
© 2015, IJARCSSE All Rights Reserved Page | 144

 Volume 5, Issue 7, July 2015 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Parsing Large XES Files for Discovering Process Models: A

Big Data Problem
 Yosvanys Aponte Báez

*
 Alexander Sánchez Díaz

Manuel Marco Such

Agrarian University of Havana Agrarian University of Havana University of Alicante

 San José de Las Lajas, Cuba San José de Las Lajas, Cuba Alicante, Spain

Abstract— Process mining is a group of techniques for retrieving de-facto models using system traces. Discovering

algorithms can obtain mathematical models exploiting the information contained into list of events of activities.

Completeness of the traces is relevant for the accuracy of the final results. Noiseless traces appear as an ideal

scenario. The performance of the algorithms is significant reduce if the log files are not processed efficiently. XES is

a logical model for process logs stored in data centric xml files. In real processes the sizes of the logs increase

exponentially. Parsing XES files is presented as a big data problem in real scenarios with dense traces. Lazy parsers

and DOM models are not enough appropriate in scenarios with large volumes of data. We discuss this problematic

and how to use indexing techniques for retrieving useful information for process mining. An XES compression

schema is also discussed for reducing the index construction time.

Keywords—Indexing, Big data, XES, Hadoop, Map Reduce

I. INTRODUCTION

XML is used to exchange information in a self-describing manner. This makes XML verbose thus introducing

significant amount of redundancy. The resulting size has negative effect on both query processing and data exchange.

The de-facto standard model XES [1] for data representation in process mining stores log information in XML files. This

is the input of the discovering algorithms which efficiency is proportional to these files size. In practice, traditionally

parsing techniques are not suitable for managing input traces. The real process is dense with large amount of process

instances. Also, the most used information retrieval techniques require to be optimized for querying large structured data

in xml files.

Process mining help organizations to discover, monitor and improve real processes, by extracting knowledge from

event logs. The data is collected from all kind of systems and analysed to see the deviations from the standard procedures

and where the bottlenecks are. This helps to improve processes.

In real scenarios (like big management system or banking system with millions of user traces) where anomalies should

be predicted in a prudent period of time, parsing is a critical task. That is why process mining is related with big data area

regarding the lack of adequate techniques for managing large XES files. We discuss this as a big data problem which

solution is crucial for process mining model discovering algorithms. In the following it is presented the difficulties with

structural indexes. In section III we explain briefly the main XES concepts and the compression scheme strategy. A map

and reduce strategy are presented in section IV. In section V the experimental results over the compression schema

strategy. And finally, in section VI appear conclusions and ongoing work.

II. STRUCTURED DATA INDEXING AND QUERYING

Different indexes approaches and queries structures have been proposed in the literature [2][3]. There are two

principal types of structural indexes: structural summary and structural join. The structural summaries indexing methods

[4][5][6] merge the same sub-structures in a XML document and obtain a smaller tree structure, which is used as the

index of the XML document. On the other hand, the structural join strategies are based on the decomposition-matching-

merging processes.

There are a lot of published papers about XML indexing and most of them are confined to small data examples

running in centralized system [7][8]. The PCIM [7] (Path Clustering Indexing Method) clusters paths with the same root-

to-leaf nodes and reduces the space cost of the index using two hash tables, the Structural Index and the Content Index,

with tag names as hashing keys for efficient searching. The PCIM reduces the index space with a high compression ratio

and efficiently process complex queries. But it has the following disadvantages: a long time index construction and the

adoption of a regional numbering scheme. The NCIM [8] (Node Clustering Indexing Method) is another indexing

scheme, which differs from the PCIM by clustering the nodes with the same tag names and storing them in hash tables.

