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Abstract 

 

Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite 

materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC 

particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of 

these composites on their thermal conductivity, and hence on their potential applications, materials with 

matrices of Al-12wt.%Si alloy and epoxy polymer have been fabricated. Samples have been cut at a 

variable angle with respect to the flakes plane and thermal conductivity has been measured by means of 

two standard techniques, namely, steady state technique and laser flash method. Experimental results are 

presented and discussed in terms of current models, from which important technological implications for 

heat sinking design can be derived. 
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1. Introduction 

Graphite-based composites constitute nowadays an important family of materials with a great range of 

applications [1-5]. In these materials, graphite is present as second phase in different shapes: particles, 

short fibres, foams, flakes, nanotubes, etc. With the exception of those particles formed either by 

isostatically pressing smaller particles or either by folding up graphite flakes, the rest are intrinsically 

anisotropic. This anisotropy is normally transferred to the macroscopic properties of these materials. 

However, many graphite-based composites, especially those fabricated with reinforcements of short 

dimensions, are typically isotropic due to the fact that there is no massive orientation of their graphitic 

second phases. These materials, owing to the randomization of the anisotropic properties of their second 

phases, have relatively poor properties. In fact, the main problem posed by the various carbon 

reinforcements evaluated in the last twenty years (graphite particles, short carbon fibres or carbon 

nanotubes) seems to be the difficulty in getting massive orientation to take benefit of the exceptional 

planar (two-dimensional) properties of graphite [6-9]. 

One of the applications for which graphite-based composites have been mostly evaluated concerns their 

use as heat sinks for thermal management in electronics. Compared to their direct candidate competitors 

(copper matrix composites and Al/SiC), several are the advantages that these materials offer: low price, 

low weight and ease of machinability. Nevertheless, until recently, these materials were mainly limited by 

their low values of thermal conductivity (TC). The use of graphite as a key component of materials for 

thermal management has been recently triggered by a novel proposal, in which metal matrix graphite 

flakes-based composites have been fabricated by pressure-assisted infiltration [4,5,10,11]. Packaging and 

infiltration of graphite flakes is a delicate process due to intrinsic problems related to the flakes 

morphology. Packing of the flakes by a common uniaxial pressing procedure tend to orient them in such a 

way that they lie on top of each other, conforming a relatively dense preform with no open channels to 

allow infiltration of the liquid metal, necessary to consolidate the material. This difficulty has been solved 

by a new method developed by the authors [12-17] that consists of preparing and packing powder 

mixtures conformed by a combination of graphite flakes and another finely divided material with a 

largely different morphology (i.e. SiC particles or carbon fibers). When packed, these mixtures tend to 

naturally adopt a microstructure in which graphite flakes get oriented in planes and in between the planes 

the material with different morphology is confined, acting as a separator. The material can be described as 
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a three-phase composite that, based on its properties, is clearly anisotropic given the intrinsic properties 

of the graphite flakes and their orientation in the preform. Within such a microstructure, the thermal 

conductivity is highest along the two directions parallel to the oriented flakes plane. For this plane, the 

coefficient of thermal conductivity exhibits its lowest value. The parameters affecting the overall thermal 

conductivity of these materials are many and, hence, have to be conveniently controlled: purity of metal 

and reinforcement phases, reactivity between matrix and reinforcement, dimensions and aspect ratio of 

graphite flakes, orientation and degree of alignment of graphite flakes, etc.  

Oriented graphite-flakes heat spreaders can take advantage of the anisotropic thermal properties of natural 

graphite and, adequately implemented in electronic packaging, can act as both, heat spreaders or thermal 

insulators, to eliminate localized hot spots in electronic components. Both experimental techniques and 

numerical models have been used to examine performance of anisotropic heat spreaders for these 

applications. In a simplified model, Tzeng [18] showed that an anisotropic heat spreader, with properties 

similar to those of natural graphite, could lower the maximum temperature of a localized heat source by 

proper transfer of heat from an electronics enclosure to an external mounting rack. Design of proper 

placement and orientation of anisotropic heat sinks is mandatory in order to create an adequate heat 

extraction, since there is the risk that the case temperature immediately below the heat source can be high. 

