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Abstract. 

L-lactate is an essential metabolite present in embryonic cell culture. Changes of 

this important metabolite during the growth of human embryo reflect the quality and 

viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured 

electrochemical biosensor for the detection of lactate within embryonic cell cultures media. 

Screen-printed disposable electrodes are used as electrochemical sensing platforms for the 

miniaturization of the lactate biosensor. Multi-walled carbon nanotubes/Chitosan composite 

have been employed for the enzymatic immobilization of the lactate oxidase enzyme.  

This novel electrochemical lactate biosensors analytical efficacy is explored 

towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear 

response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate 

buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and 

exhibits a sensitivity of 3417 ± 131 µA M
-1 

according to the reproducibility study. These 

novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative 

standard deviation of less than 3.8 % and an enzymatic response over 82 % after 5 months 

stored at 4 ºC. Furthermore, high performance liquid chromatography technique has been 

utilized to independently validate the electrochemical lactate biosensor for the 

determination of lactate in a commercial embryonic cell culture medium providing 

excellent agreement between the two analytical protocols.  

 

Keywords:  Chitosan, MWCNT, screen-printed graphite electrode, lactate oxidase, lactate, 

embryo cell culture medium 



 

1. Introduction  

Metabolomics changes within cell culture media in vitro human reproduction after  

the retrieval of the human embryo or during its development, the uptake or formation of 

new metabolites may reflect the quality and thus the viability of the embryo to be 

transferred (Botros et al. 2008; Seli et al. 2010). L-lactate is an essential metabolite present 

in a wide number of cell culture medium used in the development and growth of human 

embryonic cells in vitro under advanced reproduction techniques. Moreover, lactate is vital 

during the first days of the embryo development therefore the tracking of its concentration 

can be utilized as a tremendous biomarker upon adequate cellular proliferation (Gott et al. 

1990). Thus, the in-situ and real time monitoring of lactate allows the embryologist to have 

additional and complementary data for the selection assessment of the embryo. 

High performance liquid chromatography (HPLC) (Gómez-Mingot et al. 2012), 

mass spectrometry (MS) (Scheijen et al. 2012) or nuclear magnetic resonance (NMR) (Seli 

et al. 2008), are well established techniques employed for the detection and quantification 

of lactate present in human embryo culture cells and generally biological systems; however, 

such techniques are costly and possess the inability for real-time or in-situ measurements. 

To overcome these limitations, researchers continually strive to source analytical 

techniques that can be utilized within clinical applications that focus upon the human 

reproduction system. In this regard, (bio)sensors based upon screen-printed platforms are 

an extremely promising and alternative method that allow for real-time, in/ex-situ 

monitoring of the metabolites present within cell cultures. Additionally such platforms 

allow for the creation of a low cost, robust, highly reproducible and sensitive, that can be 

utilized as non-intrusive point of care sensors, due to the possibility of handling small 



sample volumes (between 25 and 50 microliters). Moreover, screen-printed electrodes 

(SPEs) are appropriate platforms for the immobilization of biomolecules, e.g. nucleic acid 

(Das et al. 2014), enzymes (Henao-Escobar et al. 2016) or antibodies (Ojeda et al. 2015) 

onto the underlying working electrode surface in order to obtain a sensitive, selective, 

disposable electrochemical biosensor. SPE platforms are mostly based on carbon materials 

in which the nature, structural and physic-chemical properties of the carbonaceous 

materials have paid significant attention to the performance of the electrochemical 

(bio)sensors.  In this regard, carbon materials are being utilized for biological 

electrochemical sensing, e.g. carbon nanotube (Agüí et al. 2009), graphene (Alwarappan et 

al. 2009) and nanoporous carbons (You et al. 2011; Zhu et al. 2008)  to just name a few 

examples since the increase in the electrode active area is reported to enhance the 

sensitivity, selectivity and improvement of biomolecules immobilization and electron 

transfer. 

 More specifically, multi-walled carbon nanotubes (MWCNTs) (Tsukagoshi et al. 

