
                             Elsevier Editorial System(tm) for NIMB Proceedings 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Surface damage in TEM thick alpha-Fe samples by implantation with 150 keV Fe ions  
 
Article Type: SI: NIMB_COSIRES2014 
 
Section/Category: SI: NIMB_COSIRES2014 
 
Keywords: Molecular dynamics; defects; Ion irradiation; Surface damage; Metals; transmission 
electron microscopy 
 
Corresponding Author: Ms. Maria Jose Aliaga Gosalvez,  
 
Corresponding Author's Institution: Universidad de Alicante 
 
First Author: Maria Jose Aliaga Gosalvez 
 
Order of Authors: Maria Jose Aliaga Gosalvez; Maria Jose Caturla; Robin Schaublin 
 
Abstract: We have performed molecular dynamics simulations of implantation of 150keV Fe ions in 
pure bcc Fe. The thickness of the simulation box is of the same order of those used in in-situ TEM 
analysis of irradiated materials.  We assess the effect of the implantation angle and the presence of 
front and back surfaces. The number and type of defects, ion range, cluster distribution and primary 
damage morphology are studied. Results indicate that, for the very thin samples used in in-situ TEM 
irradiation experiments the presence of surfaces affect dramatically the damage produced. At this 
particular energy, the ion has sufficiently energy to damage both the top and the back surfaces and still 
leave the sample through the bottom. This provides new insights on the study of radiation damage 
using TEM in situ. 
 
Suggested Reviewers: Yuri Osetsky 
osetskiyyn@ornl.gov 
 
Roger Smith 
R.Smith@lboro.ac.uk 
 
 
 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

COSIRES 2014 

Surface damage in TEM thick -Fe samples by implantation with 

150 keV Fe ions 

M. J. Aliaga
a
, M. J. Caturla

a
, R. Schäublin

b
 

aDept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante, E-03690, Spain 

bMetal Physics and Technology, Department of Materials, ETH Zürich, HCI G515, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland 

 

Abstract 

We have performed molecular dynamics simulations of implantation of 150keV Fe ions in pure bcc Fe. The thickness of the 

simulation box is of the same order of those used in in-situ TEM analysis of irradiated materials.  We assess the effect of the 

implantation angle and the presence of front and back surfaces. The number and type of defects, ion range, cluster distribution 

and primary damage morphology are studied. Results indicate that, for the very thin samples used in in-situ TEM irradiation 

experiments the presence of surfaces affect dramatically the damage produced. At this particular energy, the ion has sufficiently 

energy to damage both the top and the back surfaces and still leave the sample through the bottom. This provides new insights on 

the study of radiation damage using TEM in situ.   

 

Keywords: Molecular dynamics; defects; Ion irradiation; Surface damage; Metals; transmission electron microscopy 

 

1. Introduction  

Ion irradiation experiments are being used extensively to understand the fundamental aspects of the damage 

produced in metals and alloys by irradiation [1]. In the current nuclear power plants and experimental fusion 

reactors the damage is produced by neutrons. However, the study of neutron irradiation is difficult since conditions 

cannot be easily controlled, samples are activated and experiments are very costly.  For this reason, ion irradiation is 

nowadays being used to gain basic understanding of the effects of radiation in the structural materials of the 

reactors. 

 

Iron is the main element of the reactor vessel, and although it has been studied for many years, there are still 

many issues under debate considering its radiation damage. Both neutrons and Fe ions produce damage in cascades, 

but their damage profile is very different. Neutrons have a long range of penetration and produce damage quite 

homogeneously, whereas ion damage is more superficial. However, 100 keV Fe ions have been used in the last few 

years to approach indirectly the study of neutron irradiation in Fe, since the first Fe atom that is hit by a neutron in a 

lattice (primary knocked-on atom o PKA) has around 100 keV energy [2]. The irradiated samples can then be 

examined by in-situ TEM [3] in facilities such as  Jannus at CEA in France [4] or the IVEM-Tandem Facility at 

Argonne National Laboratory [5]. Using this characterization technique the sample can be observed while it is being 

irradiated. The requirement is that it has to be between 40 and 100 nm thick to be transparent to electrons. 

 

As it has been demonstrated in previous works [6-13] the presence of surfaces in metals affect the damage 

produced in the material, being quite different from the damage in bulk. Earlier, it has been observed that irradiation 

at room temperature of pure Fe in the form of a transmission electron microscopy (TEM) thin film leads to a0 <100> 
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dislocation loops while in the bulk form irradiated Fe exhibits mainly ½ a0 <111> [14]. This has been attributed to 

so-called elastic ‘image forces’ due to the free surfaces but never quantified. This effect is confirmed in recent 

works [15-18]. In this paper we continue our work from an atomistic point of view with the study of the primary 

damage produced by Fe ions of 150 keV in thin films of pure Fe using molecular dynamics.    

