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Abstract 

In order to deepen the knowledge about the origin of the CO pre-oxidation process and 

the intrinsic catalytic activity of Pt superficial steps toward CO oxidation were 

performed a series of CO stripping experiments on stepped Pt electrodes in acidic 

medium. For the occurrence of CO pre-oxidation, it was found that it arises 

(reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) 

CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with 

COads; (3) in presence of traces of CO in solution; (4) in presence of surface steps. If 

any of these four conditions is not satisfied, the CO pre-oxidation pathway does not 

appear, even though the steps on the electrode surface are completely covered by CO. 

By controlling the removal of the CO adlayer (voltammetrically), we show that once the 

CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are 

released earlier than the (110) step sites. Moreover, if (110) steps are selectively 

decorated with CO, its oxidation occurs only at potentials ~150 mV higher than the CO 

pre-oxidation peak. Our results systematically demonstrate that step sites are less active 

to oxidize CO than those ones responsible for the CO pre-oxidation process. Once the 

sites responsible for the CO pre-oxidation are made free, there is no apparent motion of 

the remaining adsorbed CO layer, suggesting that the activation of the surface controls 
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the whole process, rather than the diffusion of COads towards hypothetically “most 

active sites”. Voltammetric and chronoamperometric experiments performed on 

partially covered CO adlayers suggest that adsorbed CO behave as a motionless species 

during its oxidation, in which the CO adlayer is removed piece by piece. By means in 

situ FTIR experiments the stretching frequency of CO selectively adsorbed on (110) 

step sites was examined. Band frequency results confirm that those molecules adsorbed 

on steps are fully coupled with the adsorbed CO on (111) terraces when the surface 

reaches full coverage. 
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1. Introduction 

It is well known that the oxidative stripping of CO from a pure Pt electrode 

requires high over-potentials. The standard electrode potential for the reaction CO(g) + 

H2O(l) ⇄  CO2(g) + 2H+ + 2e- is E0 ≃  –0.103 vs. SHE/V, but experimentally on pure Pt 

electrodes, the CO electro-oxidation reaction starts only at about 0.7 vs. RHE/V at 

~25 oC (room temperature). Nonetheless, under some experimental conditions, certain 

specific reaction pathways for CO oxidation are activated at lower potentials, through 

which the CO adlayer might be partially oxidized. Models to explain the CO pre-

oxidation process – as they are often named nowadays – are a topic heavily debated in 

literature. To the best of our knowledge, the CO pre-oxidation process was firstly 

reported by Grambow and Bruckenstein1 and about 10 years later was again reported by 

Kita et al..2 The later authors found that the pre-oxidation took place when CO was 

adsorbed in the hydrogen potential deposition (Hupd) region, which lead them to 

conclude that the pre-oxidation of CO was linked to its adsorption potential (Eads). 

From the point of view of electrocatalysis, the pre-oxidation pathway is a major 

subject concerning the electro-oxidation of CO [with special interest in Pt(hkl)/CO 

system], since it anticipates the oxidation of this molecule, that is a poison for hydrogen 

fuel cells and also is at the heart of the electro-oxidation of alcohols and related 

species.3-4 Despite its importance, in voltammetric experiments of CO stripping the 

strict control of the conditions to promote this pre-oxidation is not straightforward, and 

there is a lack of consensus in that subject in different laboratories worldwide. In other 

words, several experiments under “similar” conditions (i.e. same potential of adsorption 

of CO, same supporting electrolyte, similar conditioning of the electrode surface and of 

their crystallographic orientations), show the CO pre-oxidation,5-7 while another results 

never show it.8-9 Moreover, the pre-oxidation of CO has not yet been observed for CO 
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stripping voltammetry even on some Pt(111) vicinal surfaces in acidic medium.10-11 In 

light of its electrocatalytic importance, many hypotheses have been proposed to explain 

the origin of the CO pre-oxidation process, whether employing Pt polycrystalline12-14 or 

Pt single crystal5, 9, 15-19 electrodes in acidic media. 

Under ultra-high vacuum conditions, Ertl et al.20 showed that the heat of 

adsorption of CO decreases when its coverage increases. At high CO coverage, it seems 

that the heat of adsorption changes mainly due to lateral repulsive interactions (and to a 

lesser extent due to the occupation of different sites as terraces, steps and kinks). 

Marković et al.5, 16 extrapolated the results of Ertl et al.20 to electrochemical 

environments, and proposed that the CO pre-oxidation occurs due to the oxidation of 

weakly adsorbed CO present when the electrode surface is fully covered by CO (θCO, 

max). According to this model, any CO molecule could be oxidized on any particular site 

during the CO pre-oxidation process, no matter whether they are on terrace sites or low 

coordinated ones. The core of this idea appeared before in a paper of Leiva et al..21 On 

the other hand, López-Cudero et al.9, 12, 15 suggested that CO pre-oxidation is due to the 

CO oxidation by oxygenated species on step sites (defects). Steps on surface are 

considered the most active ones for the electro-oxidation of CO, while terraces are 

considered poorly active sites for such reaction.22-24 

Indeed, it has been found that the catalytic activity of Pt stepped electrodes 

towards the oxidation of CO increases with the step density in the series Pt(s)[(n–

1)(111)×(110)],22 so that the extrapolation of the oxidation rate to a surface with a zero 

(110) step density [i.e., a perfect Pt(111) crystal in this zone] nicely coincides to the 

zero rate reaction.22 Consequently, it was assumed that CO on terraces quickly diffuses 

to steps, in which it exclusively oxidizes,22 following a Langmuir-Hinshelwood (L-H) 

type mechanism.25 
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According to these interpretations, in acid solution (in absence of anion 

adsorption) we would write the CO electro-oxidation reaction as the following: 