Showing a good compression ratio and supporting complex queries efficiently. A limitation is that they assume that the

indexes can fit into main memory and it is an issue when dealing with large XML documents. Both the PCIM and NCIM

encode nodes by means of regional numbering scheme. However, the PCIM uses strings to represent labels and the

NCIM uses integers where possible. In most cases, the NCIM outperforms the PCIM, because the PCIM stores text

http://www.ijarcsse.com/

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(7),

July- 2015, pp. 144-149

© 2015, IJARCSSE All Rights Reserved Page | 145

content in the other tables, whereas the NCIM stores them in the leaf node index under the corresponding tag name,

which results in reduced search time for processing queries with the selection predicates.

All these approaches and others suffer some difficulties. They require a huge size of memory for storing indexing

structures, which could be bigger than the original XML document in some cases. In order to minimize the size of the

index structure is necessary a critical execution time. Generally their performance is reduced when dealing with large

XML documents.

In [9] we describe how a suffix array can be used as the data structure which stores the structural index in a retrieval

system and provides a virtual index of all sub-paths in a digital collection. We also show how an auxiliary ternary search

tree can accelerate the resolution of structural queries with only a marginal increase in memory usage. For the case of

XES files having highly repetitive structure and small textual content, these structures tend to be very efficient in speed

and storage. Otherwise in [10] is introduced a succinct data structure like Rank and Select to index the text content.

Suffix arrays were introduced as a simple, space efficient alternative to suffix trees. Using the lexicographical ordering,

these suffixes will be grouped together in the suffix array and can be found efficiently with two binary searches.

Otherwise ternary search trees run best when given several similar strings, especially when those strings share a common

prefix. Also ternary search trees are effective when storing a large number of relatively short strings and the average-case

running time for lookup and insertion is logarithmic.

As cloud computing becomes popular, the issues of parallel xml parsing have been discussed recently. However, to the

best of our knowledge, there is a very little work that addresses the problem of indexing as well as querying XML

documents on large distributed environments.

III. EVENT LOGS IN PROCESS MINING

XES is an XML based standard for event logs. It provides a structured format for interchange event log data between

applications. Its structure is based on a well defined sequence of events and activities. It encapsulates a log as a sequence

of process instances named traces. A trace is an ordered sequence of events. All of them are represented as XML

elements. The attributes store properties like timestamps, activities, originators, descriptions, etc.

Fig. 1 XES example

The XES format makes events comparable and configurable by introducing the concept of event classifiers. An event

classifier assigns to each event an identity. It can be used by a parser to identify the types of queries that can be made.

The log holds a list of global attributes for both traces and events. They are understood to be available and properly

defined for each element described for traces and events. They are mandatory elements. In figure 1 appears an XES

fragment using XML elements. We can look the repetitive definitions of events into a trace. Similar occurs with traces

into a log. As we explain in the following section is possible to compress the original XES file reducing it to a smaller

structure.

A. XES compression schema

We use the global attributes for grouping the similar tags elements and attributes for every trace and event. The data

type could be used as a prefix in the attribute name. For instance, in the above example we can join name and description

keys in the unique trace attribute eventstringKeys. In this case it should appear as a global parameter for traces.

Fig. 2 Generic XES file

Fig. 3 Generic XES compressed file

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(7),

July- 2015, pp. 144-149

© 2015, IJARCSSE All Rights Reserved Page | 146

In the global section are specified those string keys that are common for every event in all traces. The attributes having

as a common value a string are joined. The resulting tree for constructing the index is reduced. The original sub tree for a

unique event appears in figure 2. In figure 3 we can observe how the number of nodes for this event at the resulting tree

is reduced when compared with the original. Similar analysis can be made for different elements data types.

IV. SCALED INDEX WITH HADOOP PLATFORM

Apache HADOOP
1
 is an open-source software framework written in Java for distributed storage and distributed

processing of very large data sets on computer clusters. HADOOP consists of two main services: high-performance

parallel data processing using a technique called Map-Reduce and reliable data storage using the HADOOP Distributed

File System (HDFS).