One of the most recent examples of use of an anisotropic graphite-based heat spreader is that described by 

Norley in [19], which consists of chemically bonded expanded natural graphite with an in-plane TC up to 

230 W/mK and a perpendicular TC of 4.5 W/mK. The use of resin to fill in the porosity leads to an 

increase of the perpendicular TC up to 70 W/mK. Due to the low TC of non-metallic matrices, metals are 

preferred as matrix materials to build up composites with high TC. 

The present contribution is addressed to evaluate the implications of the inherent anisotropy of the 

recently developed Gf-SiCp/matrix composites [12-17] by considering two largely different thermally 

conductive matrices: Al-12wt.%Si alloy and epoxy resin. The evaluation of the anisotropy of the 

composite was carried out by cutting samples out from primigenial pieces (one for each matrix type) at a 

variable angle  with respect to the flakes plane, and measuring their thermal conductivity. The fact that 

all samples with same matrix come from a single piece of material serves to insure that the only 

differentiating feature among them is the orientation of graphite fakes along the measurement axis. The 

results here presented have aspects of technological relevance. Specifically, while for angles 0º and 90º 

(perpendicular and parallel to the graphite flakes, respectively) the thermal conductivity does not depend 
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on the shape of the sample; a significant dependence is found for intermediate angles. In addition, it is 

shown that samples are microstructurally inhomogeneous for length scales shorter than 600 m. The 

results provide useful information on how an error when orienting the samples for final cutting may affect 

final properties. These features suggest that, although in situ evaluation seems somehow necessary, lab 

testing may give a precise indication of what the material properties are and how to implement these 

materials as heat sinks in electronics. 

 

2. Experimental Procedures 

2.1 Materials 

Composites were prepared by infiltrating a liquid matrix into preforms of graphite flakes (Gf) and silicon 

carbide (SiCp) particles mixtures. Graphite flakes were purchased from Graphitwerk Kropfmühl AG 

(Hauzenberg, Germany). They have platelet morphology with the following dimensions: 400 m of 

average diameter and 50 m of average thickness. Silicon carbide particles, of green quality (>99%), 

were kindly donated by the Spanish company Navarro SiC S.A. (Cuenca, Spain). Particles with average 

diameters over the range 12.7-167 m were used. The respective morphologies of graphite flakes and SiC 

particles are illustrated by the micrographs of Figures 1a and 1b. From Figure 1a it becomes evident the 

clear platelet morphology of the graphite flakes, which exhibit clean flat base surfaces. SiC particles are 

irregular but clearly more rounded (image analysis gives aspect ratios of 12 and 1.6 for flakes and 

particles, respectively). Preforms were infiltrated either with the eutectic alloy Al-12wt%Si (hereafter 

referred to as Al-12Si), supplied by LKR Leichtmetallkompetenzzentrum Ranshofen GmbH (Ranshofen, 

Austria), for which chemical analysis revealed 0.1% Fe as major impurity, or with WWA epoxy resin 

(with WWB4 hardener), supplied by Resoltech SAS (Eguilles, France). 

 

2.2 Composites Fabrication 

The fabrication procedure selected for composite fabrication was liquid metal infiltration assisted by gas 

pressure. Prior to infiltration, preparation and packing of the particle mixtures turns to be a delicate and 

tricky process that requires personnel with the necessary experience. Preparation of the mixtures was 
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carried out by mixing the proper amounts of graphite flakes and SiC particles in a container with 

cyclohexane. The suspension was magnetically stirred for at least 30 minutes, after which the samples 

were dried in a conventional oven at 70ºC. Once dried, the mixtures were packed by pouring them into 

steel moulds of dimensions 60x60x30 mm and by applying a uniaxial pressure of 40 bars with the help of 

a hand-pressing machine. 

Pressing direction was y while the xz was the flakes plane (Fig.2). This method facilitates two essential 

requisites of the mixture preforms, namely, orientation of graphite flakes and alternation of SiC particles 

and oriented flakes. As already explained, packing of flakes and SiC particles into the moulds turns out to 

be the most demanding step of the composite fabrication. Measuring the weight and the exact dimensions 

of the packed preforms allowed obtaining the volume fraction of each component. 

The packed preforms were subsequently placed in cylindrical crucibles made out of stainless steel, whose 

internal surface was covered with a thin layer of a boron nitride-based painting that is delivered as aerosol 

paint (ZYP Coatings Inc,, Oak Ridge, EEUU). In order to fill the space in between preform and crucible, 

a fine graphite powder was poured and packed with the help of a small piston used as hammering tool.  