H2O + γPtstep ⇄  γPtstep-(OH) + H+ + e-                                           (1) 

υPtstep-CO + γPtstep-(OH) → CO2 + (γ + υ)Ptstep + H+ + e-             (2) 

in which, like in the CO adsorption process, CO molecules adsorb on both step and 

terrace sites. Assuming that the reaction takes place exclusively on step sites,23-24 a high 

CO surface diffusion from terraces to steps has been claimed in equation (2), which 

should occur at low potentials (for instance, during CO pre-oxidation), whilst for CO 

adsorbed on terraces, its oxidation should take place only at higher electrode 

potentials.22-24, 26-27 

However, it is not clear if during CO electro-oxidation, either it diffuses from any 

sites to steps or if such sites act promoting the activation of oxygen-containing species 

to oxidize CO at low potentials. Indeed, it is not even clear if steps really act as the most 

catalytic active sites on the surface for the CO electro-oxidation reaction. Regarding this 

topic it was recently suggested that it may be due to the oxidation of dissolved CO in 

specific sites available on a Pt (100)-(1×1) surface.28 A set of other conceptions about 

the origin of CO pre-oxidation was presented in a paper by Yan et al..14 We therefore, 

reinvestigate these questions employing the Pt(hkl)/CO system. 

An overview of the literature reveals that the discussion concerning the catalytic 

activity of different superficial sites is based on CO stripping voltammetry and 

chronoamperometry. Namely, the Pt surface is fully covered by CO, whereafter the CO 

monolayer is oxidized at once. Under these conditions a unique CO oxidation wave is 

usually observed in acidic media,10, 29 although the pre-oxidation wave is perceived in 

some cases. The narrow potential range in which the main CO oxidation peak takes 

place (∆E ≃  25 mV) means that eventual signals due to distinct crystalline planes 



6 
 

emerge in a single oxidation peak. This means that responses coming from specific step 

sites remain inaccessible. Another attempt to access the catalytic activity of step sites 

was made by employing stepped surfaces containing terraces with different lengths,10 

but even in this case a single CO oxidation peak is observed. The benchmarking of the 

catalytic activity of step sites towards CO oxidation in stepped Pt surfaces can be 

achieved provided that CO is selectively adsorbed on step sites, followed by its 

oxidation. By using this experimental strategy, the influence of CO adsorbed on terraces 

in the features of the stripping can be completely eliminated, and the resulting hydrogen 

region can be used as a diagnostic of the site occupancy and release.30 

As the CO pre-oxidation process apparently depends on many parameters, it is 

paramount to control the topography of the surface on which the reaction takes place, so 

here we use well-characterized single crystal surfaces to approach questions concerning 

the issues raised above, i.e., the CO pre-oxidation, the role of step sites and the 

dynamics of adsorbed CO during its oxidation. Herein we investigate how experimental 

conditions, as the adsorption potential of CO, the presence of steps on surface, the CO 

coverage and the presence of CO in solution influence the oxidation of CO at low 

potentials. In addition, we selectively decorate (110) step sites with CO and evaluate its 

intrinsic catalytic activity. Based on these results we are able to estimate the catalytic 

activity of step sites without the influence of CO coming from terraces, which we 

named “intrinsic catalytic activity” of step sites. In addition, by using in situ FTIR we 

were able to evaluate the stretching frequency of CO adsorbed on step sites without the 

interference caused by dipole-dipole coupling frequency (consequence of CO adsorbed 

on terraces). 

 

2. Experimental 
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In this study, platinum single crystals with orientations Pt(111), Pt(13,13,12), 

Pt(776) and Pt(554) (with areas between ~3 and ~5 mm2), prepared according to the 

procedure described by Clavilier et al.,31 have been used as working electrodes. The 

stepped surfaces mentioned above contain, respectively, 25, 13 and 9 atoms-wide (111) 

terraces separated by monoatomic steps with (110) symmetry. Models of hard spheres 

for these stepped surfaces are attached to Fig.1. According to Lang-Joyner-Somorjai,32 

if we consider n atoms-wide (111) terraces and (110) monoatomic steps, those vicinal 

stepped surfaces can be denoted as Pt(s)[(n–1)(111)×(110)] or individually as:  

Pt(s)[25(111)×(110)] ≡ Pt(13,13,12)  

Pt(s)[13(111)×(110)] ≡ Pt(776)  

Pt(s)[9(111)×(110)] ≡ Pt(554)  

After flame annealing, the single crystals were cooled in a controlled H2/Ar 

atmosphere. Next, they were protected by a droplet of deoxygenated (H2/Ar) water and 

rapidly transferred to the electrochemical cell. A platinized platinum wire was used as a 

counter electrode and the reference electrode was a reversible hydrogen electrode 

(RHE), being all the potentials given in this scale. A 0.1 M HClO4 (Aldrich® 70%) 

solution prepared in ultrapure water (Milli-Q 18.2 MΩ cm) was used as electrolyte. Ar 

(Alpha GazTM, N50) was used to deoxygenate the cell and the electrolytic solution. 

Afterwards, several voltammetric cycles were recorded with a Pt(111) surface in order 

to control the solution cleanness, and then the voltammetries of each stepped Pt 

electrode were recorded. Next, CO (Alpha GazTM, N47) was bubbled into the solution 

for 5 min while the electrode potential was kept at 0.10 V (depending on the 

experiment). Finally, in order to remove excess of dissolved CO, the solution was 

purged with Ar (~150 mL/min in all experiments) for a controlled time ranging 5-60 



8 
 

min. Every time an electrode surface was prepared (flame annealed), it was carried out a 

single CO stripping on that surface, so the CO stripping experiments were always 

performed on a fresh surface. 