2004) show a large number of advantages in miniaturized electrochemical platforms due to 

their unique properties such as high conductivity, large surface area, easy chemically 

modified surface by adding a wide number of functional groups, biocompatibility, fouling 

resistance and high electrocatalytic activity. Furthermore, the enhanced electrocatalytic 

electron transfer can be promoted by decorating the MWCNT with an ample variety of 

nano-particulate metals, leading either to a huge number of hybrid nanomaterials 

composites (Xiao and Chang 2008) or hybrid nanomaterials with enzymes (Liu et al. 2012). 

Moreover, some authors combine nanomaterials with conducting polymers (Gerard et al. 

2002), where the hybrid material present special properties because of the synergic effect 

from the individual components. The polymer allows enzyme immobilization and connects 



the nanomaterial, whereas the nanomaterial interacts with the polymer film achieving 

aggregates, which are able to reduce ions interleaving distance, which improves charge 

transfer and increases the polymeric film conductivity.  By following the above approaches, 

Pérez and Fábregas examined the combination of MWCNTs and polysulfone polymer for 

the immobilization of the enzyme lactate oxidase (LOx) to produce a lactate 

electrochemical biosensor for the determination of lactate in wine and beer samples with a 

good sensitivity and concentration linear range (Pérez and Fàbregas 2012).  Nonetheless, 

there are some limitations relative to the biosensor stability due presumably to the 

deterioration of enzyme catalytic activity. Alternatively, the use of biopolymers for the 

immobilization of the LOx can be beneficial, thereby enhancing the enzymatic stability. In 

this regard, the natural polymer chitosan (CS) is a polysaccharide mainly obtained from the 

crustacean shells, with a low cost, eco-friendly and biocompatible polymer what make it a 

suitable and therefore an interesting material for a wide range of applications (Younes and 

Rinaudo 2015) especially in biomedical, food, biotechnology and pharmaceutical fields. It 

has already demonstrated how the biocompatibility property of CS guarantees the 

improvement of the limit of detection and  enzyme stability (Cruz et al. 2000). Several 

authors mixed CS with MWCNTs to enhance electrochemical behavior of electrochemical 

biosensors regarding electrical conductivity and electrocatalytic activity properties (Cui et 

al. 2007; Chen et al. 2004; Monošík et al. 2012; Zhou and Hartmann 2012) 

Encouraged by the improvement of the stability, reproducibility and repeatability of 

the lactate electrochemical biosensor, this study depicts the manufacture of a bio-enzymatic 

biosensor using both Horseradish Peroxidase (HRP) and the enzyme Lactate oxidase LOx 

together with a redox mediator (ferrocene methanol) for the determination of lactate, 

according to similar strategy described in the literature (Pérez and Fàbregas 2012). Our bio-



enzymatic system has been dropped cast onto a MWCNT modified screen-printed graphite 

electrode surface with the full optimization of the lactate electrochemical biosensor 

manufacture been undertaken and fully described. Moreover, in this work, the 

electrochemical lactate biosensor has been partially validated in terms of sensitivity, linear 

range of lactate concentration, limit of detection and quantification, repeatability, 

reproducibility, accuracy and the presence of interferences in order to perform a simpler 

faster, and more manageable lactate biosensor for the determination of lactate in real time 

or in-vitro in complex embryonic cell culture media containing glucose, carbohydrates, 

organic acids such as pyruvic and lactic acid and the majority of amino acids, which have 

been independently validated by HPLC. 

 

2. Material and methods 

2.1. Reagents and chemicals 

All solutions were prepared with double deionized water of resistivity not less than 

18.2 MΩ cm. Lactate oxidase (LOx) was purchased from pediococcus sp (Sigma Aldrich, 

Spain, lyophilized powder, activity ≥ 20  units mg
-1

, 100 units); ferrocene methanol FcMe 

from Sigma Aldrich ≥ 97 %, Spain; multi-walled carbon nanotubes (MWCNT) 

functionalized with carboxylic groups from DropSens, Spain; Bovine Serum Albumin, 

BSA (purity ≥ 98 %) from Sigma Aldrich, Spain; Horse Radish Peroxidase HRP ( ~150  

units mg
-1

) from Sigma Aldrich, Spain; Chitosan (CS) low molecular weight from Sigma 

Aldrich, Spain; Sodium L-lactate (≥ 99 % from Fluka, Germany; 4-aminoantipyrine (purity 

