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ABSTRACT 

The Surface Renewal Theory (SRT) is one of the most unfamiliar models in order to characterize 

fluid-fluid and fluid-fluid-solid reactions, which are of considerable industrial and academicals 

importance. In the present work, an approach to the resolution of the SRT model by numerical 

methods is presented, enabling the visualization of the influence of different variables which control 

the heterogeneous overall process. Its use in a classroom allowed the students to reach a great 

understanding of the process. 
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Introduction 

The stagnant-film, boundary-layer, and surface-renewal theories have been regarded as the 

cornerstone of the science of interphase mass or heat transfer in turbulent environments. The 

stagnant-film theory has been highly popular and remains so because of its simplicity; however, it is 

deemed too simplistic and unrealistic. The boundary-layer theory has been derived from a fairly 

rigorous and self-consistent fluid mechanical theory based on the notion of continuity; nevertheless, 

this theory is incapable of elucidating random disturbance or chaotic bursting at the interface under 

turbulent conditions. The surface-renewal theory [1, 2] has been conceived so that the deficiencies 

of the first two theories can be rectified through incorporation of some statistical components into 

the description of interphase mass or heat transport.  

Numerous variants of this theory, giving rise to various mathematical models, have been proposed 

[3]; still the acceptance or popularity of the surface-renewal theory appears to lag behind the other 

two theories. This is probably attributable to the fact that the mathematical formulation of the 

theory is sometimes hard to understand, and is of course difficult to explain to the students. 

The surface renewal theory equations 

Surface-renewal theory (SRT) provides a better physical picture of mass transfer than the two-film 

theory, in return for a modest increase in mathematics. The model used by the SRT is shown 

schematically in Figure 1. The model assumes that during a fluid-fluid interaction, smal volumes or 

elements of the interfacial region are not static, but are constantly exchanged with new elements 

from a second ‘bulk’ region [1]. 

 

 

Figure 1. SRT model. 



 

The mathematical description of this surface renewal depends on the length of time that small fluid 

elements spend in the interfacial region. The model assumes that the absorption profiles would 

depend on the time the element is in the surface, and then it needs a time distribution function of 

elements in the surface,  (t). The product (t)dt represents the fluid fraction that remains in the 

surface a time between ‘t’ and ‘t+dt’, and so: 
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As the reaction rate is a function of time, the average reaction rate would be calculated as: 
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where -r"A (t) is the reaction rate for an element having a residence time ‘t’. 

SRT assumes that there is a stochastic replacement of the elements, in such a way that the 

probability of an element to be replaced is directly proportional to the time that the element has 

already been in the surface, in such a way that the distribution function is given by [1, 2]: 

  tsest        (3) 

where ‘s’ represents a coeficient of replacement of the elements in the surface. 

 



 

Figure 2. Evolution of the interphase and the reaction volume for an element. 

 

Figure 2 shows the evolution of the interphase inside an element, considering the time from the 

moment it arrives to the surface until it is replaced.  

Let us consider that the reaction takes place in such a way that: 

 A (initially in phase I) + b B (phase II)  products of reaction 

Inside the element and at any time ‘t’, a mass balance of the reactant ‘A’ in between the interphase 

(y=0 in Figure 2) and the reaction plane (y = y
1
 (t)) gives: 
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A mass balance of product ‘B’ between y
1
(t) and the bulk fluid (y=∞) would be: 
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The boundary limit conditions of these two partial-differential equations are: 

For A:      t = 0        y > 0              CA = CA0 = 0 

       t > 0        y = 0              CA = CAi 



   any time      y = y1            CA = 0 

For B:      t > 0        y = y1             CB = 0 

   any time      y = ∞             CB = CB0 

In the reaction plane, situated at y1(t), the concentration of the species is zero; from eqs (4) and (5), 

it can be shown that[1]: 
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where  is a constant that must be calculated. Introducing these conditions in eqs. (4) and (5) it can 

be obtained: 
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that is a non-linear equation to be solved for  value. 

On the other hand, the reaction rate at any time can be calculated by means of: 
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and the average rate of reaction will be calculated using eq. (2), as already commented. 

The implementation in Matlab® 

Incorporating a personal computer in the classroom has brought a new quality to the study and lets 

teachers to easily show the influence of the different variables that affect the system behavior. 

Experimental results of several systems can be simulated by using the theoretical equations 

governing the processes, thus avoiding long and hard experimental testing that can distract the 

students.  

From this point, the aim of this work is to provide a numerical resolution of the SRT model in order 

to visualize the variation of the different concentration profiles and of the rate of reaction during the 

whole process, in different situations. The solution of the model is achieved by a set of different 

Matlab® script and function files which are included as an Appendix for teachers and students. 



Computer Activity for Students: Study of the Influence of Kinetic Constants 

and Concentration of Reactants 
Let us use the finite differences method for solving equations (4)-(5). In particular we will use the 

explicit method. Starting on eq. (4) for CA, each partial derivative can be expressed by: 
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Substituting in eq. (4), rearranging and solving, it can be obtained: 

t

Ai
At

Ai
At

Ai
At

Ai C
y

tD
C

y

tD
C

y

tD
C 12212

1 2
1 
























   (11) 

that is the equation to be solved with the aid of the boundary limit conditions previously defined. It 

is important to note that for CB a similar expression is obtained, starting from eq. (5). 

