUK) [46] to compute the classification

accuracies. We use nine samples for training and one for testing. All the SMO-SVMs and their

parameters were performed and optimized on a Weka workbench [46]. To exclude random ef-

fects of fold assignments, we repeat the the whole experiments 10 times. We report the average

classification accuracy in Table I.

6.3.2. Experimental Results and Evaluations

From Table 1 it is clear that our methods achieve the greatest accuracies over all image datasets.

1) Our UCTS, UCTV, DCTV and DCTA methods outperform TLS and TNLS which both use

spectral information for the hypergraphs. The reason for this is that our methods based on the

line graph of a (hyper)graph can capture richer (hyper)graph characteristics than the (hyper)graph

spectral representations. They also avoid the spectral truncation arising in TLS and TNLS. 2) For

the hypergraphs extracted from the images of the cup object, the maximum and minimum number

of vertices are 310 and 213 respectively. Here the accuracy of HCIZF is competitive with that

of our complexity traces. Like our complexity traces, HCIZF also relies on directed line graphs,

and exploits richer (hyper)graph characteristics. However, for the hypergraphs extracted from the

images of the bottle and vegetable objects, where the maximum and minimum number of vertices

are 549 and 305 respectively, HCIZF is intractable for characterizing the hypergraph structures.

The reason for this is that the computation of the underlying Ihara coefficients tends to result in
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Table 1: Experimental Comparisons on Hypergraphs

Datasets Cups Bottles Vegetables

UCTS 100 100 100

UCTV 100 100 100

DCTV 100 100 100

DCTA 100 100 100

TLS 92.31 83.44 82.91

TNLS 55.27 90.00 71.96

HCIZF 100 − −

infinities even for hypergraphs of moderate sizes. In contrast, our proposed complexity traces can

easily scale to large hypergraphs, and our experimental results verify this advantage.

6.4. Experiments on Graphs

6.4.1. Experimental setup

We evaluate the performance of our proposed complexity traces UCTS, UCTV and DCTV

on a graph classification problem. The datasets for testing are abstracted from bioinformatics

databases. We also compare our methods with alternative state-of-the-art graph based learning

methods. The comparative methods include 1) the Weisfeiler-Lehman subtree kernel (WL) [47],

2) the von-Neumann thermodynamic depth complexity (VNTD) [30], 3) the von-Neumann graph

entropy (VNGE) [26], 4) the Shannon graph entropy (SGE) defined in Eq.(6), 5) the Shannon

entropies associated with the information functionals f V (FV) and fP (FP) [21], 6) the Ihara

coefficients for graphs (GCIZF) [14], and 7) the depth-based complexity traces of graphs [32]

computed using the Shannon entropy associated with both the steady state random walk (ECTS)

and the von Neumann entropy (ECTV). For the Weisfeiler-Lehman subtree kernel we compute

the kernel matrix of each dataset, and then perform Principle Component Analysis (PCA) on the

kernel matrix to embed graphs into a feature space. For the remaining methods, we calculate the

feature vectors or feature values of testing graphs. We then perform 10-fold cross-validation using

the SMO-SVMs described in Section 6.3 to compute the classification accuracies for each of the

methods in turn. We report the average classification accuracy over the 10-fold cross validation

for each method in Table 2. We also report the runtime of each method in Table 2. The runtime is
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evaluated under Matlab R2011a running on an Intel(i5) 2.5GHz 2-Core processor (i.e. i5-3210M).

6.4.2. Experimental Results and Evaluations

From Table 2, we can obtain the following conclusions. 1) On the MUTAG, CATH1 and PPIs

datasets, our complexity trace UCTS outperforms all the alternative methods. The complexity

traces UCTV, DCTV and DCTA outperform or are competitive to the alternative methods. On the

CATH2 dataset, our complexity trace UCTS outperforms all the alternative methods, excluding

the ECTV. The complexity traces UCTV, DCTV and DCTA outperform or are competitive to the

alternative methods. Key to the effectiveness of our methods is that our hypergraph complexity

traces probe a graph using the line graph, and can thus reflect richer graph characteristics in a

higher dimensional feature space. On the other hand, the alternative methods are based on the

original graph representation. In particular, the entropy based complexity measures (i.e. VNGE,

SGE, FV and FP) are simply computed based on the global structure of the original graph, and

only provide an uni-dimensional complexity characterisation. 2) Although GCIZF is also based

on a line graph representation, it is outperformed by our complexity trace methods on each of the

datasets studied. This is because the centroid expansion subgraphs allow our methods to capture

a depth-based information that GCIZF cannot convey. 3) The runtime of our complexity trace

methods is clearly faster than that of the alternative depth-based complexity method VNTD. It is

also competitive with GCIZF, the fast subtree kernel WL and the fast entropy measures VNGE,

SGE, FV and FP. The reason for this efficiency is that the required graph entropies in our methods

can all be computed in polynomial time. Compared to the depth-based graph complexity measure

VNTD, our complexity trace methods avoid either establishing the expansion subgraphs from

each vertex or computing the intrinsic complexities on the subgraphs. 4) Generally speaking, the

accuracies of our UCTS, UCTV and DCTV methods are very similar on the MUTAG, CATH1 and