Different procedures were followed for metal and polymer infiltrations. For infiltration with Al-12Si 

alloy, a solid piece of the metallic alloy was placed on top of the packed preform and, prior to melting, 

the sample was transferred into a cold-wall heating chamber where primary vacuum was applied in order 

to facilitate infiltration and reduce porosity (see [20,21] for equipment details; see [10,17,21,22] for 

details on infiltration process). Then, the temperature was raised up to 700ºC (Al-12Si alloy) and nitrogen 

was introduced into the pressure chamber until a pressure of 25 bars was reached. After two minutes of 

infiltration, the heating was stopped and the sample was let for slow solidification. For infiltration with 

epoxy resin, the Gf-SiCp packed preform was placed in a small desiccant container properly adapted for 

resin moulding. Primary vacuum was applied and afterwards the liquid epoxy resin was poured on top of 

the packed preform. The chamber was open and the sample was transferred into the cold-wall heating 

chamber (the one used, as described above, for metal infiltrations). A pressure of 25 bars (at a 

temperature of 25ºC, this is, with no extra heating) was applied for two days, in order to achieve 

infiltration and curing of the resin. After infiltration, samples were cut out from the infiltrated pieces 

along a direction forming an angle  with the flakes plane (plane xz). Figure 2 illustrates the cutting 

process. 
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2.3 Materials characterization 

2.3.1. Microstructure - Image analysis characterization 

Representative samples were sectioned and mounted in thermosetting resin (Buehler Diallyl Phthalate 

resin, from Buehler, Illinois, USA). Standard metallographic techniques for optical microscopy were 

followed. Grinding was done with the help of a water-lubricated rotating disk covered with silicon 

carbide papers of subsequent decreasing granularity (P120-P240-P400-P800-P1200 and P2500, each 

stage lasting for approximately 10 min). Polishing was achieved by using a silk cloth and diamond paste 

as abrasive (from Buehler, Illinois, USA). Three different abrasive diamond pastes of 15, 6 and 1 m 

were used in consecutive steps that lasted 30 min each. 

In these materials it is very interesting to study not only the anisotropy but also the inhomogeneity in their 

microstructure. Both characteristics are especially important in heat sinking design for applications in 

electronics. Anisotropy is important for the heat sink assembly and hence knowledge of proper graphite 

flakes angle with respect to sample geometry is also important. Inhomogeneity, which may be 

determinant to know the limitations of a material to be used for heat extraction, can be measured by the 

degree of misalignment of the flakes and the minimum size of a specimen for which the measurement of 

volume fraction of the different phases is constant. These measurements were carried out with image 

analysis software, from Buehler-Omnimet Enterprise (Illinois, USA), coupled to an Olympus PME-3 

optical microscope. For doing so, it was necessary to work with image fields that covered representative 

areas of the samples. Given that the lowest magnification of the optical microscope was high for this 

purpose (50x), sets of several images at 50x were taken and then joined with the software of the Image 

Analysis in order to have image fields of 1200 m x 1600 m. The different constituent phases were 

differentiated by thresholding the images based on a grey-scale criterion. The measurements were carried 

out in at least ten groups of composed picture sets in order to access to statistics on the material. 

 

2.3.2. Thermal conductivity 

The thermal conductivity was measured by means of two techniques, namely, the relative steady-state 

technique (RSST), and the laser flash test (LFT). RSST measurements were carried out on 

paralellepipedic samples of 25 mm height and a square section of side 10 mm, in a non-commercial 
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equipment assembled at the laboratories of the University of Alicante by following the ASTM E1225-04 

International Standard [21]. The equipment basically consists of a clamping system able to establish a 

thermal gradient over a sample and a reference that are in contact across their cross sections. The 

reference material is in contact with a copper block that in its turn is connected to a thermally stabilized 

hot water bath at 70ºC. The sample is connected to a water-cooled copper block at 20ºC. Reference and 

sample are protected with thermal insulating materials in order to insure that heat losses through radiation 

and/or convection are minimized. For those samples having Al-12Si as matrix, a reference of oxygen-free 

high purity copper (99.999%), with a nominal thermal conductivity of 398 W/mK at 40ºC, was used. 

Alternatively, brass alloy, with a thermal conductivity at 40ºC of 120 W/mK, was used as reference when 

dealing with samples containing epoxy resin as matrix. 