Explicit method in the finite differences method requires, in order to assure the stability of the 

system, that two conditions must be satisfied. For an equation of the type: 
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those conditions are: 

1) A, B and D must be positive. 

2) The sum of the A+B+D coefficients is minor than or equal to 1. 

Noticing that the coefficients A and D are always positive (in this particular case, further A=D), the 

remaining is to assure that B is positive, being this way if: 
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On the other hand, the second condition is always true, since in this system: 
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where it can be clearly observed that the sum always equals to unity. The same is true if the 

conditions are applied to CB (equation 10) in such a way that it is also necessary that: 
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In the Matlab® code, the minimum value between (13) and (15) is chosen. 

To obtain the concentration profile of CA, equation (11) must be solved with its limit conditions and 

with values of the position from y = 0 to y = yi, while for CB its respectively limits conditions for values 

of the position from y = yi to y = yend. Representing both profiles in the same graphic a form similar to 

Figure 2 should be obtained. 

Resolution using Matlab® 

Once the mathematical principles are already explained, only its implementation in Matlab® 

remains. For the calculation of the concentration profile, eqs. (4) and (5) must be simultaneously 

solved.  

In the main code (‘resolution.m’) first the constants are defined. Then, value of  should be 

calculated, by solving eq. (7). For this, a Matlab® function (‘betazero.m’) is defined and solved in the 

main code. 

Subsequently, the differential of position must be defined from a number of intervals and the 

differential of time is calculated from the stability condition. Vectors CA and CB are defined from the 

initial conditions and a while loop is applied from the initial to the final time to recalculate those 

vectors for each time, always considering the initial conditions. It must be noted that all the data 

about the concentrations will be stored for posterior uses. In addition, the order drawnow will be 

used, which allows the graphic visualization with time of the concentration profile. 

For the calculation of the reaction rate versus time, eq. (8) must be solved. The derivate is calculated 

approximating to increments. Finally, the average reaction rate can be calculated for a time t 

according to eq. (2). For this calculation, a value of ‘s’ in eq. (3) is needed, and the trapezoids method 

is used. 

Results 
For a given set of values of parameters CA0, CB0 and DA it can be calculated the CA and CB profiles 

variation with time. As an example, Figure 3 shows the results for parameters CA0=0.05 mol/m3, 

CB0=0.01 mol/m3, DA= 3·10-4 m2/s and DB=DA/100. 

Total time is chosen in such a way that the variation of the concentration profiles is finally 

unapreciable, i.e., the stationary state is reached. Profiles are logically similar to those presented in 

Figure 2.  



For this particular case we can also visualize the evolution of the reaction plane with time, given that 

at this position CA=CB=0. Figure 4 shows the results. 

 

 

Figure 3. Variation of concentrations profiles with time in a particular case when CA0=0.05 mol/m3, 

CB0=0.01, DA= 3·10-4 m2/s and DB=DA/100. 
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Figure 4. Evolution of the position of the reaction plane with time time in a particular case when 

CA0=0.05 mol/m3, CB0=0.01, DA= 3·10-4 m2/s and DB=DA/100. 

 

Figure 5. Reaction rate vs. reaction time in a particular case when CA0=0.05 mol/m3, CB0=0.01, DA= 

3·10-4 m2/s and DB=DA/100. 

 

At a definite time, reaction rate can be calculated according to eq. (8). The results in this case are 

shown in Figure 5. It can be observed how at the beginning, when the concentration of A is low or 

zero, in every point except at the initial, the reaction rate is really high, while when is increasing, the 

reaction rate is maintained almost constant, fact that is seen at really short times. Also reaction rate 

is calculated according to eq. (2), and the result is 0.2095 mol m-3 h-1 (taking an arbitray value of 

s=10-3 h-1). 

 

It is even interesting to make a 3D plot of the concentrations of reactants vs. time and distance, as it 

is easy in Matlab®, obtaining a figure that can be even rotated. Figure 6 shows the results for this 

first case. 
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tf = 1e-5



 

 

Figure 6. Evolution of the concentration profiles with time and position in a particular case when 

CA0=0.05 mol/m3, CB0=0.01, DA= 0.0003 m2/s and DB=DA/100. 

 

In order to visualize the effect of the difussion coeficient, let us maintain all other parameters and 

increase DA to a value of 0.03 m2/s. In that case the concentration profiles are those shown in Figure 

7, where it can be observed that the stationary state is much sooner reached. In this way, the 

program can be used to see the effect of a variation in any parameter, as is the case of the 

concentrations, and obtain profiles similar to those shown in Figure 3 or 6. This would make that the 

students understand in a better and fliendly way the expected behaviours. 
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Figure 7. Variation of concentrations profiles with time in a particular case when CA0=0.05 mol/m3, 

CB0=0.01, DA= 0.03 m2/s and DB=DA/100. 