≥ 99 %) from Sigma Aldrich, Spain, cell culture medium of human embryos from the 

pronucleate stage to day 2 and day 3 (G1), G1-plus, similar to G1 medium but with the 



presence of Human Serum Albumin (HSA) and a handling and manipulating embryo 

solution (G-MOPS) were obtained from Vitrolife. Unless otherwise stated, electrochemical 

experiments were performed in 0.1 M potassium phosphate buffer solution (PBS) at pH 

7.4. All other chemicals were obtained from the highest analytical grade. 

 

2.2. Activity assay of Lactate Oxidase enzyme 

Enzyme activity of LOx decays quickly when removed from its natural matrix 

(Minagawa et al. 1998), therefore it is necessary to store it correctly, and for that reason 

periodical enzymatic activity measurements were carried out. 100 units (U) of LOx were 

dissolved in 0.1 M PBS and separated in 50 eppendorfs of 20 µL each (2 U) and stored at -

20 ºC (Romero et al. 2010). This procedure was performed under aseptic conditions. The 

oxidation activity of LOx was determined periodically by a chromogenic assay 

(Hamamatsu et al. 2006). UV-Vis spectrophotometer (UV probe 2.21 Shimadzu) was 

employed for the determination of LOx activity assays. 

 

2.3. Preparation of the electrochemical lactate biosensor MWCNTs/FcMe/CS/ 

HRP/BSA/LOx/SPBGE biosensor. 

The basal-plane like screen-printed graphite electrodes (SPBGE) were fabricated at 

Manchester Metropolitan University utilizing appropriate stencil designs using a 

microDEK 1760RS screen-printing machine (DEK, Weymouth, UK). For each of the 

screen-printed sensors a carbon–graphite ink formulation (Product Code: ED5020, Electra 

Polymers Ltd, UK) was first screen-printed onto a polyester flexible film (Autostat, 250 µm 

thickness). CITE 24&25. This layer was cured in a fan oven at 60 degrees Celsius for 30 

min. Next a silver/silver chloride (40:60) reference electrode was applied by screen-printing 



Ag/AgCl paste (Product Code: C2040308P2; Gwent Electronic Materials Ltd, UK) onto the 

plastic substrate. This layer was once more cured in a fan oven at 60 degrees Celsius for 30 

min. Last a dielectric paste ink (Product Code: D2070423P5; Gwent Electronic Materials 

Ltd, UK) was printed to cover the connections and define the 3 mm diameter graphite 

working electrode. After curing at 60 degrees Celsius for 30 min the screen-printed 

electrode is ready to use. An edge-connector was used to ensure the reproducibility of the 

electrochemical connections throughout the studies (Galdino et al. 2015). 

For the preparation of the biosensor we have followed a approach where the enzyme 

immobilization technique consists in the phase-inversion (Mulder 1996). Phase-inversion 

method is a process where the liquid state polymer becomes solid state in a controlled 

manner. In our case the biopolymer chitosan is dissolved in an organic solution 1:1 ethanol 

/ dimethylformamide and the aqueous solution displaces the organic solution, then the 

biopolymer precipitates and finally a porous membrane is formed which is appropriate for 

the immobilization of LOx enzyme. The manufacture for the preparation of the biosensor 

comprised the following steps:  2.5 mg MWCNTs, 12.5 mg FcMe and 5.25 mg of CS were 

mixed in a 500 µL Dimedthylformamide (DM)F/ethanol (EtOH) (1:3 v:v) organic solution 

and sonicated for 1 hour (as shown in the Electronics supporting information Figure ESI-1, 

step  I). Then, 0.6 µL of the above mixture was dropped cast onto the graphitic working 

electrode from the SPBGE platform (as shown in Figure ESI-1 step III ) and then 5 µL 

volume from an enzymatic solution made of 0.5 mg HRP and 0.5 mg BSA dissolved in a 

20 µL aliquot enzymatic solution comprised LOx in 0.1 M PBS solution  pH 7.4 (as shown 

in Figure ESI-1, step II ). Then, 5 µL volume of the above enzymatic solution were 

immediately dropped cast upon the still wet MWCNTs/FcMe/CS/DMF-EtOH paste 

composite (as shown in Figure ESI-1, step IV). The above procedure was designed for the 



performance of four equivalent electrochemical lactate biosensors. Finally, electrochemical 

lactate biosensors were dried under ultra-high vacuum conditions for 15 minutes at ambient 

temperature and then stored at 2-4 ºC without the need of any specific protection. Prior to 

use, the biosensor is thoroughly washed immersing the electrochemical biosensor in 0.1 M 

PBS buffer solution pH 7.4 under stirring conditions for 5 minutes. 