In situ Fourier Transform Infrared (FTIR) spectra were recorded employing a 

Nicolet (Model 8700) spectrometer, equipped with a Mercury-Cadmium-Telluride 

detector and cooled down with liquid N2. The spectroelectrochemical cell was fixed to a 

60o prismatic CaF2 window in a thin layer configuration.33 A p-polarized radiation was 

employed. According to the surface selection rule,34-35 it allows to detect active species 

both at the electrode surface and in the thin layer.33 The experiments consisted of 

collecting spectra (from the average of 100 interferograms with 8 cm-1 of resolution – 

the acquisition time of each spectrum was about 55 s) while the electrode potential was 

stepped from 0.05 V to 0.70 V, at intervals of 50 mV. Afterwards, the electrode 

potential was stepped to 0.900 V for collecting the reference spectrum. The spectra were 

collected and represented as absorbance [A = –log (Ri/Ro)], in which Ro is a single-

beam reflectance reference spectrum (collected at 0.90 V) and Ri is a single beam 

reflectance spectrum at a sample potential. In this notation, positive bands appear for 

species formed into the thin layer, and negative ones when species are consumed or 

diffuse out thin layer. 

All the experiments were performed at room temperature (25 oC). The electrode 

potentials for electrochemical and spectro-electrochemical experiments were controlled 

using a waveform generator (EG&G PARC 175) together with a potentiostat (Amel 

551) and a digital recorder (eDAC ED 401). 

 

3. Results 

3.1. Electrochemical characterization of Pt single crystals 
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Fig. 1 displays cyclic voltammograms of Pt(111), Pt(13,13,12), Pt(776) and 

Pt(554) electrodes. This figure also shows an illustration of a hard sphere model for 

each crystalline surface. For these surfaces, the step density ρ(hkl) (defined as the number 

of monoatomic steps per unit length in the plane of the terrace domain) follows the 

order: ρ(554) > ρ(776) > ρ(13,13,12) >> ρ(111). For all surfaces, the voltammetric features and 

the stability of the voltammograms imply a high quality of the crystal surfaces and a 

solution free of impurities, respectively. Especially for Pt(111), both the magnitude of 

the reversible states at ~0.80 V (named the butterfly) and the absence of contribution 

peaks in the featureless region below ~0.4 V were already employed as diagnostic of 

solution cleanness and ordering of the crystal surface. For stepped electrodes, the 

coupled features at ~0.126 V are attributed to hydrogen adsorption/desorption in step 

sites with (110) symmetry36 and, as can be seen in Fig. 1, its magnitude increases with 

the density of these sites. The nature of the reversible processes at the butterfly region is 

not yet completely elucidated.37 It should be stressed that the upper potential limits of 

the sweep were controlled for each case, to maintain a constant voltammetric profile in 

the low potential region. 

 

3.2. Influence of traces of dissolved CO on its pre-oxidation 

Fig. 2 compares the CO oxidation in presence and absence of small amounts of 

dissolved CO in the electrolyte for different Pt stepped surfaces. In these experiments, 

the dosing potential was fixed at 0.10 V and CO was bubbled into the solution for 5 min 

to fully cover the electrode surface. Afterwards, Ar was bubbled into the solution (~150 

mL/min) for 5, 10 and 60 min (indicated in Fig. 2). Data also include a control 

experiment in which the CO in solution was not purged at all (oxidation of bulk CO, 

magenta line). For purposes of clarity, we show the beginning of the oxidation 
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processes in major details in bottom panels for each electrode (Figs. 2D-2F). It is 

noteworthy to say that, after recording the CO stripping in the first cycle, the subsequent 

sweep evidenced the presence of small amounts of readsorbed CO (not shown). 

Moreover, after 5 min of purge, the voltammogram of the backward sweep already 

shown that the hydrogen adsorption on step sites (also not shown) was slightly 

suppressed, suggesting that there were also traces of CO in solution. 

For Pt(13,13,12) the main CO oxidation peak is at ~0.74 V (Fig. 2A). Moreover, 

when Ar is bubbled for 5 min (blue line) or 10 min (red line), a CO pre-oxidation signal 

is clearly discerned between ~0.43 V and ~0.66 V, with a maximum at ~0.55 V (Fig. 

2D). On the other hand, when the solution is purged for 60 min (green line) the CO pre-

oxidation signal becomes completely absent (Fig. 2D). The fact that the hydrogen 

region was fully blocked at the beginning of the stripping cycle (better visualized in 

bottom panels) evidences that both (111) terraces and (110) steps were fully covered by 

CO in all experiments. Results of Fig. 2 show that the CO pre-oxidation wave increases 

for shorter purging times, i.e., when the amount of dissolved CO is higher. For 5 min, 

10 min and 60 min of purge, the CO coverage (θCO,total – corrected by the electric double 

layer) was estimated as 0.70, 0.67, and 0.63. For the estimation of θCO,total we calculate 

the potential of total zero charge (Eptzc, in absence of CO in electrolyte) for each 

electrode by CO charge displacement.38 For Pt(13,13,12), Pt(776) and Pt(554), the Epztc 

values were of about 0.33, 0.28 and 0.24 V vs. RHE/V, respectively, in good agreement 

with previous results reported by Gómez et al. in 0.1 M HClO4.39 For Pt(554) in 0.1 M 

HClO4, Chen et al.10 found a Eptzc of about 0.26 vs. RHE/V. 