 

2. Methodology 

Calculations were performed using the molecular dynamics code MDCASK with the interatomic potential of 

Dudarev and Derlet [19]. This potential was modified for short range interactions following the procedure described 

in [20]. Displacement cascades were simulated sending an Fe atom with an energy of 150 keV towards the top free 

surface of a [001] thin film of α-Fe. Two impinging angles have been used, 10º and 22º, being this second angle the 

one used in the TEM in situ analysis of ion irradiation experiments at Orsay JANNUS facility [4]. 20 cases were run 

for each angle. Variability was introduced changing the azimuthal angle from 0º to 200º. Simulation cells contained 

10.076.401 atoms with a size of 180 a0 x 180 a0 x 180 a0, where a0 is the lattice parameter for Fe (a0 = 2.8665 Å). 

This size corresponds to thin films of about 50 nm. The setup described corresponds to the energies used in the 

experiments for low doses of Yao et al. [15].  

 

Temperature was kept close to 0 K in order to avoid thermal vibrations and thus facilitate the identification of 

defects. The excess energy deposited by the injected atom is dissipated by adding a thermal bath that scales the 

velocity of two atom layers at the border of the simulation cell. Inelastic energy losses were included by the 

Lindhard model [21], which introduces a friction force proportional to the velocity. This force was introduced only 

for those atoms with a kinetic energy larger than 5 eV. Periodic boundary conditions are imposed in two axes, while 

free surfaces are considered in the third axis. Simulations were run until the number of defects reached a stable 

population (25 picoseconds in most cases). Wigner-Seitz cells were used to identify the defects. Then the defects are 

grouped in clusters considering that two defects belong to the same cluster when the distance between them is 

between first and second nearest neighbours. 

 

 

3. Results 

 

Figure 1 shows the primary damage of three representative cases of the events found in the simulations after the 

irradiation with a 150 keV Fe atom. The location of vacancies (light circles) and self-interstitials (dark circles) are 

shown for the three cases after the simulation had run for 25 ps. The arrow indicates approximately the initial 

position of the energetic atom. Both surfaces and adatoms are also represented in the figure.  In Figure 1(a) the Fe 

atom is launched with an angle of 10º impacting heavily and depositing most of its energy near the top surface. The 

damage is divided into 3 displacement subcascades. The first and most energetic one occurs at the surface, creating a 

large vacancy cluster of 1070 vacancies, another vacancy cluster of 115 vacancies and 493 adatoms and 764 

sputtered atoms (not shown in the figure) above the surface. The other two subscascades are around the centre of the 

simulation cell where the ion stops. The total number of vacancies is 1557 and the total number of interstitials is 

155. In Figure 1(b) the Fe atom is sent with an angle of 22º and travels through the whole sample leaving the film at 

the bottom surface with 20% of its initial energy, so depositing 80% of the total 150 keV energy. In this case both 

top and bottom surfaces are damaged, but the back surface more strongly, with the creation of a 196 vacancy cluster. 

Finally Figure 1(c) shows an event in which the atom impinges with a 10º angle and again goes through the entire 

sample, but in this case it stops just before it escapes the film due to a strong collision with the back surface. In this 

case the top surface barely suffers any damage, but in the bottom surface a huge crater of 3441 vacancies is created, 

as well as large islands of adatoms. Figure 1(d) shows a close-up of the crater created at the bottom surface of the 

case represented in Figure 1(c).   
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Fig. 1. Figures from (a-c) show three representative 150 keV cascades of Fe implantation in Fe after 25 ps. Light circles are 

vacancies and darker circles are interstitials. Both surfaces are also represented. The arrow indicates the implanted Fe atom. In (a) 

and (c) the Fe atom impact angle is 10º and in (b) the impact angle is 22º off normal. In (d) a close-up of the bottom surface 

damage produced in (c) is shown. 

