
JavaVis: An Integrated
Computer Vision Library for
Teaching Computer Vision
MIGUEL CAZORLA, DIEGO VIEJO

Instituto de Investigación en Informática, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain

Received 15 July 2013; accepted 1 December 2013

ABSTRACT: In this article, we present a new framework oriented to teach Computer Vision related subjects

called JavaVis. It is a computer vision library divided in three main areas: 2D package is featured for classical

computer vision processing; 3D package, which includes a complete 3D geometric toolset, is used for 3D vision

computing; Desktop package comprises a tool for graphic designing and testing of new algorithms. JavaVis is

designed to be easy to use, both for launching and testing existing algorithms and for developing new ones.� 2013
Wiley Periodicals, Inc. Comput Appl Eng Educ; View this article online at wileyonlinelibrary.com/journal/cae;
DOI 10.1002/cae.21594

Keywords: computer vision; image processing teaching; open source; Java GUI; 3D data

INTRODUCTION

Computer vision is an important subject in computer science
engineering degrees. For laboratory lectures, we need a complete
and easy to use tool. In this work, we present JavaVis [1], a Java
library, which is oriented to teaching, but can also be used in
research (in fact, at least one PhD Thesis [2] has been developed
using JavaVis for carrying out test and experiments). The teaching
oriented aspect of JavaVis means that we have designed and built
the library first thinking about readability and understanding and
second taking care about efficiency.

In JavaVis, we have developed three different modules, based
on three different needs we have discovered in our vision related
subjects. The first one, JavaVis2D, is a basic library to process
images and it follows a special file and image format enabling easy
sequence management and processing; it incorporates geometrical
data (edges, segments, points, etc.) and has several well‐known
computer vision algorithms implemented. At its current state,
JavaVis includes more than 90 computer vision algorithms.
Furthermore, students can, easily, develop their own algorithms.
The second module, JavaVis3D, is based on the same working
schema than the first one, but applied to 3D data sets. It can handle
points, segments, planes, etc. in the 3D space and has already

implemented some essential methods related to 3D vision. Finally,
we have developed a visual desktop in order to visualize how the
different algorithms in JavaVis2D work and the result of
combining them.

The integration of the three frameworks provides the user a
common framework: the algorithm and parameter definition is the
same for traditional computer vision (2D) and for 3D processing.
Besides, the user could use methods from 2D in 3D algorithms.
Nowadays, the extensive use of RGB‐D devices such as the Kinect
has had necessary this integration.

The rest of the article is organized as follows: An overview of
the main systems currently employed for processing images are
described in Related Work Section. After that, the section
Overview of the Framework provides a brief description of the
common features of JavaVis. Then, in the next three sections we
describe the main features of the different parts of JavaVis: 2D,
Desktop, and 3D. In the Teaching Experience With JavaVis
Section, we describe in which subjects we are using JavaVis.
Finally, some conclusions and future work are drawn.

Related Work

Several libraries and systems have been developed for computer
vision research and education. First of all, we start describing
libraries written in any programming language, and then we
continue reviewing specific Java‐based libraries. Khoros library [3]
is available for Unix platforms, Windows and MacOs. It
incorporates a visual programming environment where programs
are created by placing toolboxes: rectangular icons that represent
operators, which are simply stand‐alone programs written in C,

Grant sponsor: Universidad de Alicante (Spain); Grant number:
GRE10‐35; Grant sponsor: University of Alicante; Grant number:
GITE‐09017‐UA

Correspondence to: M. Cazorla (miguel.cazorla@ua.es)

© 2013 Wiley Periodicals, Inc.