Both references were of cylindrical shape, with a diameter of around 16 mm and length of 40 mm. The 

overall error associated with these measurements was estimated to be less than 5%. 

LFT measurements in turn were carried out in a Netzsch LFA 457 apparatus (located at the laboratories 

of CEIT, San Sebastián, Spain) on samples of 2 mm thick and a circular section of diameter 10 mm. The 

measurement basically consists of irradiating one face of the sample by a short laser pulse (≤ 1 ms) and 

measuring the temperature rise on the opposite face of the sample. Standard algorithms were used in 

order to correct heat losses through radiation during the measurement [23]. The thermal diffusivity of the 

sample could be derived from the profile of a temperature vs time graph. By using the equation   

    , with  being the thermal diffusivity and Cp and ρ being the specific heat at constant pressure and 

density, respectively, the thermal conductivity K of the sample was easily calculated. When Cp is 

unknown, as it is the case in the present study for the different materials fabricated, the linear rule of 

mixtures can offer a good approximation (see [13] for details). 

 

3. Modelling 

The experimental results were interpreted with the aid of current approaches to describe the angular 

dependence of the thermal conductivity of anisotropic solids [24-26]. For that sake, let us assume that a 

thermal gradient is applied along the z-direction in the x-z plane (note that in oriented structures like the 

one of the material herewith discussed, the x and y directions are equivalent). Being the direction cosines 

of the z-axis relative to the principal axes of conductivity (in this case the axes parallel and perpendicular 
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to the graphite planes), cos and sin, the relevant components of the second rank conductivity tensor, are 

[25]: 

                            
 

(1a) 

                               
 

(1b) 

                        (1c) 

 

where K
L
 and K

T
 are the thermal conductivities of the composite in the directions parallel and transversal 

to the flakes plane. In the case of an infinite thin plate with the thermal gradient perpendicular to it, the 

thermal conductivity of the composite can be closely approximated by Kzz() [25]: 

              (2) 

 

If, instead, the sample is infinitely long along the heat gradient direction z, being insulated along its 

length, heat will be forced to flow solely in the z-direction and the conductivity of the composite will be 

given by [24,26]: 

              
   

    

      
 (3) 

 

On the other hand, the direction of heat flow (note that in anisotropic materials the heat flow direction 

may not coincide with the direction of the temperature gradient, see [24]) forms an angle  with the flakes 

plane, given by: 

      
  

  
     (4) 

 

Two limiting cases of interest are: a) K
T
 = K

L
, then  = , and b) K

L
 >> K

T
, then =0. 

It should be noted that while the TC was calculated by means of both Equations (2) and (3), KT and KL in 

Equations (1-4) can be calculated by means of a model that considers oriented graphite flakes, shaped as 

disks, in a pseudo-matrix consisting of a binary composite of SiC particles and Al-Si alloy or epoxy resin. 

This model of oriented disks was first proposed by Hatta and Taya and takes the following form: 

 
          

  

         
   

  
     

 
(5) 

 

where the superscript i= L,T refers to longitudinal and transversal directions (related to the flakes plane) 

and S
i
 is a geometrical factor whose value depends on both the morphology and orientation of the 

reinforcement. Kmp is the thermal conductivity of the pseudo-matrix, which can be calculated with the 

mean field approach (DEM model) as follows: 
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 (6) 

 

Kp
eff

 is defined in turn as 

   
   

  
  

  
  

  

 (7) 

 

where Kp and r refer to the intrinsic thermal conductivity and the average radius of the SiC particles, 

considered as spheres, respectively; h is the thermal conductance of the Al-Si/SiCp interface. 

The expressions for calculating S
i
 for the present case where flakes builds up a network of oriented thin 

disks distributed in the matrix-SiCp composite, are the following: 

 
   

  

  
 

 
(8) 

      
  

  
 (9) 

 

where t is the thickness of the graphite flakes and D their average diameter. 