 

2.4. SEM, electrochemical and HPLC instrumentation. 

Scanning electron microscope (SEM) from Hitachi S3000N with an X-ray detector 

Bruker XFlash 3001 for microanalysis (EDX) and mapping was used for the morphological 

characterization of the biosensor film. 

Cyclic voltammetry (CV) and chronoamperometry (CA) experiments were carried 

out using an Autolab PGSTAT X (Eco Chemie, the Netherlands) potenciostat/galvanostat 

and controlled by Autolab GPES software version 4.9 for windows XP. CV and CA 

experiments were carried out immersing the biosensor in a cell containing 5 mL of 0.1 M 

PBS buffer solution at pH 7.4 under continuous gentle stirring. Prior to CA measurements, 

the electrochemical lactate biosensor was subjected to -0.2 V vs the pseudo reference 

electrode  for 120 s in 0.1 M PBS solution pH 7.4 and then consecutive aliquots of 10 mM 

L-lactate solution were performed in order to obtain certain lactate concentration in 

solution. CV experiments were carried out by cycling the working electrode between -0.1 

to -0.4 V at a scan rate of 10 mV s
-1

. Under gentle stirring conditions aliquots from 10 mM 

L-lactate solution were also added consecutively into the cell containing 0.1 M PBS pH 7.4. 

All electrochemical experiments were carried out at 22 ± 2 ºC under aerated conditions. 

Lactate concentration present in a G1, G1 Plus and G-MOPS cell culture media 

were determined by HPLC (Agilent 1100 series, Santa Clara, USA) coupled with an UV-



Vis detector. The mobile phase consisted of 20 mmol·L
-1

 NaH2PO4 aqueous solution 

adjusted to pH 2.5 with H3PO4. The column was a C18 Hypersil octadecylsilane(ODS). 4.0 

internal diameter x 250 mm length, 5 μm particle diameter. The flow rate was 0.5 mL min
-1

 

with a wavelength of 210 nm (Gómez-Mingot et al. 2012). Appropriate dilutions of the 

different cell culture media in 0.1 M PBS  pH 7.4  were performed for the quantification of 

lactate  by either the use of the electrochemical lactate biosensor or by the liquid 

chromatography technique. Alternatively, a certain aliquot of thedifferent cell culture 

medium was added into a 5.0 mL 0.1 M PBS pH 7.4, and then an electrochemical lactate 

biosensor is immersed into the solution under a gentle stirring. Chronoamperommetric 

experiments were carried out by monitoring the current intensity versus time keeping the 

working electrode at a potential of -0.2 V versus the pseudo reference electrode of the SPE 

platform.  

 

3. Results and discussion  

3.1 SEM characterization and electrochemical response of the lactate biosensor. 

 

Figure  depicts the SEM images of the basal plane like SPBGE surface unmodified, 

prior to the drop cast of the MWCNTs/FcMe/CS/ HRP/BSA/LOx composite (Figure 1a) 

and the morphology regarding the MWCNT/FcMe/CS/HRP/BSA/LOx/SPBGE biosensor 

(Figure 1b). The SEM image of the SPBGE reveals a homogeneous, smooth surface 

adequate to carry out an uniform film of the MWCNTs/FcMe/CS/HRP/BSA/LOx 

composite. The surface of the SPBGE platform provides sufficient chemical stability in 

contact with MWCNT composite mixed within a DMF/EtOH solution. 



Figure 1b shows a MWCNT network immobilized upon the working graphitic 

surface of the SPBGE platform. MWCNTs seem to be well dispersed upon the underlying 

surface of the SPBGE platform, which is completely covered by the film formed by 

MWCNTFcMe/CS/HRP/BSA/LOx composite. The CS biopolymer acts as a binder to fix 

the MWCNTs and enzyme onto the basal like surface of the SPBGE platform. The films 

comprising MWCNTFcMe/CS/HRP/BSA/LOx composite do not appear to exhibit any 

cracks or fractures and are quite homogeneous suggesting a good mechanical stability and 

robustness upon manipulation. 