1

Cþþ, Java, or a script language. Each operator performs on an
input image or dataset, producing an output image. Connections
that represent data flow between the toolboxes are established by
dragging the mouse. To complete the visual programming
capabilities, there are advanced programming language constructs
such as loops, procedures, and control structures. Currently, this
library is neither freeware nor open source, which is not a desirable
feature for computer vision teaching. Open Computer Vision
Library (OpenCV) [4] is available forWindows, Linux, andMac. It
is distributed under Intel’s license for both commercial and non‐
commercial (researching and teaching) purposes. The library
includes over 300 image analysis and processing methods from
morphology, geometry, image treatment, etc., up to the recently
added methods for computing stereoscopic correspondence, face
recognition or 3D tracking. Although OpenCV is one of the most
complete and efficient computer vision libraries, it does not
incorporate a Graphic User Interface (GUI) to visualize and
evaluate results. Furthermore, it is not teaching oriented so its
learning curve is high. VIGRA [5] is a novel computer vision
library that focuses on customizable algorithms and data structures.
The library was built using generic programming as indicated by
the Standard Template Library (STL). By writing a few adapters
(image iterators) it is possible to use VIGRA’s algorithms in
computer vision applications. Nevertheless, the library does not
have enough implemented algorithms, nor does it have a GUI.
Finally, the CVIPtools [6,7] is very similar to one of the parts of the
library presented here, the 2D part of JavaVis. However, it is
developed in Cþþ (actually, authors have introduced .NET) and
the multi‐platform feature that provides Java is not fully
accomplished. In contrast, JavaVis provides a Desktop environ-
ment that is not present in CVIPtools and the 3D part is not also
included in it. Furthermore, our proposal has a fully integrated user
experience.

Among the libraries that include features or are designed to
work on 3D vision, one of the most used libraries is Point Cloud
Library (PCL) [8]. This library is implemented in Cþþ, although it
can be used with other programming languages. It also has
implemented state‐of‐the‐art 3D methods, but its GUI is not good
enough for teaching purposes.

On the other hand, there are few libraries written in Java. Java
Imaging and Graphics Library (JIGL) [9] was developed at
Brigham Young University to make programming both course‐
level and research‐level image‐handling algorithms as easy as
possible. JIGL extends standard Java image‐handling capabilities.
It is based on the Java Advanced Imaging (JAI) [10] developed by
SunMicrosystems. JAI is a base library which focuses primarily on
web‐based applications. Nevertheless, JAI is not useful for
computer vision applications. This is why JIGL was developed.
It is built around a set of image classes that support individual pixel
access, image‐wide operations and image–image operations.
However, the number of included computer vision algorithms is
low. Image Processing in Java (IPJ) [11] is another JAI‐based
library. The IPJ goal is to expand JAI’s functionalities with
computer vision algorithms. The methods included in the library
are spatial filters, convolutions, compression, morphological
filtering, boundary processing, and chromatic light. Nevertheless,
it does not include some of the more elaborated and recent
methods, for example, sequence processing, object tracking, 3D
stereo vision, etc. Furthermore, IPJ does not have templates to
facilitate the inclusion of new algorithms to the library, nor does it
have a GUI. Java Vision Toolkit (JVT) [12] is also based on the JAI
library, adding computer vision algorithms for 2D and 3D images.

JVT provides implementations for image‐handling filtering, edge
detection, segmentation, Hough transform, morphology, and color
analysis. It also includes a GUI application, which makes JVTeasy
to use for end‐users and developers alike. JVT is designed for
students using the image‐computation template provided to
implement new algorithms. Nevertheless, the main weakness of
JVT is the lack of image sequence handlers. Another computer
vision library is ImageJ [13]. It is based on three fundamental
features. First, the use of macros, which allow users to automate
tasks and create custom tools; second, it is possible to extend the
capabilities of ImageJ by developing plug‐ins; and finally, it can
process an entire stack of related images using a single command.
The library core includes several image handlers. All the related
computer vision functions are incorporated as plug‐ins. Also,
ImageJ contains aGUIwhich allows end‐users to launch the library
algorithms and evaluate the results. This library is widely accepted
in scientific areas, although the lack of templates for the
development of new algorithms makes it less appropriate for
educational purposes.

Several works have explored the use of computational tools
for teaching computer vision. A good review about it is [14]. In it,
the use of a visual tool in order to work with images is encouraged.
In Ref. [15], authors explore the use of an interactive program for
teaching image processing. However, this tool has only a few
implemented methods. Another example of limited system is [16].
It includes a few number of computer vision methods, it is a closed
system and only focused on robotics.

On the other hand, the use of Java as programming language
has been used in several works, proving its validity and multiplat-
form support of the language. Javenga [17] is a visualization
environment based on Java which permits to teach concepts related
with network and graph algorithms. Another example is [18], where
a Java platform is developed for teaching robotics.