Fig. 4 The processing of Map-Reduce

Map-Reduce [11] is a model for parallel and distributed computation. As we can see in figure 4 it has two computation

phases, map and reduce. In the map phase, an input is split into independent chunks which are distributed to the map

tasks. The mappers implement compute-intensive task in a completely parallel manner. The output is of the form <key,

value> pairs. The framework sorts the outputs of the mappers, which are then passed to the second phase, the reduce

phase. Later the reducers process and sort the <key, value> pairs according to the key value and make the final output.

The HDFS is a distributed file system designed to store and process big data sets. Is highly fault-tolerant and is

designed to be deployed on low-cost hardware. HDFS has a master /slave architecture with a single Name Node and a

number of Data Nodes. On the one hand the Name Node, the master of the HDFS, maintains the critical data structures of

the entire file system. On the other hand the Data Nodes, usually one per node in the cluster, manage storage attached to

the nodes that they run on. Inwardly, a file is split into one or more blocks that are stored in the Data Nodes with

replications.

Fig. 5 Architecture of the proposed system

A. The proposed system

We scaled the system implemented in [9] using the Hadoop platform. The purpose is to implement an efficient

solution for processing large scale XML files using Map-Reduce computing framework.

One important challenge is the decision of splitting policy. For this we propose an architecture that first of all split the

XES files in multiples parts before indexing (see figure 5). The splits are then processed in parallel. The main idea of our

XML reader is to read each element between open and end tags ("<" and “/>") as an input record in our Map-Reduce

application. In our case, the XmlInputFormat class (see figure 6) reads records from files and defines a factory method

for RecordReader implementations as shown.

The RecordReader implementation is where the input file data is read and parsed. This is implemented on the xml

RecordReader class which make use of the LineRecordReader class. This class, is the implementation used by

TextInputFormat to read the lines from files and return them. During this parsing phase each Map function produces a

list of key, value pairs, where key is path from root to leave nodes and value is the set of intervals expanded by nodes that

are reached following the labels in the path from the root to leaves. The Reduce function is then applied in parallel to

1
 https://hadoop.apache.org

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(7),

July- 2015, pp. 144-149

© 2015, IJARCSSE All Rights Reserved Page | 147

each group, which in turn produces a collection of values in the same key. For the flow index construction see figure 7.

Later with these encoded files the structure index can be constructed with the suffix array and ternary search tree data

structures.

Fig. 6 XML input format class

After building XML indexes, users may start sending two types of queries: parent-child query (P-C) and ancestor-

descendant (A-D) query, for both types it can included content or not. For all queries first of all the Job Tracker decides

how many map task are required and distributes these tasks to the chosen Task Tracker nodes. Due to the indexes are

stored in HDFS, the Job Tracker schedules tasks on the nodes where data is present or nearby.

Fig. 7 The flow index construction

V. EXPERIMENTAL RESULTS

This section describes the experimental results for tests performed to check the compression strategies raised in

section III-A. We performed the experiments on a Window 8.1 Operating System with an Intel(R) Celeron (R) CPU

G1830 @ 2.80 Ghz with 4 Gigabytes of Ram.

First we design and implement a tool that generates the XES files, which allows varying different parameters such as

number of traces, originators, activities, events by trace, among others. With this tool we generate a total of 12 XES files,

creating two groups of six files: the first varying the traces amount and keeping in constant the other parameters and the

second increasing the number of events by traces. The results can be seen in Tables I and II

TABLE I XES GENERATION FILES WITH THE VARIABLE TRACES BY EVENTS

Traces Activities Originators Events by traces Size (GB) Compressed size (GB)

100000 100 100 110 3,38 2,04

100000 100 100 120 3,74 2,25

100000 100 100 130 4,07 2,45

100000 100 100 140 4,42 2,67

100000 100 100 150 4,75 2,87

100000 100 100 160 5,09 3,07

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(7),

July- 2015, pp. 144-149

© 2015, IJARCSSE All Rights Reserved Page | 148

TABLE II XES GENERATION FILES WITH THE VARIABLE TRACES

Traces Activities Originators Events by traces Size (GB) Compressed size (GB)

10000 100 100 1000 1,35 0,82

20000 100 100 1000 2,71 1,65

30000 100 100 1000 4,08 2,47

40000 100 100 1000 5,45 3,32

50000 100 100 1000 6,83 4,10

60000 100 100 1000 8,20 4,99

Having all XES files generated ready we implement a tool that compresses the XES scheme following the approach

described in section 3.1. In the last column of each statistics table we show the sizes of the compressed schemes.