The electrochemical lactate biosensor performed in this study works in accordance 

to the following reactions 1-4 displayed below, according to the literature (Ghamouss et al. 

2006; Pérez and Fàbregas 2012):  

         ( 1 ) 

                         ( 2 ) 

                ( 3 ) 

                                    ( 4 ) 

Briefly, the enzyme lactate oxidase (LOx) reacts with the target analyte, lactate, in the 

presence of oxygen leading to pyruvate and H2O2 (reaction 1). Then the enzyme HRP (in its 

reduced state) reduces H2O2 to H2O (as depicted in reaction 2), and then the enzyme HRP 

in its oxidized form oxidizes the redox mediator FcMe to the ferrocinium complex, 

according to reaction 3. Finally, the FcMe complex in its oxidized state is electrochemically 

reduced upon the electrode surface in accordance to reaction 4.  

Cyclic voltammetry measurements were next performed in order to study the 

optimal working potential for the electrochemical reduction of the FcMe complex in its 



oxidized state. In this regard, Figure 2 depicts the voltammetric profiles of lactate biosensor 

in the presence and absence of CS biopolymer inside the enzymatic composite matrix. The 

corresponding voltammetric peaks of the oxidation and reduction of FcMe are readily 

observed when the biosensor is manufactured in the absence of CS giving a peak potential 

separation of 140 mV at a scan rate of 10 mV s
-1

.  However, upon the introduction of the 

natural biopolymer CS, the cyclic voltammetric measurements give rise to an undefined 

oxidation peak, though the reduction wave is well established at a peak potential of ca. -150 

mV versus the pseudo-reference electrode. This is explained as the incorporation of CS 

biopolymer into the enzymatic composite matrix leads to a more resistive film, due to the 

low ionic conductivity of the CS biopolymer (Krajewska 2001; Wan et al. 2003, 2006). 

Strikingly, the presence of CS leads to a higher current intensity or charge passed within the 

reduction peak of FcMe compared to the electrochemical biosensor performed without the 

presence of CS, which clearly indicates that the addition of chitosan improves the 

adsorption of the FcMe mediator, upon the electrode carbonaceous surface or the 

entrapment into the biopolymer / carbon nanotubes matrix. Moreover, the presence of CS 

exposes edge plane sites of the MWCNTs, thereby resulting in an enhancement of electron 

transfer and thus in electrochemical activity.  

The working potential of the lactate biosensor was set at ca. -0.2 V based on the 

cyclic voltammetric results presented in Figure 2 with the electrochemical response of the 

lactate biosensor explored in the presence of L-lactate through the use of hydrodynamic 

cyclic voltammetry and chronoamperometry techniques. Figure 3 shows the cyclic 

voltammetry response for the electrochemical lactate biosensor and the corresponding 

calibration plot of current intensity versus lactate concentration over a concentration range 

of 99-476 μM (see inset in Figure 3. The voltammetry reveals an increment of current 



intensity with lactate concentration. The calibration plot was obtained measuring the 

current intensity at -0.2 V. In this regard, the biosensor presents a linear slope with a 

correlation coefficient of 0.99 and a sensitivity of -3503 ± 243 µA mM
-1

.  

Chronoamperometric response of the electrochemical lactate biosensor was next 

studied at -0.2 V, as shown in Figure 4. It can be observed that as the addition of 25 µL of  

10 mM lactate within 0.1 M PBS pH 7.4 provides an increase within the current intensity 

and well-shaped amperometric current steps are readily visible after each addition. Inset of 

Figure 4 shows the calibration plot regarding the amperometric response of the 

electrochemical lactate biosensor with a concentration range of 50-250 μM of lactate in 

which a linear slope is obtained with a correlation coefficient of 0.99 and a sensitivity of -

3201 ± 179 µA mM
-1

. Our results demonstrated that there are no significant differences 

between both electrochemical techniques employed.  

 

3.2. Reproducibility, repeatability and long-term stability of the electrochemical lactate 

biosensor. 