OVERVIEW OF THE FRAMEWORK

The aim of JavaVis is to provide the student an easy to use and learn
tool in order to acquire and to understand concepts related with
Computer Vision. Our tool is developed following this main
principle: the development and implementation of new algorithms
must be an easy task. This entails freeing the developer for certain
programming tasks such as: graphical interface, Input/Output,
parameter passing, etc. To accomplish that, JavaVis is in charge of
loading and saving files, managing graphical interface, and
providing a system for declaring, checking and passing parameters
to an algorithm. Implementing a computer vision algorithm within
JavaVis is quite simple: the user defines a Java class, defines its
parameters, and the algorithm itself.

Although there are other libraries that have a more complete
set of implemented algorithms (like OpenCV and PointCloud), or
provide better graphical interfaces, JavaVis can provide a common
framework to develop algorithms not only for image processing,
but also for 3D data processing. The code is freely available and
also provides an easy way to develop new algorithms. Further-
more, JavaVis is designed as a teaching tool, not as a researching
tool.

JavaVis consists of three different but joined parts. When the
system starts, it shows the 2D part. This part is the one related with
traditional computer vision and, in fact, it was the first developed. It
allows to apply different available algorithms, and students can
develop their owns. Among the different practical exercises

2 CAZORLA AND VIEJO

proposed to the students, sometimes them have to implement an
assignment using some of the already library implemented
algorithms, adjusting the parameters for obtaining the correct
output.We realized that this part of the work (adjusting parameters)
was tedious for the students, as they have to execute several tries of
the same method with different algorithms or parameter sets.
Besides, sometimes the output of an algorithm is the input of
another one and so the process becomes more complicated. To
solve that, we have developed a visual programming tool called
Desktop where the students can easily execute a sequence of
algorithms and fit the correct parameters for their task. Finally, we
have developed a new part of the library oriented to work on 3D
images.With the launch of the Kinect device, the use of 3D data has
becomemore popular in computer vision.We incorporated this part
which is able to manage 3D data, not only points but also planes,
normals, etc. Several state of the art methods have been included
and it could be used in conjunction with the 2D part. In the
following sections, we describe these three parts deeply. The
Graphical User Interface (GUI) of the three parts is shown in Fig. 1.

JAVAVIS2D

This section will introduce the main features of JavaVis2D, which
is related with images. We began to develop JavaVis following the
same philosophy of work than Vista [19]. Vista was a computer

vision library written in standard C, which tried to simulate the
object‐oriented programming. The features of Vista were very
attractive for developing algorithms in vision and, in fact, many
researchers used it, but its creator left the project. Our goal was to
create a similar library with a totally OO language. Most of the
features of JavaVis are based on Vista.

In JavaVis, we have defined an image format that allows
working with image sequences. Some computer vision algorithms
have to manage image sequences. For example, optical flow
algorithms use several images to estimate movement and stereo
computation needs two or three images to work. Furthermore,
images are usually composed by different bands, for example, a
RGB color image can be stored in three different bands. In this way,
JavaVis handles its own image format that enables it to manage
image sequences and bands.

Each image in JavaVis is composed of one or several frames,
forming a sequence. A frame represents an image that can be of two
types: bitmap or geometric. A bitmap frame is an image
represented as a matrix in which each element is a pixel (picture
cell). JavaVis has five types of bitmap frames: Bit (0,1), Byte
(0.255), Short (0.65525), Float (float range of Java), and Color
(three bands of Byte type each). In addition, each bitmap frame can
be formed by one or several bands. Each band must have the same
dimensions. Internally, each type stores a one‐dimensional array of
data, in order to be more efficient. For example, the Bit type is
stored using a boolean Java type, the Byte type uses the byte Java

Figure 1 The three main parts integrated in JavaVis. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

JAVAVIS: AN INTEGRATED COMPUTER VISION LIBRARY 3

type and so on. When accessing the pixel, the data are converted,
from its original value: for example, the byte type in Java is signed
but the Byte type of JavaVis is unsigned. Conversion is done
internally. A sequence can be organized in two ways: several
frames in a sequence, or several bands per frame, which can also
form a part of a sequence. However, in order to insert several bands
in the same frame, every bandmust have the same size and be of the
same type whereas different frames can have different size, type
and number of bands. In Figure 2, we show an example of an image
in JavaVis.