In calculating K
T
, the thermal conductivity of the graphite flakes must be replaced by an effective value 

which is calculated by an expression equivalent to (7): 

 
  

     
 

  
 

  
  

 

     

 
(10) 

 

4. Results and discussion 

4.1. Microstructure and Image analysis characterization 

A representative optical micrograph of the composites obtained at the lowest possible magnification of 

50x is shown in Figure 3a. Figure 3b shows an image of the microstructure of the material that covers a 

total area of 1200 m x 1600 m, which has been obtained by joining with the Image Analysis software 

nine consecutive images of low magnification (50x) as the one in Fig 3a. The microstructures shown in 

Figure 3 reveal the morphologies and spatial distribution of graphite flakes and SiC particles in the matrix 

of Al-12Si alloy. The graphite flakes conform a quasi-continuous structure of randomly distributed 

oriented disks while the SiC particles appear with no special orientation together with the metallic matrix 

in the space in between the flakes. Particles appear homogeneously distributed in the matrix with no 
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evidence of particle breaking. No evidences of porosity presence are detected, probably due to the 

vacuum applied to the preform before infiltration, and to the high pressures used for infiltration (25 bars). 

To evaluate size scale beyond which the composite can be considered homogeneous, the volume fraction 

of flakes was determined by means of Image Analysis within squared screening windows of increasing 

size (starting from 5050 m) (Fig. 4a). Misalignment of flakes in the microstructure can be determined 

by the measurement, with the help of Image Analysis, of the orientation of many particular flakes in 

respect to virtual lines drawn parallel to the cutting plane of the sample (Fig. 4b). 

Figures 5 and 6 collect results concerning homogeneity in the volume fraction of the present phases and 

misalignment of the graphite flakes, respectively, in a sample fabricated by infiltration of Al-12Si into 

preforms containing 54% of graphite flakes and 29% of SiC particles of an average diameter of 22.5 m 

(here below referred as D7 – see Table 1). Results shown in Figure 5a clearly indicate that beyond 400-

600 m of screening window side, the system can be considered homogeneous. This is more clearly seen 

if the standard deviation of these results is plotted (Figure 5b). It is seen that, albeit the standard deviation 

should vanish as the size of the square field tends to infinity, beyond 400-600 m it becomes already very 

small (smaller than 0.05). This somehow supports the use of samples 2 mm thick in the evaluation of the 

thermal conductivity by means of the laser flash test (see below). 

Figure 6 shows the compilation of such measurements in terms of the probabilistic frequency for a 

graphite flake to be at a certain angle in respect to the characteristic cutting angle. The figure contains the 

fittings of experimental data with curves that obey the mathematical expressions for Gaussian functions. 

From the expressions of the derived fittings the standard deviation of the graphite flakes angle alignment 

in respect to the cutting angle can be obtained. These values are of 12º for the two curves shown in Figure 

6. Measurements carried out in other samples for different cutting reference angles show that the values 

of standard deviation are always below 15º. The material can be considered as composed of relatively 

well-oriented graphite flakes and seems adequate for confrontation with predictive models. 

 

4.2 Thermal conductivity – experiments and modelling 

Using Equations (1-6) for the modelling of anisotropy in the present composite materials requires an 

appropriate knowledge of the graphite flakes conductivities, both in the parallel and the perpendicular 

directions to the basal plane. Given that the direct measurement of these magnitudes is extremely difficult 
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and cannot be conceive it here, their values may be derived with indirect calculations based on the 

thermal characterization of these composites in the parallel and the perpendicular directions of flakes 

orientation. Experimental results for the thermal conductivity of several composites, which differ in their 

matrix nature and size and content of the SiC particles, as measured by means of the RSST technique are 

reported in Table 1. Kf
L
 and Kf

T
 (thermal conductivities in the parallel and transversal direction of the 

graphite basal planes of the flakes, respectively) can be derived by linear fittings from plots of the 

calculated thermal conductivities (with Equations 5-10) versus the experimental thermal conductivities 

gathered in Table 1. For the calculations, the parameters collected in Table 2 have been used. While VSiC 

in Table 1 refers to the total volume fraction of SiC particles in the composite, it is interesting to note that 

the local volume fraction of the SiC particles (V’SiC) in the pseudo-matrix of SiCp/Al-Si or SiCp/epoxy, 

calculated as V’SiC=VSiC/(1-Vf), is in the range 0.52-0.58 (these are two limiting values of the particle 

volume fraction in the binary composite; for simplicity reasons, an average value of 0.55 can be taken). 

Figure 7 shows these plots in which it becomes evident that the thermal conductivities of the Gf-

SiCp/epoxy composites are much lower than those corresponding to the Gf-SiCp/Al-12Si composites. Kf
L
 

is calculated to be 523 W/mK while Kf
T
 is around 28 W/mK, both values characterizing the anisotropy of 

the graphite flakes used in the present work. These values are in line with those obtained in ref [9] for 

composites Gf-SiCp/Al-12Si. The fact that a unique value of the intrinsic thermal conductivity for the 

graphite flakes can be derived from composites with matrices of so different nature (metallic alloy and 

epoxy polymer) denotes that the postulation of considering the flakes as disk-like shaped second phases 

and the application of the corresponding model to these composites are reasonable approximations.   