The reproducibility of the electrochemical lactate biosensor is examined using eight 

biosensors. Figure 5 shows a linear calibration curve of the average current intensity versus 

the lactate concentration over the range of 30.4 and 243.9 μM. Such response exhibited a 

sensitivity of 3417 ± 131 µA M
-1

 (n=8)–a similar value to that obtained from figure 3- with 

a Relative Standard Deviation RSD of 3.8 % and a Limit of Detection (LOD; 3-sigma) of 

22.6 µM. It is worth noting that from our reproducibility assessment of the electrochemical 

lactate biosensor, we find that the preparation method of our electrochemical biosensor is 

reproducible regarding MWCNTs drop casting and LOx enzyme immobilization onto the 



graphitic surface of the SPBGE. Hence the electron transfer and lactate biosensor activity 

behave very similar, leading to a good performance in terms of accuracy and precision of 

the electrochemical device. Thus, the repeatability of the electrochemical lactate biosensor 

is also studied by means of a consecutive test of the biosensor for a known lactate 

concentration solution in pH 7.4 0.1 M PBS to examine reutilization of the electrochemical 

biosensor. After seven consecutive measurements, the biosensor can determine lactate in 

solution with a RSD of less than 5 %. 

The long-term stability of the electrochemical lactate biosensors were addressed for 

five months by keeping the biosensors in the fridge at 4 ºC without any protection of the 

enzymatic composite film. Sixteen electrochemical lactate biosensors were fabricated and 

stored at 4 ºC and then lactate calibration plots (n=4) were recorded at days 2, 30, 62 and 

150 after their fabrication. Our findings show that sensitivities obtained from the average 

calibration plots remains inside range of control limits (±3 x standard deviation from the 

slope value obtained on the first day) with an enzymatic  response higher than 82 % after 

150 days under our storage conditions. 

Table 1 shows analytical data of different LOx biosensors based on screen-printed 

carbon electrodes found in the literature. It is worthwhile noting that our electrochemical 

lactate biosensor shows sensitivity higher than the majority of biosensors presented within 

Table 1 (Ghamouss et al. 2006; Pérez and Fàbregas 2012; Rawson et al. 2009; Shimomura 

et al. 2012). Even though the LOD value of our electrochemical lactate  biosensor is clearly 

of the order of some electrochemical biosensors based on the use of screen-printed 

electrodes, as shown in Table 1, LOD values are higher than compared to non-

electrochemical approaches, see for example Minami et al (Minami et al. 2015) who 

developed an organic field effect transistor. However, in their work, no real samples were 



explored limiting their work and sensor application. It is important to note that the lactate 

concentration within the culture media is among 2-11 mM (Morbeck et al. 2014), so for 

practical sensor applications, the requirement of a super low LOD value is not a limitation 

since our novel electrochemical lactate biosensor has the advantage of high stability, 

robustness and low cost effective production. 

In the case of the long-term stability our electrochemical biosensor also offers 

excellent performances, better than others reported (Ghamouss et al. 2006; Pérez and 

Fàbregas 2012; Rawson et al. 2009). Even when our electrochemical lactate biosensors are 

only stored at 4 ºC without any specific protection against (i.e. humidity or oxygen 

atmosphere) in contrast to other electrochemical lactate biosensors which needed the use of 

protected membrane films or preservation using a aqueous buffer solution. Finally, our 

reproducibility values of the electrochemical lactate biosensor are in the range reported for 

biosensors used for food and clinical applications. 

 

3.3. Interference study. 

An interferences study is carried out in order to ensure its applicability to real 

samples. Different substances present in embryonic cell culture such as glucose, pyruvate 

and Bovine Serum Albumin (BSA) are checked out by chronoamperometric measurements 

in a pH 7.4 0.1 M PBS buffer solution at a controlled potential of -0.2 V. Different amounts 

of the above substances are added successively, as shown in Figure ESI-2,  and only the 

addition of lactate into the buffer solution leads to an increase in current intensity. 

Therefore, the presence of the different substances, even the presence of a large protein like 

BSA, does not modify the correct performance and selectivity of the electrochemical 

biosensor. 



 

3.4. Determination of lactate in commercial embryonic cell culture. 

The electrochemical lactate biosensor is employed to the determination of lactate present in 

an commercial embryonic  culture medium from the pronucleate stage to day 2 day 3 (G1). 