 

 

Figure 2 represents the histograms of the total number of vacancies and interstitials that results from the 20 cases 

simulated for an impact angle of 10º (two of these cases shown in figures 2(a) and 2(c)) and the other 20 cases for 

the impact angle of 22º (one example in figure 2(b)). As already shown in previous works [6,12] the number of 

vacancies for cascades with near surfaces is greater than the number of self-interstitials. This is due to the attraction 

the self-interstitials suffer by the surface. Also, the dispersion of results is larger than in bulk cascades. The main 

difference with [6] for the same energy is that the increase in the angle results in some events (3 for 10º and 2 for 

22º) with a huge number of vacancies. Two of these events for the impact angle of 10º are the ones represented in 

Figure 1(a) and 1(c). These type of events correspond to cases where the energetic Fe atom injected has a strong 

collision near the top or the back surface.  
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Fig. 2. Defect distribution for a series of 20 simulations of cascades in thin films produced by irradiation with a 150 keV Fe atom 

impacting with an angle of (a) 10º and (b) 22º of the normal. 

 

The histograms of the ion ranges for both angles are presented in figure 3.  Comparing both angles it is clear, on 

one hand, that in the majority of cases the PKA has enough energy to escape the sample through the bottom surface, 

and, on the other hand, that an increase in the impact angle from 10º to 22º leads to a reduction in the ion range, as 

expected. As with the number of defects, there is a wide spread in the results for the different cases. The cases where 

the ion range is very short coincide usually with the cases where the Fe atom has collided very strongly with or near 

the top surface. Indeed, in one of the two events for 22º with many vacancies, 1441 in this case, the PKA is 

backscattered after colliding with an atom near the top surface, creating a large <100> loop with 521 vacancies. 

After this, the bottom surface is also badly damaged by secondary subcascades. On average, the energy deposited 

for 10º impacts is 67%, and 86% for 22º.   

 

 

Fig. 3. Statistical analysis of ion ranges for the 150 keV Fe atom impacting with an angle of (a) 10º and (b) 22º of the normal. 

 

Table 1 summarizes the mean values obtained from fitting the above histograms for the number of vacancies, 

self-interstitials and the ion range to either lognormal or Gaussian distributions. The percentage of vacancies and 
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self-interstitials in clusters and in large clusters (more than 55 defects) are also shown. It can be seen on the table, as 

mentioned above, that the ion range for 22º with a value of 30 nm is shorter than the value for 10º which is 42 nm. 

The SRIM values [22] are 50 nm for the ion range at an impact angle of 10º and 47 nm for the ion range at an 

impact angle of 22º. This is reasonable because SRIM assumes on one hand a random target, and on the other hand 

these events where the ion interacts very energetically with the surfaces shortening its range do not happen.  

 

 

Table 1 Average number of vacancies and interstitials and their cluster fractions after the 150 keV cascades. Large clusters 

contain more than 55 defects. The ion range is also shown. 

 

Angle (º) Number of 

vacancies  

Number of 

interstitials  

 

% V in 

clusters 

% V in 

large 

clusters 

% I in 

clusters 

% I in 

large 

clusters 

Ion range 

(nm)  

10 132 73 43 12 24 0 42 

22 225 166 47 16 27 0 30 

 

The increase in the angle also has an effect, as expected, on the mean value of vacancies and interstitials. The 

angle of 10º is still slightly below the Lindhard critical angle for channeling [23] which, for 150 keV is 12º and this 

results in a lower number of defects as a mean value. Figure 4 represents the distribution of clusters normalized by 

the number of cascades for both angles. It can be seen a tendency to larger clusters of vacancies and interstitials 

from 10º to 22º, but this increase is not remarkable because at 10º there are events where the back surface is 

profoundly damaged. 
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Fig. 4. Histograms of number of vacancy (a) and interstitial (b) clusters of different sizes normalized to the number of cascades. 

 

4. Conclusions 

The primary damage produced in thin films of pure bcc Fe by irradiation with150 keV Fe ions using two different 

implantation angles has been studied. Results show that, differently from lower energies where only the top surface 

is quite affected, at this energy regime front and back surfaces can be damaged. When the ion impacts strongly with 

or near one of the surfaces the creation of large vacancy clusters is observed. This is produced by the attraction the 

self-interstitials suffers when they are close enough to the surface. These results have important implications for 

higher energies, because they indicate that at high irradiation energies, like the range of energies used mainly in the 

in-situ TEM irradiation experiments, the damage will be produced mostly at the back surface of the film.  Moreover, 

these effects should be taken into account in models that predict the latter evolution of damage and damage 

accumulation, such as kinetic Monte Carlo or rate theory calculations. 

 

These calculations provide new insights on the study of radiation damage using TEM in situ irradiation 

experiments, providing the fundamental background needed to use the data from TEM in situ experiments to 

understand damage in bulk speciments. 
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