Now, comparing the onset potential for the CO oxidation in all cases, we can see 

that both CO pre-oxidation and oxidation of bulk CO start at very similar potentials for 

all purging conditions (c.f. blue and magenta lines in bottom panels). 
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The observations for Pt(13,13,12) are representative of Pt(776) and Pt(554). For 

Pt(776), the CO coverage was 0.73, 0.69 and 0.64 for 5, 10 and 60 min of purge, 

respectively. For Pt(554), the corresponding values of CO coverage were 0.71, 0.70 and 

0.65. Our results are in perfect agreement with that of Chen et al.,10 who found a θCO,total 

≃  0.64 on a Pt(554) electrode in acidic media. However, it is important to note that in 

this latter paper a slightly different approach10 was used, namely, CO gas was not 

bubbled through the solution, but introduced in the cell atmosphere over the meniscus 

formed between the solution and the electrode, and this CO-diluted solution was purged 

with Ar bubbling for at least 8 min. Under these conditions, the CO stripping does not 

exhibit a CO pre-oxidation wave in the experiments performed by Chen et al..10 Finally, 

as expected,29 the potential of the main CO oxidation peak (Ep) decreases as the step 

density increases. We found Ep values of ~0.74 V, ~0.72 V and ~0.68 V for 

Pt(13,13,12), Pt(776) and Pt(554), respectively (see Fig. 2). 

 

3.3. Influence of the CO adsorption potential on its pre-oxidation 

Fig. 3 displays voltammograms of adsorbed CO oxidation after dosing at three 

different potentials. Aiming to allow a better visualization, the CO stripping curves 

were cut at 0.73 V in the figure. In these experiments, the CO adlayer was formed and 

the solution was purged with Ar for 10 min (this time was chosen since it provides a 

well-defined pre-oxidation wave, as seen in Fig. 2). As aforementioned, in these 

conditions a significant CO pre-oxidation wave appears between ~0.45 V and ~0.66 V. 

However, the well-defined CO pre-oxidation signal only appears if the CO dosing 

potential is lower than 0.20 V. This results is in line with data of Kita et al..2 Although 

the onset potential of oxidation cannot be precisely determined by cyclic voltammetry, 
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Fig. 3 shows that it begins earlier when CO is adsorbed at 0.06 V or 0.20 V, in 

comparison to CO adsorbed at 0.35 V. The adsorption of CO at 0.06, 0.20 and 0.35 V 

results in θCO,total values of 0.70, 0.66 and 0.64, respectively. These trends are similar to 

those reported by López-Cudero et al.9 for a defective Pt(111) electrode. 

 

3.4. CO oxidation on a Pt(111) surface rich of random defects 

Fig. 4 shows the CO stripping voltammograms (and the corresponding blank 

curves) for a well-ordered and a defective Pt(111) electrode. The defects were generated 

in a clean and initially well-ordered Pt(111) surface by cycling it at potentials up to 1.2 

vs. RHE/V. Next, a CO adlayer was formed by dosing at 0.10 V on each electrode and 

the solution was purged with Ar for 30 min. Afterwards the CO adlayer was oxidized 

voltammetrically. Fig. 4B shows that the stripping of the CO adlayer on the defective 

electrode presents a negative shift (∆E ≃  –40 mV) in the onset potential (red line) 

compared to the Pt(111) “defect-free” surface (black line). We can also see that, 

providing that the purging time is long enough to remove all non-adsorbed CO, as in 

this case, there are no signals relative to the pre-oxidation wave. Here is noticeable that 

our results are different from those9 for a defect-rich Pt(111) electrode in 0.1 M H2SO4 

in which a well-defined CO pre-oxidation signal between ~0.5 V and ~0.7 V was 

observed, even for “CO-free” experiments. However, it was specified that the solution 

was purged with N2 only for 20 min9 before the removal of non-adsorbed CO, and we 

believe that such difference can explain the apparent discrepancies between both series 

of data. 

 

3.5. Identification of the catalytic active sites by partial oxidation of CO adlayer 
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Fig. 5 shows cyclic voltammograms recorded during partial oxidation of a fully 

covered CO adlayer on Pt(776). After CO adsorption at 0.10 V and purging the solution 

with Ar for 18 min we used a lower potential limit to assure that CO was only partially 

oxidized, as described in a previous paper.30 Thus, the CO adlayer was gradually 

oxidized over several cycles. In Fig. 5A [Pt(776)], after the CO adlayer was formed, the 

potential was swept at 0.05 V s-1 from 0.10 V to 0.72 V (blue line, 1st cycle), and then it 

was stepped back to 0.10 V. (At the end of each partial CO stripping cycle, the electrode 

potential was always stepped back to 0.10 V). During the 1st scan the CO pre-oxidation 

wave appears in the range 0.41 V – 0.64 V (peak potential at ~0.56 V). Before the 2nd 

oxidation cycle (red line) no sites are recovered for hydrogen adsorption/desorption and 

the surface remain fully blocked. In the second cycle, a large current density is 

observed, implying that a large fraction of the adsorbed CO is stripped out in this cycle. 

Before the 3rd cycle (green line) we can see that (111) terraces were completely 

available for hydrogen desorption, which means that CO was oxidized mainly from the 

terrace sites during the 2nd cycle. Conversely, most (110) steps remain blocked, as can 

be inferred by the characteristic hydrogen desorption in 3rd cycle. Further, we observe a 

distinct behavior for the oxidation of CO during this last cycle. Namely, CO is oxidized 

between ~0.66 V and ~0.76 V (maximum at ~0.71 V). According to these features we 

can assume that during the 3rd cycle the oxidation of CO occurs exclusively on lines of 

(110) step sites separated by (111) terraces free of adsorbed CO. It is clear that this 

oxidation does not take place at low potential, despite that the terrace sites are free of 

adsorbed CO. 

By comparing 1st and 3rd cycles in Fig. 5A we can note that the CO pre-oxidation 

takes place at potentials ~150 mV lower than that for CO oxidation on (110) steps. After 

the 3rd cycle, all remaining CO is oxidized. Afterwards, a new cycle was performed 
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(black line) which served as a “blank” voltammetry, which is coincident to the obtained 

in absence of adsorbed CO. 