Table 3 and Figure 8 collect the experimental data of thermal conductivity for the Gf-SiCp/Al-12Si and 

Gf-SiCp/epoxy composites for samples corresponding to preform code D7, obtained by cutting the 

infiltrated pieces along a direction forming an angle  with the flakes plane (plane xz), as shown in Figure 

2. Anisotropy has been evaluated by the evolution of the thermal conductivity with the flakes orientation. 

In order to consider the effect of the geometry of the samples, measurements were taken with the two 

techniques of RSST and LFT, which require largely different sample dimensions.   

The measured values for the dependence of the thermal conductivity on flakes orientation for the two 

series of specimens (Gf-SiCp/Al-12Si and Gf-SiCp/epoxy) follow a tendency that is similar to that 

obtained for uniaxial carbon fiber-reinforced glass matrix composites [24]. In all cases the TC decreases 

steadily with the angle . As it is obvious, the thermal conductivities of both Gf-SiCp/epoxy and Gf-
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SiCp/Al-12Si composites in the direction parallel to the flakes orientation are well above those obtained 

for the perpendicular direction, existing a soft transition between these two values with the cutting angles. 

It is worth commenting that the difference between the two extreme values for parallel and perpendicular 

directions is about 300 W/mK and about 90 W/mK for Gf-SiCp/Al-12Si and Gf-SiCp/epoxy composites, 

respectively. This difference, that intrinsically characterizes the anisotropy of the material, would have 

been expected to be much larger if the orientation of the flakes would have been greater. 

Furthermore, the above results indicate that the dependence of thermal conductivity on graphite flakes 

orientation is a function of specimen geometry; i.e. the ratio of its dimension in the direction of heat flow 

and its width. These results are in perfect agreement with previous studies carried out on composites with 

continuous fibre reinforcements [24]. For “thin” samples like those required in the LFT measurements, 

the width of the specimens is much larger than their thickness in the direction of temperature gradient. 

The conduction of heat flow is unaffected by the edges of the sample and the thermal conductivity 

behaves as that for a composite sample with infinite dimensions. In consequence, thermal conductivity 

can be closely approximated with Equation 2. Instead, for samples having a width of the order of its 

length, or much shorter, like those used in the RSST characterization, heat conduction is affected by the 

specimen sides, which are thermally isolated from the surrounding medium and constitute heat flow 

barriers. For these reasons, Equation 3, which is valid for strip-isolated samples, can closely approximate 

the thermal conductivity. This is to be expected, since the heat is preferentially conducted by the graphite 

flakes, which are much better thermal conductors than the matrix, being this either Al-12Si or epoxy, and 

a fraction of the flakes will orient the heat towards the isolated sides of the sample, rather than towards 

the opposite face of the specimen. 

 

4.3 Heat sinking design considerations 

The experimental results above presented have intrinsic relevant interest for the materials development 

community, as well as they bring technological implications for heat sinking design. Heat sinking design 

has become a topic of great interest for the control of heat flow in thermo-electronics, the development of 

thermal circuits for electro-mechanical systems and thermal energy harvesting. 

The graphite flakes-based composite materials here presented are clearly anisotropic and their values of 

thermal conductivity strongly depend on the angle of the oriented flakes in respect to the thermal 
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gradient. For extreme angles of 0º and 90º there is no extra dependence on specimens shape. However, 

for intermediate angles, the thermal conductivity is dependent on the geometry of the specimen. While 

“thin” samples behave as infinite solids, “thick” samples are strongly affected by their surrounding 

environment and have a sharper decrease of thermal conductivity with the orientation of graphite flakes 

for intermediate angles, being especially lower for angles close to 45º. This sample-shape dependence 

should be taken into account when designing a particular heat sink. In general for anisotropic solids, it is 

preferred the use of “thin” specimens when the design for heat sinking implies the orientation of the 

graphite flakes at a certain angle, especially for angles close to 45º. In particular for the graphite flakes-

based material at hand, there is a limitation in using “thin” specimens as heat sinks: by considering phase 

constituents homogeneity criterion, the thickness must always be greater than 600 m. Another 

implication that is derived from the experimental data herewith presented is that when design criteria 

impose the use of “thick” specimens, it is preferable that the specimens are embedded in a thermal 

conductive case in order not to constrict the heat flow through the composite material only in the 

direction parallel to the thermal gradient, since this would greatly decrease the effective thermal 

conductivity of the heat sink in this direction.  