CATH2 datasets. However, the accuracies of our UCTS method are obviously higher than those

of our UCTV and DCTV on the PPIs dadaset. The reason for this is that the entropy value of

an (un)directed graph computed using either the undirected or the directed von Neumann entropy

tends to be close to 1. This implies that the Shannon entropy is better suited for distinguishing

graphs of different classes than the von Neumann entropy. 5) The accuracies of the proposed
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complexity traces with the entropies VNGE and SGE are obviously greater than those based on the

original entropies. This verifies again that our complexity trace methods capture richer structural

characteristics than the original graph based methods. 6) The accuracy of the DCTV method is

generally greater than that of the UCTV method, because DCTV considers directional information

residing on the edges of a line graph. However, UCTV ignores these edge directions. This also

implies that the performance of our complexity traces also depends on that of the required graph

entropy. Generally speaking, the hypergraph complexity traces computed using the Shannon or

von Neumann entropy (i.e., the UCTS or UCTV) outperform the graph complexity traces using the

same entropy (i.e., ECTS or ECTV). The reason for this is that the directed line graph obtained by

transforming the original graph can capture rich structural characteristics. This indicates that the

complexity traces from the line graph reflect deeper complexity information than those obtained

from the original graph. 7) Finally, for our DCTA method the accuracies on the MUTAG and

PPIs datasets are very good, but a little lower on the CATH1 and CATH2 datasets. The main

reason for this is that the edge density of the line graph is related to that of the original graph. The

graphs in the MUTAG and PPIs datasets are very sparse, with average edge density close to 2.19.

However, for the CATH1 and CATH2 datasets, the average edge density is much larger, and is

about 8.2. Since the required asymptotic (flow) complexity for the DCTA method is |ED|/|VD|,
the complexities for these (sub)graphs are thus similar. This indicates that the complexity measure

may not be suitable for graphs having high edge density, but perform well on sparse graphs.

7. Conclusion

In this paper, we have shown how to construct depth-based complexity traces for a hypergraph.

Our methods are based on transforming a hypergraph into a directed line graph. This not only ac-

curately reflects the multiple relationships exhibited by the hypergraph, but is also amenable to

complexity analysis. By neglecting the directed edges of the directed line graph, we have identi-

fied a centroid vertex, and thus obtained a family of expansion subgraphs around the vertex with

increasing layer size. The complexity traces of a hypergraph have been characterized by measur-

ing how the required entropies of these subgraphs vary with increasing layer size. Experiments

demonstrate the effectiveness and efficiency of our methods.
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Table 2: Experimental Comparisons on Graphs

Datasets MUTAG PPIs CATH1 CATH2

UCTS 87.23 83.72 98.87 78.94

UCTV 86.17 75.58 98.45 77.89

DCTV 86.17 76.21 98.79 78.94

DCTA 86.17 79.09 92.13 72.63

ECTS 86.35 74.41 98.87 78.42

ECTV 84.57 70.93 98.73 80.47

VNTD 83.51 67.44 − −
VNGE 85.10 63.95 98.45 75.78

SGE 85.10 67.44 98.17 76.31

FV 84.57 70.93 96.76 76.31

FP 85.63 70.93 96.91 76.31

WL 84.57 73.25 98.17 73.15

GCIZF 80.85 70.93 − −
Datasets MUTAG PPIs CATH1 CATH2

UCTS 1” 45” 9′15” 6′12”

UCTV 1” 45” 9′15” 6′12”

DCTV 1” 53” 16′32” 10′50”

DCTA 1” 39” 8′55” 5′39”

ECTS 1” 1” 5” 2”

ECTV 1” 1” 5” 2”

VNTD 19′53” 49′50” > 1day > 1day

VNGE 1” 1” 1” 1”

SGE 1” 1” 1” 1”

FV 1” 1” 12” 5”

FP 1” 1” 12” 5”

WL 1” 1” 2′41” 51”

GCIZF 1” 52” − −
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Our future plans are to extend the work in a number of ways. First, in prior work we have

developed methods for characterising graphs using the commute time [48] and the heat kernel

[49]. Both the commute time and the heat kernel of an undirected graph encapsulate the path

length information between vertices. It would be interesting to use the commute time or heat

kernel as a means of identifying a centroid vertex. Second, in [52] Haussler has proposed a generic

method, referred as R-convolution, to define a kernel between two graphs by decomposing them

and measuring the pairwise similarities between the resulting substructures. Examples include

graph kernels based on all pairs of a) walks [50], b) paths [51] and c) restricted subgraph or

subtree structures [47]. It would be interesting to use the expansion subgraphs defined in this paper

as a new type of depth-based (hyper)graph decomposition to define a novel (hyper)graph kernel.

Finally, in [53] we have explored the use of the discrete-time quantum walks on the directed line

graph, which can be constructed by transforming a hypergraph. It would be interesting to extend

this work, using the discrete-time quantum walks to compute the von Neumann entropy associated

with a quantum state. This may provide a more principled means of computing a quantum depth-

based complexity trace of a hypergraph.
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Burges, C.J.C., and Smola, A.J. (Eds.) Advances in Kernel Methods, MIT Press, pp. 185-208, 1999.

[46] I.H. Witten, E. Frank, and M.A. Hall, ”Data Mining: Practical machine learning tools and techniques,” Morgan

Kaufmann, 2011.

[47] N. Shervashidze, P. Schweitzer, E.J. Leeuwen, K. Mehlhorn, and K.M. Borgwardt, ”Weisfeiler-Lehman graph

kernels,” Journal of Machine Learning Research, vol. 1, pp. 1-48, 2010.

[48] H. Qiu, and Edwin R. Hancock, ”Clustering and embedding using commute times,” IEEE Transactions on

Pattern Analysis Machine Intellgence, vol. 29, pp. 1873-1890, 2007.

[49] B. Xiao, Edwin R. Hancock, and Richard C. Wilson, ”Graph characteristics from the heat kernel trace,” Pattern

Recognition, vol. 42, pp. 2589-2606, 2009.
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