Lactate quantification from the commercial sample is measured by chronoamperometric 

technique by diluting the G1 sample in a factor of 1:80 using a pH 7.4 0.1 M PBS. No 

matrix effects are observed and the value of the lactate concentration for the medium G1 is 

obtained by interpolation into calibration curve of the corresponding amperometric signals. 

Our results provide an average value of 11.8 ± 1.7 mM of lactate over four different 

electrochemical biosensors.  In order to validate the new proposed methodology, the G1 

medium was also analyzed by independent HPLC-UV according to the procedure 

mentioned in experimental section. Such liquid chromatographic methodology revealed a 

lactate concentration of 11.94 ± 0.10 mM for three repeats. To clearly demonstrate lactate 

analysis using our electrochemical lactate biosensor, lactate concentration in a different cell 

culture medium, called G-MOPS, was performed. G-MOPS is designed to handling and 

manipulating of oocytes and embryos outside the incubator. G-MPS consists of amino 

acids, organic acids and antibiotics, according to the supplier. Lactate quantification within 

the sample G-MOPS was 10.34 ± 2.3 mM (n=3), whereas the liquid chromatography 

method revealed a lactate concentration of 9.82 ± 0.09 mM (n=3). “Figure ESI-3 depicts 

the calibration curve regarding current intensity versus lactate concentration present in 

sample G-MOPS after five successive additions (25 μL each). On the other hand, lactate 

concentration was also determined in the cell culture medium called G1-plus, a similar 

medium to G1 but with the presence of a estimated Human Serum Albumin (HSA) protein 

concentration of 5.0 mg mL
-1

. In this case, lactate quantification within the sample G1-plus 



was 11.29 ± 1.3 mM (n=3), whereas the liquid chromatography method revealed a lactate 

concentration of 10.12 ± 0.10 mM (n=3). Hence, results clearly demonstrate the reliability 

of the lactate analysis in complex cell culture media using our electrochemical lactate 

biosensor. Hence the results obtained from both the electrochemical lactate biosensor and 

liquid chromatographic methodology shows no significant differences within the retrieval 

of lactate concentration, according to a t-test with a 95 % confidence level.  

 

 

4. Conclusions. 

 This article reports the novel fabrication of an electrochemical lactate biosensor 

towards the determination of lactate within an embryonic cell culture. Such electrochemical 

biosensor provides a simple, fast and reproducible sensor (RSD of less than 3.8 %), which 

can be potentially utilized as a non-intrusive point of care sensor. The electrochemical 

lactate biosensor based upon a MWCNT and chitosan modified SPBGE provides a well-

defined bioelectrocatalytic response upon the presence of lactate. These electrochemical 

biosensors offer a linear range of 30.4 - 243.9 µM and a LOD of 22.6 µM. Moreover the 

hybrid composite biosensor presents an excellent sensitivity of -3417 ± 131 µA M
-
µA M

-1
 

due to the high electron transfer provided by the MWCNTs, in addition to the adequate 

immobilization of a LOx enzyme favored by the chitosan biopolymer. In terms of stability, 

the biocompatibility of the chitosan matrix with the LOx and the HRP enzymes makes the 

electrochemical lactate biosensor stable even after 5 months (with a retention of more than 

82 % of the enzyme activity of the electrochemical biosensor) when stored at 4 ºC, which 

unlike current literature does not require any protection of the enzymatic composite.. In 

conclusion, this novel screen-printed electrochemical lactate biosensor is an ideal 



embryologist tool for determining lactate within the cell culture media of a human embryo 

during its cell development or after embryo retrieval. Such revelations have been validated 

by highly costly liquid chromatographic methods and possess no significant differences 

within the retrieval of lactate. Both the methodology of the fabrication of the 

electrochemical lactate biosensor and its applications are protected by the Spanish patent 

number P201431875.  
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Figures and Table captions 

 

Figure 1. (a) SEM image of the working electrode from a SPBGE platform; (b)  SEM 

image of the film formed by MWCNTFcMe/CS/HRP/BSA/LOx composite film on the 

working electrode surface of the SPBGE electrochemical platform  

 

Figure 2. Cyclic voltammograms of the electrochemical lactate biosensor in the absence of 

CS (solid line) and in the presence of CS (dashed line) in 0.1 M PBS pH 7.4 at 22 ºC. Scan 

rate 10 mV s-1. First scan recorded. 