 

5. Conclusions 

The anisotropy of the recently developed graphite-based three-component composite materials has been 

evaluated through measurements of the thermal conductivity on samples cut in a direction forming a 

variable angle with the oriented flakes plane. The results have been discussed in terms of current 

theoretical approaches. Some issues of technological relevance derived from the present investigation 

have been identified. Specifically, while for angles 0º and 90º (perpendicular and parallel to the graphite 

flakes, respectively) the thermal conductivity does not depend on the shape of the sample, a significant 

dependence has been measured for intermediate angles. In addition, it is shown that samples are 

inhomogeneous for length scales shorter than 600 m, being this value a limiting factor when designing 

“thin” specimens for heat sinking applications. When dealing with “thick” samples of this material for 

heat dissipation, other considerations must be taken into account, like the possible benefits of 

encapsulating the material in order to enhance the thermal transport, which otherwise can be poor, 

specially for intermediate angles. These features indicate that although lab testing may give a precise 
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indication of what the material properties are, it seems advisable to carry out in situ evaluation of its 

performance. 
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FIGURE CAPTIONS 

 

Figure 1. Micrographs of the graphite flakes (a) and SiC particles (b), used as reinforcements in the present work.  

 

Figure 2.  Illustration of samples cut at different angles with the flakes plane. z’ is the axis along which uniaxial 

packing pressure was applied (it corresponds to the direction perpendicular to the basal planes of flakes); z is the axis 

along which the thermal conductivity is measured. Sample dimensions were 603010 mm (top) cut from the 
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infiltrated preform of dimensions 606030 mm, while small samples for testing had 20 mm in height and a square 

section of side 10 mm (middle and bottom). 

 

Figure 3. Micrographs of the composites obtained through infiltration of Al-12Si alloy into a preform containing 

54% graphite flakes plus 29% SiC particles of average diameter 22.5 m (referred as D7 preform – see Table 1). 

 

Figure 4. Images showing the measurement processes carried out on micrographs of the composites in order to 

obtain the volume fraction of phases over screening windows of increasing size (a) and the misalignment of the 

graphite flakes in respect to the reference cutting angle (b). 

 

Figure 5.  (a) Volume fraction of flakes Vf as a function of the size of the square field over which it was evaluated 

for five series of independent measurements on micrographs of composites obtained through infiltration of Al-12Si 

alloy into a preform containing 54% graphite flakes plus 29% SiC particles of average diameter 22.5 m (referred as 

D7 preform). Results obtained starting either on flakes (filled symbols) or on the metallic composite (empty symbols) 

are shown. The straight broken line corresponds to the bulk value of Vf ; (b) Standard deviation of many 

measurements such as those of the upper panel. 

 

Figure 6. Frequency profiles of graphite flakes orientation angles in respect to two samples with cutting angles of 

m=0º (filled symbols) and m=45º (empty symbols). The lines are fittings with the Gaussian function (     

  
 

      

   , with   
 

    
) with c (standard deviation) parameter equal to 12º for both series of data corresponding to 

m=0º and m=45º. 

 

Figure 7. A graph of results calculated with the disk-like flakes model versus experimental results for the thermal 

conductivity (TC) of the ternary Gf-SiCp/Al–12Si (filled symbols) and Gf-SiCp/epoxy (empty symbols) composites. 

(a) corresponds to the TC along graphite flakes while (b) corresponds to the TC measured transversally to (a). The 

line represents the identity function. The results were obtained for a value of the particle volume fraction in the Al-

12Si–SiCp composite of 0.55, which does actually represent the average of the two limiting bounds for the particle 

content in the ternary composite, namely 0.52 and 0.58 (see main text). 