Furthermore, we draw the graphs shown in figures 8 and 9, for all cases the graphic of the compressed size is always

below the size to the original size, reaching an average compression within 60 %.

Fig. 8 Original and Compressed size (Table I)

Fig. 9 Original and compressed size (Table II)

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we proposed a system that builds indexes from large XES files using suffix array and ternary search tree

for the document structure implemented in a Hadoop platform. We had explained how a ternary search tree, which

indexes only the sub-paths ending in textual nodes, could accelerate the response. Also we presented an strategy to

compress XES files, that can achieve average compression within 60%, in our case dealing with files with hundreds of

thousands of traces heavily impacts in the efficiency of file analysis process and therefore in the index construction time.

In addition we discussed how high performance computing could be a feasible technique for managing XES indexes. By

this moment we are doing experimental tests with large XES files with different types of nodes and checking the index

construction time and scalability factor following the architecture described in section IV-A.

REFERENCES
[1] H. Verbeek, J. C. Buijs, B. F. Van Dongen, and W. M. Van Der Aalst, "Xes, xesame, and prom 6,” in

Information Systems Evolution, pp. 60-75, Springer, 2011.

[2] S.-C. Haw and C.-S. Lee, "Data storage practices and query processing in xml databases: A survey,”

Knowledge-Based Systems, vol. 24, no. 8, pp. 1317-1340, 2011.

[3] A. Sayed, "Xml information retrieval systems:A survey,” arXiv preprint arXiv:1111.6349, 2011.

[4] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon, “A fast index for semistructured

data,” in VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11-

14, 2001, Roma, Italy (P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T.

Snodgrass, eds.), pp. 341-350, 2001.

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(7),

July- 2015, pp. 144-149

© 2015, IJARCSSE All Rights Reserved Page | 149

[5] R. Goldman and J. Widom, "Dataguides: Enabling query formulation and optimization in semistructured

databases,” in VLDB'97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25-

29, 1997, Athens, Greece (M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A.

Jeusfeld, eds.), pp. 436-445, Morgan Kaufmann, 1997.

[6] T. Milo and D. Suciu, "Index structures for path expressions,” in Proceedings of the 7th International

Conference on Database Theory, ICDT '99, (London, UK, UK), pp. 277{295, Springer-Verlag, 1999.

[7] I.-E. Liao, W.-C. Hsu, and Y.-L. Chen, "An efficient indexing and compressing scheme for xml query

processing,” in Networked Digital Technologies -Second International Conference, NDT 2010, Prague, Czech

Republic, July 7-9, 2010. Proceedings, Part I, pp. 70-84, 2010.

[8] W.-C. Hsu and I.-E. Liao, "Cis-x: A compacted indexing scheme for efficient query evaluation of xml

documents,” Inf. Sci., vol. 241, pp. 195-211, Aug. 2013.

[9] Y. A. Baez and R. C. C. Jimenez, "Indexing structured documents with suffix arrays,” in 12th International

Conference on Computational Science and Its Applications, ICCSA 2012, Salvador, Bahia, Brazil, June 18-21,

2012, pp. 43-48, 2012.

[10] Y. A. Baez , A. S. Diaz and M. M. Such “Optimized indexes for data structured retrieval,” International Journal

of Advanced Research in Computer Science and Software Engineering, Vol. 5, pp. 124–129, Abril. 2015.

[11] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters,” in Proceedings of the 6th

Conference on Symposium on Opearting Systems Design & Implementation -Volume 6, OSDI'04, (Berkeley,

CA, USA), pp. 10-10, USENIX Association, 2004.