On the other hand, a geometric type frame manages
information in a different way. For example, the Segment frame
type just stores the coordinates of the initial and end points of a
segment. A Segment frame may have several segment objects
stored not into a pixel matrix but into a segment object list. So the
representation of geometric frames is more compact and
computations on this kind of images are faster. This kind of
frames is useful in several computer vision algorithms. The
available geometric types are: Point (x and y coordinates), Segment
(two points), Edges (it represents a set of points forming an edge;
they keep an adjacent relation, that is, the first point is adjacent to
the second, the second to the third, and so on), and Poly (it contains
a set of points forming a polygon; the points form a circular
sequence).

An important point in JavaVis is the organization of its
functions, as it is important for other users to be able to easily
implement their algorithms in a standardized way. A function in
JavaVis is an implementation of an algorithm together with its
parameters, defined into a Java class. A function inherits from an
abstract class JIPFunction. In order to implement an algorithm,
only the function code must be developed and input and output
parameters specified. That is one of the goals of the library:
implements once, use everywhere. An algorithm is implemented
and then the library is in charge of checking input and output
parameters, showing images in the GUI, and so on. Below, we
describe how an algorithm can be implemented.

As we said before, JavaVis2D has already implemented many
computer vision algorithms. Although most of them were included
by the JavaVis development team, some of themwere implemented
by undergraduate students who used JavaVis for their projects and
needed to implement new functions. The maintainers of JavaVis
have revised their work before its inclusion into the final JavaVis
distribution. For example, we can find functions for manipulation
and color transforming, like AddNoise, Rotate, Mirror, Color-
ToGray, RGBToColor, etc. We have also functions for convolution
(ConvolveImage, Gabor), image adjustment (Equalize, Smooth,
Brightness), segmentation (Binarize, Kmeans, MeanShift), geom-
etry manipulation (InterSegment, RandomPoint), edges extraction
(Canny, Susan, Grad), feature extraction (Junctions, HoughLine,
MSER), mathematical morphology (Erode, Clousure), and others
(Skeleton, Pca, Manhattan). During the years we were using
JavaVis, several assignments were proposed to the students. Those
assignments were incorporated into JavaVis, like the one for visual
attention, license plate recognition, image database searching, etc.
Best assignment implementations from students each year are
incorporated to JavaVis, thus increasing the number of imple-
mented algorithms and giving an additional incentive to the
students.

In order to implement a new computer vision algorithm
within JavaVis, we just need to create a Java Class and store it in the
package javavis.jip2d.functions. As an example, we describe here
the code to build an already implemented function, Binarize. This
function has two input parameters, u1 and u2, indicating two
thresholds. The result image is a Bit type image (0.1) where a given
pixel is 1 if its original value is between the two input parameter
values. As we said, a function class must belong to the javavis.
jip2d.functions package, so the first lines in the new class will be:

package javavis.jip2d.functions;

import block.....

Then, the constructor of the class is declared. The constructor
defines the name of the functions and its description (this values

Figure 2 A sequence in JavaVis having three frames. The second one is formed by several bands and the third one is
geometric.

4 CAZORLA AND VIEJO

will be used as tool‐tips in the GUI). It also defines the function
group to which the function belongs. Then, there is the definition of
two parameters. Each parameter is defined with its name (it will be
used to retrieve it), if it is required (false is not required) and if it is
input or output parameter (true is input). The default value is useful
for not required parameters. Finally, the parameters are added to the
list of parameters of the function.

public Binarize() {

super();

name ¼ "Binarize";

description ¼ "Converts a BYTE image into binary

image.";

groupFunc ¼ FunctionGroup.Segmentation;

ParamInt p1 ¼ new ParamInt("u1", false, true);

p1.setDefault(128);

p1.setDescription("Lower bound of the range to

consider as 1");

ParamInt p2 ¼ new ParamInt("u2", false, true);

p2.setDefault(255);

p2.setDescription("Upper bound of the range to

consider as 1");

addParam(p1);

addParam(p2);

}

Within the constructor, all the information is defined. Now,
we need to develop the algorithm itself. It is done in the processImg
method. The code below processes the image. It takes the two input
parameters. At this moment, the user knows that values have been
set, no matter from where this function will be called: GUI,
command line or another function. The first action consists in
checking whether the input image type is correct(Byte), giving an
exception if that is not true. As the image could have several bands,
the method is applied to any of them in the image. It gets all the
pixels (getAllPixels), and processes it, pixel by pixel. Finally, the
resulting image (res) is populated and returned.