Fig. 5B displays the cyclic voltammogram for the complete oxidation of a 

saturated CO adlayer on the same surface, followed by the final voltammetry which also 

superimposes that recorded before CO dosing. In this case, the main CO oxidation peak 

appears at ~0.776 V, i.e., about 60 mV higher than the potential of CO oxidation on step 

sites alone. However, in this case the main peak (~0.776 V) is due to CO oxidation on 

both (111) terraces and (110) steps. Qualitatively, all the observations for Pt(776) can be 

extrapolated for Pt(13,13,12) and Pt(554), as seen in Figs. 6A and 6C and their 

corresponding oxidations of a CO full adlayer (Figs. 6B and 6D). 

The partial stripping of the initially fully covered CO adlayer was also performed 

on a “defect-free” Pt (111) surface (Fig. 7). This latter figure shows experiments for 

three CO coverages. Full coverage (magenta line) corresponds to the θCO,total ≃  0.70 

(estimated by the procedure described before and using a Epztc = 0.35 vs. RHE/V) and 

two intermediate CO coverage layers in which the hydrogen region was partially 

blocked (~4 and ~15 %, see figure). Fig. 7 shows that for CO coverage below 

saturation, the onset potential of oxidation is lower than that observed for a CO full 

coverage. This negative shift in the onset potential of CO oxidation at low CO coverage 

is in line with previous studies by Bilmes et al.40 (on polycrystalline Pt), Feliu et al.41 

(on single crystals cooled in air and dosing at open circuit), and Lebedeva et al.29 [on 

Pt(111)] despite that in these works the low CO coverage was achieved by direct CO 

dosing, while we use partial CO stripping. The similarities of these results strongly 

suggest that the protocol for obtaining a partial CO coverage apparently does not affect 

its subsequent oxidation on a Pt(111) surface, providing that the adsorption potential is 

controlled. However, Feliu et al.41 reported that if a low CO coverage is acquired at 
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open circuit potential, its stripping voltammetry profile (in sulfuric acidic solution) 

differs from that obtained after partial stripping. This proves the influence of the 

adsorption step in the subsequent adlayer stripping. In order to get further insights into 

this subject we performed a chronoamperometric analysis. 

 

3.6. Partial removal of a CO adlayer by chronoamperometry 

For the analysis of the current vs. time curves, CO was admitted over the solution 

(in the atmosphere of the electrochemical cell) while the electrode potential was kept at 

0.10 V. Next, non-adsorbed CO was removed by purging the cell with Ar for 20 min. 

Finally, two potential protocols were adopted. In the first one, the potential was stepped 

to a high value (Eoxi) and maintained to remove the whole CO adlayer at once. 

Alternatively, the potential was alternated between 0.10 V and Eoxi in several short 

sequences to allow removal of portions of adsorbed CO each time. 

Fig. 8A shows the complete removal of the CO adlayer on a Pt(111) surface. The 

oxidation time of maximum current (tmax) is at ~33 s. A quick look at this transient 

reveals that it is very symmetrical around tmax, as already reported by Lebedeva et 

al.42. In Fig. 8B the CO adlayer was oxidized in two steps. The potential was first 

stepped to 0.69 V (Eoxi) and brought back to 0.10 V soon after (~6.5 s – at end of the 

exponential decay), where it remained for 30 s; next, it was stepped again to 0.69 V 

until the complete oxidation of the remaining CO. In this case, if we disregard the time 

in which the system was kept at 0.10 V at the end of the first step the time of maximum 

current was ~34.1 s (≡ 63 s – 35.4 s + 6.5 s, see Fig. 8B), i.e., virtually the same time to 

that in the experiment displayed in Fig. 8A. It is noteworthy that even after potential 

steps the transient feature keeps the characteristic symmetry around tmax. In experiments 

(A) and (B), the oxidation charge densities were ~409 µC cm-2 and ~402 µC cm-2, 
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respectively. The experimental conditions are extremely demanding: experiments were 

performed at several values of Eoxi, but we found situations in which the transients were 

either too fast (when tmax was very short) or too slow (in which tmax was 

poorly defined). 

For Pt(554) a similar protocol was adopted with slight differences: Eoxi was 0.67 

V and several oxidation steps were applied instead of only two (Fig. 8D). Fig. 8C 

(single oxidation step; oxidation charge density ~395 µC cm-2) shows that tmax is shorter 

than on Pt(111), but the oxidation persists until longer times than in the first case and 

the transient presents a tailing feature at the end of the oxidation. In Fig. 8C, we stepped 

the electrode potential back from 0.67 V to 0.10 V after 14 s (i.e., before the complete 

stripping of the CO adlayer). This procedure was adopted to register a cyclic 

voltammogram afterwards, as will be discussed later. Similar to Pt(111), Fig. 8D shows 

that when CO is oxidized in multiple stages on Pt(554) both the time required to reach 

the maximum current (tmax = 22.7 s – 20.9 s + 7.8 ≃  9.6 s) and the global oxidation 

profile were very similar to Fig. 8C (tmax ≃  9 s). As before, the potential was stepped 

back at 45 s before the CO adlayer was completely oxidized. In summary, the fact that 

the CO oxidation is performed in a single step or in multiple steps seems not to 

influence the kinetics of the overall process. 