 

Figure 8. Experimental thermal conductivity of Gf-SiCp/Al-12Si (a) and Gf-SiCp/epoxy (b) composites for samples 

cut along a direction forming an angle  (degrees) with the flakes plane. Results for TC measured either by the RSST 

(empty symbols) or LFT (filled symbols) techniques are shown (see text). (a) and (b) correspond to the TC along and 

transversally to the graphite planes, respectively. 
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TABLE LEGENDS 

 

Table 1. Thermal conductivity Kc (W/mK) of samples cut along a direction parallel (Kc
L) and perpendicular (Kc

T) to 

the flakes plane (see Figure 2) for Gf-SiCp/Al-12Si and Gf-SiCp/epoxy composites. The measurements were carried 

out with the RSST technique. 

 

Table 2. Material parameters used in the calculations according to Equations (1-10). Kr
in is the intrinsic thermal 

conductivity while h is the interfacial thermal conductance. 

 

Table 3. Thermal conductivity Kc (W/mK) of samples cut along a direction forming an angle  with the flakes plane 

(see Figure 2). Kc was measured with the RSST (1) and LFT (2) techniques - see text for details. 
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TABLES 

 
 

Table 1. Thermal conductivity Kc (W/mK) of samples cut along a direction parallel (Kc
L) and perpendicular (Kc

T) to 

the flakes plane (see Figure 2) for Gf-SiCp/Al12Si and Gf-SiCp/epoxy composites. The measurements were carried 

out with the RSST technique. 

 

Preform 
code 

D (m) VSiC 
 

Vf 
Matrix 

V’SiC Al-12Si Epoxy 
 KcL KcT KcL KcT 

A1 167 0.20 0.58 0.62 378 - - - 
B1 60.2 0.24 0.56 0.58 371 - 178 13.4 
C1 37 0.26 0.55 0.52 370 55 - - 
D1 22.5 0.21 0.55 0.63 375 - 135 9.6 
D2 22.5 0.16 0.55 0.69 390 - - - 
D3 22.5 0.19 0.55 0.63 375 - 143 9.6 
D4 22.5 0.23 0.55 0.53 348 - - - 
D5 22.5 0.29 0.55 0.44 322 - 64 7.8 
D6 22.5 0.34 0.55 0.41 294 - - - 
D7 22.5 0.29 0.55 0.54 355 55 98 11 
E1 12.7 0.16 0.52 0.67 378 43 - - 
E2 12.7 0.28 0.52 0.51 341 62 - - 
E3 12.7 0.34 0.52 0.36 297 67 35.2 5.9 

 

. 

Table 2. Material parameters used in the calculations according to Equations [1-10]. Kr
in is the intrinsic thermal 

conductivity while h is the interfacial thermal conductance. 

 Materials Matrix-reinforcement couples 
 Al-12Si Epoxy SiC Al-12Si/SiC Al-12Si/Gf Epoxy-SiC Epoxy-Gf 

Krin (W/mK) 
179 
[27] 

1.7 * 254 [23] - - - - 

h (W/m2K) - - - 
6.39107 ** 

[28,29] 
5.41107 **  

[28,30] 
1.69106 **  

[31,29] 
1.37106 **  

[31,30] 
*value provided by the supplier; **values estimated from the well-known acoustic mismatch model [28], using the 

Debye velocities for matrix and reinforcement encountered in the coupled of cited references, respectively, and the 

densities and heat capacities found in [32]; the heat capacity for the epoxy resin in cured condition was taken from 

[33]. 

 

 

Table 3. Thermal conductivity Kc (W/mK) of samples cut along a direction forming an angle  with the flakes plane 

(see Figure 2). Kc was measured with the RSST (1) and LFT (2) techniques - see text for details. 

Preform code Angle 
Matrix 

Al-12Si Epoxy 
Kc (1) Kc (2) Kc (1) Kc (2) 

D7 

0 355 345 98 100 
15 250 320 70 95 
30 170 260 40 82 
45 120 227 20 57 
60 74 126 16 29 
75 71 65 10 19 
90 55 51 11 10 
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Highlights of manuscript entitled 
 

Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: 

implications in heat sinking design for thermal management applications 

 

signed by J.M. Molina and E. Louis 

 

 

 Anisotropy in thermal conductivity of graphite flakes-based composites is 
evaluated. 

 Samples are cut in a direction forming a variable angle with the oriented 
flakes. 

 For angles 0º and 90º, thermal conductivity does not depend on sample 
geometry. 

 For intermediate angles, thermal conductivity strongly depends on sample 
geometry. 

 “Thin” samples must be thicker than 600 m, “thick” samples must be 
encapsulated. 