 

It can be noted the importance of the number of intervals when it comes to solve this problem, 

being really noticeable especially at the calculation of the average reaction rate. A high number of 

intervals offer the best solution, since the approximation of finite differences, the derivate by 

increments and trapezoid method would be less an approximation and more a reality, but it has a 

great handicap: the time of calculation. For low N values the time of resolution is really short, of few 

seconds, while the value of N increases, the time can reach several minutes, resulting a in hard way 

of working. 

 

Conclusion 

 The use of personal computers in the classroom is nowadays very common and Matlab® 

software is helpful, easy to use and also extensively employed in many universities around the 

world. The SRT reaction model for fluid-fluid systems can help students to understand complicated 

heterogeneous processes, where the influence of many variables in the reaction rate takes place.  
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Using Matlab® software and a Matlab® script file, teachers have the opportunity to show the 

students in a very quickly and easy way how chemists can modify a reaction process with a great 

understanding of the influence of the reaction parameters. 
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Appendix: Matlab® codes 

======================resolution.m============================= 

clear all 

close all 

clc 

    

global Da  Db  Cbo  Cai 

tf = 1e-5; %Final time, in seconds 

% CONCENTRATION PROFILE 

Cai=0.05; % mol/m3, Concentration of reactant A at the interfase 

Cbo=0.01; % mol/m3, Concentration of reactant B in the bulk fluid 

Da=3e-3; % m2/s, Diffusivity coefficient of species A 

Db=Da/100; 

    

beta=fzero(@betazero,0.001); % Related with movement of reaction plane 

yf=.0005; %m, Represents the bulk fluid 

N=20; %Number of space intervals = dimension of vectors 

% Initial conditions: 

clear Ca Cb Can Cbn Cafinal Cbfinal yfinal yfinal1 yfinal2 

t=0; 

Ca=zeros(1,N);  

Ca(1)=Cai; 

Cb=ones(1,N)*Cbo; 

Cb(1)=0; 

cont=1; % Counter 

t=1e-7; %Starting time, in seconds 

Can=Ca; 

Cbn=Cb; 

while t<=tf 

    y1=2*beta*(t)^0.5; % Position of reaction plane, meters 

    y=linspace(0,y1,N); % Difussion zone until reaction plane 

    y2=linspace(y1,yf,N); %Difussion zone from reaction plane till bulk fluid 

II 

     



    Dy1=y(2)-y(1); 

    Dy2=y2(2)-y2(1); 

    Dt1=0.99*Dy1^2/2/Da; % Increment of time, subjected to inequality 

Dt<(Dy^2/2/Da) 

    Dt2=0.99*Dy2^2/2/Da; % Increment of time, subjected to inequality 

Dt<(Dy^2/2/Da) 

    Dt=min(Dt1,Dt2); % Lower increment of time is choosen  

       

    for i=2:N-1 

         A=Da*Dt/Dy1^2; % Coefficient 

         B=1-2*A; %Coefficient 

         Can(i)=A*Ca(i+1)+B*Ca(i)+A*Ca(i-1);  

    end 

    for i=2:N-1 

   

         A=Da*Dt/Dy2^2; % Coefficient 

         B=1-2*A; %Coefficient 

         Cbn(i)=A*Cb(i+1)+B*Cb(i)+A*Cb(i-1);  

    end 

     

    Cafinal(cont,:)=Can; %Concentration of A matrix 

    Cbfinal(cont,:)=Cbn; %Concentration of B matrix 

    time(cont)=t; %Calculation time vector 

    yfinal(cont,:)=y; %Fist half of the reaction length matrix 

    yfinal1(cont)=y1; %Reaction position vector 

    yfinal2(cont,:)=y2; %Second half of the reaction length matrix 

    cont=cont+1; 

     

    t=t+Dt; 

     

    Ca=Can; 

    Cb=Cbn; 

     

    figure(1) 

    plot([y y2],[Ca Cb]) 



    xlabel('Position /m') 

    ylabel('Concentration /mol·m-3') 

    axis([0 yf 0 Cai]) 

     

    drawnow  

end 

%Reaction rate 

for i=1:length(time) 

    rate(i)=-Da*(Cafinal(i,1)-Cafinal(i,2))/(y(1)-y(2)); 

end 

%Reaction rate 

figure(2) 

plot(time,rate) 

xlabel('Time /h') 

ylabel('Reaction rate /mol·m-3·h-1') 

legend('tf = 1e-5') 

%Reaction rate (detail) 

figure(3) 

plot(time,rate) 

xlabel('Time /h') 

ylabel('Reaction rate /mol·m-3·h-1') 

legend('tf = 1e-5') 

axis([0 0.5e-6 0 1]) 

s=1e-4; %h-1 

distr=s*exp(-s*ttot); %Distribution function 

%Average reaction rate 

avgrate=trapz(-rate.*distr,ttot); 

disp('The average reaction rate is:') 

disp(avgrate) 

========================betazero.m================ 

function fo=betazero(x) 

global Da Db Cbo Cai 

fo=exp(x^2/Db)*erfc(x/Db^0.5)-Cbo/Cai*(Db/Da)^0.5*exp(x^2/Da)*erf(x/Da^0.5)

; 