Figs. 9A and 9B show the corresponding cyclic voltammograms recorded after the 

last transients of Figs. 8C and 8D, respectively. The potential was cycled between 0.06 

V and 0.80 V, in order to observe the behavior of hydrogen sites blocked and the 

potential in which the stripping of the remaining CO adlayer occurs. Based on the 

discussion concerning Figs. 5 and 6 we infer that the CO remaining adlayer consists of 

CO adsorbed exclusively at (110) steps. This CO oxidizes only at high potentials, as 

already shown in Figs. 5 and 6. 
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3.7. In situ FTIR experiments 

Fig. 10 shows in situ FTIR spectra of CO adsorbed on a Pt(443) stepped electrode. 

As a member of the Pt(s)[(n–1)(111)×(110)] family, it contains 7 atoms-wide terraces 

intercalated by monoatomic steps with (110) symmetry. The black line refers to the 

spectrum recorded at 0.15 V from the series registered when the surface is fully covered 

by CO. In this spectrum, ranging from low to high vibrational stretching frequencies, 

the broad band at ~1600-1677 cm-1 is associated to the O-H bending mode of water.33 

The band at ~1823 cm-1 is assigned to the stretching frequency of bridge bonded CO 

(hereafter denoted as COB) 7 at (111) terraces. Another band at ~2060 cm-1 is assigned 

to the linearly bonded CO 7 (hereafter denoted as COL) at both (111) terraces and (110) 

step sites. In those experiments where CO selectively decorates (110) steps (blue line), a 

single band related to the CO stretching frequency appears at ~2023 cm-1. This this band 

can be assigned to the COL in (110) step sites. No band due to COB in (110) sites is 

evident in this configuration (steps decorated by CO). 

For a complete CO coverage, from 0.05 V up to 0.40 V, a Stark tuning plot gives 

a dvCO
i/dE ≃  32 cm-1 V-1 for COL [in good agreement with ~35 cm-1 V-1 previously 

reported for this electrode in 0.10 M H2SO4 43] and dvCO
i/dE ≃  114 cm-1 V-1 for COB. In 

the experiment where CO is attached only on steps, dvCO
i/dE is ~89 cm-1 V-1 (for COL). 

A high dvCO
i/dE for CO on steps has also been observed by Kim et al.44-45 (low CO 

coverage obtained by CO dosing) for Pt(s)-[6(111)×(100)] ≡ Pt(755) and Pt(s)-

[4(111)×(100)] ≡ Pt(533) but the origin for this high gradient at low coordinated sites is 

not yet understood. 
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The comparison between the spectra in Fig. 10 shows that the band due to the 

COL on steps is clearly shifted (~37 cm-1) to higher frequencies when the surface is fully 

covered by CO. As expected, for a full CO coverage COL on terrace sites strongly 

dominates the frequencies from COL on step sites due to dipole-dipole coupling.46-47 As 

a result, both COL bands merge into a single signal and becomes impossible to 

discriminate them, although a little tail is observed on the right side of COL band for the 

full coverage spectrum.46, 48 

 

4. Discussion 

This work demonstrates that CO electro-oxidation reaction at stepped Pt surfaces 

occurs preferentially over (111) terrace domains at the expenses of step sites. Moreover, 

it shows that the CO pre-oxidation process only appears when four interconnected 

conditions are fulfilled: (1) adsorption of CO at potentials in Hupd region; (2) high CO 

coverage, which is secured by the (3) presence of traces of CO in solution; (4) steps on 

the surface. If these four requirements met, the occurrence of a reaction pathway at low 

potentials (denoted pre-oxidation) is reproducible. 

Regarding the order in which sites are released, Figs. 5 and 6 clearly show that 

(111) terraces are the first sites to recovered for hydrogen adsorption/desorption in 

experiments of partial stripping of CO the adlayer. This observation means that on Pt 

stepped surfaces the over-potential required to oxidize CO on terrace domains is lower 

than that required for the reaction taking place on step sites. Therefore, the CO removal 

follows a strict hierarchy: CO is oxidized on (110) step sites only after it has been fully 

oxidized on (111) terraces. Similar trends can be inferred from data in Fig. 9 recorded 

after an incomplete CO adlayer oxidation. Namely, at the end of chronoamperometry 

CO remains only on the steps. This surprising result comes from the fact that such 
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hierarchy is not accessible when a full CO adlayer is oxidized at once. Nevertheless, this 

apparent high catalytic activity of (111) terraces is not observed on a “defect-free” 

Pt(111) surface. This implies that the presence of steps influences the catalytic activity 

of terrace domains. One possible interpretation is that the steps change the energetic 

properties of terrace domains due to the Smoluchowski effect49 (total electron charge 

density). Hence, it is expected that a (111) terrace on a stepped surface have different 

chemical properties compared to an “infinite” (111) terrace on a perfect Pt(111) 

surface.38, 50 In this matter, long-range effect of steps in (111) terraces might be inferred 

from the examination of stretching frequencies of adsorbed CO on stepped surfaces 

containing terraces of different widths.51 In electrochemical environments, this topic has 

been addressed by Rodes et al.52 for adsorbed CO on a series of Pt(s)[(n-1)(111)×(110)] 

and Pt(s)[n(111)×(100)] stepped surfaces. It was pointed out that the density of steps 

markedly influences the stretching frequency of CO on (111) terraces as well as induces 

a potential dependence in p(2×2)-3CO → (√19×√19)R23.4º-13CO phase transition.52 

Such observations imply that stepped surfaces cannot be considered as a static 

combination of terraces and steps. 