 

Figure 3. Linear sweep voltammetry response for the electrochemical lactate biosensor with 

a successive addition of 50 µL of a 10 mM lactate solution in 0.1 M PBS solution pH 7.4, 

under hydrodynamic conditions. Scan rate was 10 mV s
-1

. Inset of figure: Calibration plot 

for the electrochemical lactate biosensor with lactate concentration in 0.1 M PBS pH 7.4 at 

a working potential of -0.2 V and 22 ºC. 

 

Figure 4. Chronoamperometric response of the electrochemical lactate biosensor with a 

successive addition of 25 µL of a 10 mM lactate solution in 0.1 M PBS solution pH 7.4 at 

working potential of -0.2 V. Inset of figure: Calibration plot of the response 

electrochemical lactate biosensor with lactate concentration in 0.1 M PBS pH 7.4 at -0.2 V 

and 22 ºC.  



 

Figure 5. Reproducibility study for the lactate calibration plot (R=0.99781, n=8 

electrochemical lactate biosensors) in 0.1 M PBS pH 7.4 at 22 ºC and -0.2 V.  

 

Table 1. Comparison of different electrochemical lactate biosensors reported in literature 

based on LOx immobilization on Screen-printed carbon electrodes SPCE 
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Material 

 modified SPCE 

Linear 

range 

/ µM 

LOD 

/ µM 

Sensitivity 

/ µA 

mol·dm
-1

 

RSD / % 

reproducibility 

Potential 

/ V 

Stability Samples Reference 

CS/MWCNTsFcMe-

HRP/BSA/LOx-

SPBGE 

30.4 - 

243.9 

22.6 3417  3.8 -0.2 82 % 

after 5 

months 

Embryonic 

cell 

culture 

This work 

PS/MWCNTs/Fc-

HRP/BSA/LOx-

SPCE 

 

1.0-

31.2 

0.5 1168.8 2.7 -0.1 40 % of 

initial 

response 

after 2 

weeks 

Wine and 

beer 

(Pérez and 

Fàbregas 

2012) 

LOx-

FSM8.0/Naf/CoPC-

SPC 

18.3-

1500 

18 570 

 

5.3 0.45 * 98 % 

after 9 

months 

---- (Shimomura 

et al. 2012) 

LOx-microband-

SPCE 

1000-

10000 

289 3.63 9 0.4 * 2 weeks ----- (Rawson et 

al. 2009) 



 

 

*Potential in V vs Ag/AgCl (3.5 M KCl); **Potential in V vs pseudo reference Ag/AgCl. 

CS: Chitosan, MWCNTs: multi-walled carbon nanotubes, LOx: Lactate oxidase, HRP: 

Horse Radish Peroxidase, SPCE: Screen-printed carbon electrode, PS: polysulfone, FSM: 

HRP/graphite/LOx-

SPCE 

10 - 

180 

10 870 10 ˂-0.1 * 2 weeks 

90 % 

activity 

4 weeks 

loss 

activity 

dairy 

products 

(Ghamouss 

et al. 2006) 

PtNps/GCNF–PEI–

GA–LOx–Gly-

SPCE 

10 - 

2000 

6.9 41302  4.9 0.3 ** 90 % 

first 

signal 

after 3 

months 

at (rt) 

95 % 

first 

signal 

after 18 

months 

stored at 

-20 °C. 

Ciders and 

wine 

(Loaiza et 

al. 2015) 



mesoporous silica, CoPC: cobalt phthalocyanine, PtNps: platinum nanoparticles, GCNG:  

graphitized carbon nanofibers, PEI: polyethyleneimine, GA: glutaraldehyde, Gly: Glycine, 

rt: room temperature.  
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Figure 2 
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Figure 3 
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Figure 5. 

 

 

Highlights 

 Chitosan/carbon nanotubes provides an excellent substrate for the immobilization of 

lactate oxidase. 

 Electrochemical lactate biosensor based on chitosan/carbon nanotubes modified 

screen-printed graphite electrodes shows a high stability (until five months or more) 

when stored at 4 ºC with no requirements of any protection of the enzymatic 

composite. 

 Simple, fast and reproducible electrochemical lactate biosensor towards the 

determination of lactate within an embryonic cell culture. 

 