Turning back to our results, at 0.05 V s-1 the stripping of CO on Pt(111) shows an 

oxidation peak at ~0.83 V (Fig. 4), whereas on stepped surfaces (Figs. 5 and 6) the 

potentials for the main CO oxidation peak are always lower, the shift being dependent 

on the terrace width. Thus, the combination between steps and terraces creates favorable 

conditions for CO oxidation on terraces at low potentials. Therefore, since the CO pre-

oxidation process is not observed on “defect-free” Pt(111) (Fig. 4). At a first glance, one 

could think that it is a feature coming from the presence of steps on the surface. The 

mere presence of small amounts of CO in solution is a condition that ensures a high 

CO coverage, but we think that the pre-oxidation is not due to the electro-oxidation 
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of CO from the solution, because even when small amounts of CO in solution was 

present (Fig. 3), the pre-oxidation process does not appear if the low adsorption 

potential condition (which ensures higher CO coverage degree) is not satisfied. It seems 

more likely that the pre-oxidation is a consequence of some CO that is weakly bonded 

to the surface, but it is worthy to emphasize that CO cannot be bonded anywhere on 

surface. However, as evidenced in Fig. 2, the pre-oxidation of CO does not take place 

on (110) step sites, i.e., there is no oxidation of CO on the top side of (110) steps, since 

in that experiment the (110) step sites were fully covered by CO, and the pre-oxidation 

peak was completely absent. Indeed, our results show that, regardless the surface, the 

pre-oxidation peaks appear around 0.58 V whereas the oxidation of CO on step sites 

only takes place at ~0.72 V. These findings convincingly demonstrate that the steps are 

not the most surface active sites, at least for CO electro-oxidation. This implies that 

equation (2) is not valid for the CO oxidation at low potentials, where CO preferentially 

oxidizes over (111) terrace sites. For Pt(s)[(n–1)(111)×(110)] vicinal surfaces, recently 

imaged by using in situ STM (Scanning Tunneling Microscopy), Inukai et al.53 

suggested that the “most active sites” to the oxidation of bulk CO are disordered (111) 

step sites, e.g. kink sites. They observed that such sites are stable only at potentials 

lower than ~0.6 V vs. RHE in presence of CO in the electrolyte. The authors also 

showed that when the electrode potential was cycled beyond that value, the observed 

loss of activity was directly linked to the morphological changes of the step sites. For 

experiments of CO oxidation performed on defect-rich Pt(100) surfaces cooled in air or 

Ar, Rudnev et al. also had identified kink and step sites as the highly active ones.54 

However, by using a kinked Pt(875) (≡ Pt(s)-[5(111)×3(110)×(100)]) surface, we have 

found that kink sites are not the most active ones in CO electro-oxidation.30 

Interestingly, all these works and others evidence that low coordinated sites 
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(step/kinks,9, 15, 53-54 Pt ad-islands55 ) should be present on surface in order to ensure that 

the reaction pathway arises at low potentials. The exact nature of these sites is still an 

unsolved question, but it is likely that active sites responsible for the CO pre-oxidation 

might be the low part of the steps, which are terrace sites. 

By using a class of Pt stepped surfaces containing (111) terraces periodically 

broken by (100) monoatomic steps, Yates et al.56-57 showed that in solid/gas interfaces 

CO oxidizes preferentially on (111) terraces neighbor to steps with Oads. In this model, 

step sites act as centers for nucleation of Oads (from O2 dissociation). Considering that 

OHads (from water dissociation) is the preferential species on the steps, Lebedeva et 

al.58 extrapolated the model of Yates et al. to the electrochemical stripping of CO. 

Based on this finding, the authors concluded that the role of steps is to promote the 

formation of OHads. Additionally, it was proposed 58 that during the oxidation CO 

adlayer COads could diffuses along (111) terraces to the most active sites, near OHads on 

steps. However, as stressed above, the role of steps seems not to be simply related as 

centers of nucleation of oxygen-containing species for CO oxidation on terraces. 

Moreover, data in Fig. 5 and 6 allow us to infer about the dynamics/mobility of 

adsorbed CO during its oxidation. These figures show that once the pre-oxidation 

adlayer was removed, in subsequent cycles all remaining COads molecules were 

oxidized at higher potentials than those of the CO pre-oxidation range. Assuming that 

the sites responsible for the pre-oxidation of CO are the most active ones, this 

observation means that even when these sites are available, there is no significant 

displacement of COads toward these “preferred” places, likely because this process is 

apparently not favorable, once there is a hierarchy for the occupancy of sites by CO, 

which is opposed to the CO site release.30 This evidence suggests that at least to some 

extent, the activation of particular surface sites controls the order in which sites are 
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released during CO oxidation on Pt stepped surfaces. A similar behavior has been 

pointed out for CO oxidation on Pt stepped electrodes in alkaline medium.30 Such 

observation brings important implications on the COads mobility during its oxidation in 

acidic media too. Namely, although the replacement of a previously adsorbed CO 

molecule by another CO (coming from the solution) is possible, once adsorbed, during 

its oxidation process, CO molecules apparently do not diffuse over the surface toward 

most active sites, even when a more active site is available.  

The observations about the apparent immobility of COads during adlayer stripping 

are reinforced by the analysis of Fig. 8 (current vs. time curves). The 

chronoamperometric profiles in Figs. 8B and 8D may be related to the distribution of 

reactant partners on the surface during successive potential steps. Thus, is likely that 

activated water7 (or OHads) is formed at a potential in which CO oxidizes (in the present 

case at 0.67 V or 0.69 V). Afterwards, when the potential is stepped back to 0.10 V, the 

oxygen-containing species population formed at ECO oxidation is completely stripped out. 

In this process, sites are released, which come to be occupied by adsorbed hydrogen at 

0.10 V. Thus, if COads had high mobility over the surface during its oxidation, or if 

there was redistribution of reactants on electrode surface at 0.10 V, the release of sites 

previously occupied with oxygen-containing species could imply changes in patterns of 

surface distribution of the remaining COads. Surprisingly, we observed that after the CO 

oxidation is resumed, it continues exactly where it was stopped before, regardless the 

sequence of potential steps applied (compare Figs. 8C and 8D). This interpretation 

agrees with results showed in Figs. 5 and 6, in which after active sites becomes free, 

they are not occupied by the remaining COads molecules, likely because this process 

might be too slow to take place in the time scale of our experiments. Therefore, since 

the reaction kinetics depends on the spatial distribution of the reacting partners on the 
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surface,59-61 our results allow us to consider that the organization (distribution) of 

remaining adsorbed CO layer is not significantly affected either after potential steps or 

partial stripping voltammetry. 

One possibility to explain the current vs. time behavior observed in Fig. 8 is that 

COads forms large domains (islands) in which the CO oxidation starts by the edges of 

these islands, as previously discussed in 62-64. Thus, after each potential step the reaction 

is resumed when oxygen-containing species combines with COads from the edge of the 

islands, which were left unchanged since the last oxidation step. Lastly, ours results can 

be satisfactorily explained by considering the absence of COads mobility during its 

oxidation. 

 

5. Conclusions 

In this work, some important findings are presented and discussed for the first 

time regarding the oxidation of CO on Pt(s)[(n–1)(111)×(110)] in acidic medium: 

(1) Providing that experimental conditions are controlled (i.e. CO adsorption in the 

Hupd region, high CO coverage, presence of steps on the surface), the CO pre-oxidation 

is related to the presence (trace amount) of dissolved CO in solution. The pre-oxidation 

of CO seems to be not due to its oxidation in step sites, although the presence of steps is 

a sine qua non condition for the occurrence of pre-oxidation. We assume that the sites 

responsible for the CO pre-oxidation are likely those atoms at the bottom of the steps 

with weakly bonded CO. Also, it seems that the initial activation of some particular 

sites controls the whole process. 

(2) The intrinsic catalytic activity on step sites is lower than that of the sites 

responsible for the CO pre-oxidation. Indeed, (111) terraces seem to constitute the most 
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active domains for the electro-oxidation of CO, since CO on step sites is oxidized only 

after all CO molecules have been oxidized over (111) terraces.  

(3) The present analysis implies that CO behaves almost as a motionless species 

during its oxidation, likely because its surface diffusion coefficient make the diffusion 

process too slow to take place in the time scale of our experiments. Therefore, after the 

“most active sites” to be free due to the partial CO adlayer oxidation, such “most active 

sites” apparently does not become reoccupied by new CO molecules from the remaining 

CO layer. It seems more likely that domains of oxygen-containing species 

[(H2O)activated] growing around CO islands rather than CO shifts to the most active sites. 
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Figure Captions 

Figure 1. Cyclic voltammograms of platinum single crystals (indicated) in 0.1 M 

HClO4 and hard sphere model of corresponding surfaces. Data recorded at 

0.05 V s-1. 

 

Figure 2. Effect of dissolved CO on its pre-oxidation on Pt stepped surfaces in 0.1 M 

HClO4. A. Pt (13,13,12); B. Pt (776); C. (Pt (554). The panels D, E and 

F correspond to the panels A, B and C, respectively, presented on an extended 

scale. After adsorption at 0.10 V, CO was removed from the solution for 

different times (indicated). The oxidation of bulk CO and a blank 

voltammetry were showed for comparison. Data recorded at 0.02 V s-1. 

 

Figure 3. Influence of CO adsorption potential on its pre-oxidation on Pt stepped 

surfaces in 0.1 M HClO4. Sweep rate 0.05 V s-1. 

 

Figure 4. (A) Cyclic voltammograms for a well-ordered Pt (111) (black line) and an 

intentionally defective Pt (111) (red line) electrode in 0.1 M HClO4; (B) 

Stripping of CO performed on the same surfaces. Sweep rate 0.05 V s-1. 

 

Figure 5. A. Cyclic voltammetry in presence of a CO adlayer which is oxidized in 

successive cycles (indicated) by selecting a low upper potential limit on a Pt 

(776) surface in presence of 0.1 M HClO4. B. Oxidation of a full CO adlayer 

in a single sweep. In A and B a blank voltammetry is showed for comparison. 

Data recorded at 0.05 V s-1. 

 

Figure 6. A. Cyclic voltammetry in presence of a CO adlayer obtained as in Fig. 5 for 

Pt (13,13,12) and (554). Bottom panels (C and D) show the oxidation of a full 

CO adlayer in a single sweep. In all cases a blank voltammetry was included 

for comparison. Data recorded at 0.05 V s-1. 
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Figure 7. Oxidation of CO at different CO coverage (indicated) on a “defect-free” 

Pt(111) electrode in 0.1 M HClO4. The partial coverages were acquired by 

partial stripping of a full CO adlayer. Sweep rate 0.05 Vs-1. 

 

Figure 8. Potential step experiments of CO oxidation on: A and B. Pt (111); C and D. 

Pt (554). CO was adsorbed at 0.10 V, and non-adsorbed CO was removed for 

20 min. The left panels show the oxidation of CO performed in a single step 

for Pt (111) and Pt (554), respectively. The right panels show successive 

potential steps. In B a partial CO oxidation was achieved by applying the 

sequence 0.10 V → 0.69 V → 0.10 V on Pt (111). In D the sequence of step 

potentials (0.10 V → 0.67V → 0.10 V →0.67 V…) was performed on Pt 

(554) All the experiments were made in 0.1 M HClO4. 

 

Figure 9. Cyclic voltammetries in presence of residual CO that has persisted on the 

surface after the experiments of Figs. 8C and 8D. Sweep rate 0.05 Vs-1. 

 

Figure 10. In situ FTIR spectra recorded at 0.15 V with different CO coverage on a 

Pt(443) stepped crystal in 0.1 M HClO4. The reference potential was 

collected at 0.90 V. 
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