JIPBmpBit res;

int lowT ¼ getParamValueInt("u1");

int upperT ¼ getParamValueInt("u2");

if (img.getType() ¼¼ ImageType.BYTE) {

int width ¼ img.getWidth();

int height ¼ img.getHeight();

int totalPix ¼ width�height;

int numBands ¼ ((JIPBmpByte)img).getNumBands();

res ¼ new JIPBmpBit(numBands, width, height);

long totalPerc ¼ totalPix � numBands;

for (int nb¼0; nb < numBands; nbþþ) {

double[] bmp ¼ ((JIPBmpByte)img).getAllPixels

(nb);

boolean[] bin ¼ new boolean[totalPix];

for (int k¼0; k < totalPix; kþþ)

bin[k] ¼ (bmp[k] >¼ lowT && bmp[k] <¼ upperT);

res.setAllPixelsBool(nb, bin);

}

}

else

throw new JIPException("Function Binarize only

defined for BYTE images.");

return res;

Figure 3 shows an execution of the Binarize function. When
the function is executed, the parameters defined in the constructor
are shown and the user can modify them. The user is able to apply
the function to the frame selected or to the complete sequence of
images.

We have prepared JavaVis to be able to process an image in
two ways. The first one is used when no relations among pixels are
necessary, for example, in the previous function, when we process
a pixel, only the information of that pixel is enough for processing
it. In this case, we can get the complete array of pixel data and
processing it with just one loop.

for (int i ¼ 0; i < totalPix; iþþ) {

bin[i] ¼ (bmp[i] >¼ p1 && bmp[i] <¼ p2);

The second way is the classical way: to visit all the rows and
all the columns. The previous code can be substituted by:

for (int r ¼ 0; r < h; rþþ) {

for (int c ¼ 0; c < c; cþþ) {

double p ¼ ((JIPImgBitmap)img).getPixel(r,c);

boolean b ¼ (p>¼ p1 && p<¼ p2);

res.setPixelBool(c, r, b);

}

}

This has been used to teach an additional concept: using two
different codes to perform the same task could imply having an
execution time drastically different. Nowadays, computers have a
huge processing throughput. Due to this, students do not care about
efficiency. In some assignments, the processing time increases a lot
if an additional loop is introduced. Students are greatly surprised
when they optimize their code, for example, by eliminating
unnecessary loops.

There are three ways to execute a function. The first one is
from command line: the Launch class can execute a function of the
library, after the function name and its parameters are specified.
This class checks the values entered (name, type, and range of the
parameters) and returns an error if something is wrong. Otherwise,
the function is executed. The execution takes an input file and
generates an output file. The output file has the same sequence as
the input file, where every frame has been processed with the
function. The second way to execute a function is from the
graphical user interface (see Fig. 4). A function can be executed by
introducing the input parameters in a window and the parameters
are checked too. Furthermore, the function can be applied to all the
sequence or just to the current frame. The final way to use a
function is from another function. Each function can use any
existing function defined in the library. Note that despite the
possibility of executing a function in three different ways, it is only
defined once, and there is no need of additional configuration of the
JavaVis environment but just adding the class for the function in a
directory.

JAVAVIS: AN INTEGRATED COMPUTER VISION LIBRARY 5

Another important issue regarding functions is the definition
of parameters. A standard is defined for both input and output
parameters for JIPFunctions. This is done by means of a class
JIPParameter. Thus, the GUI can set and get parameters for any
implemented JIPFunction.

JavaVisDesktop

Another feature we have recently incorporated to JavaVis is the
JavaVisDesktop (see Fig. 5). The goal of this project is to build a
utility which serves to better understand the partial results when
processingan image.Wecanusedifferent algorithms inorder toget a
complex one. For example, thefigure shows a sequence of functions
applied to one image. The Desktop utility allows us to check partial
results, showing the images obtained applying an algorithm.

This utility allows building a sequence of functions, as an
automata. Each state in the sequence is a function (algorithm) from
JavaVis2D library. A state shows the result (an image) of applying
such algorithm. Thus, the student can easily adjust different
parameters of an algorithm, observing what is the consequence of
modifying that parameter in the complete sequence. Once the
parameters are adjusted, there is an option to generate a new
function in JavaVis2D directly. This new function will contain the
sequence of functions in the desktop, with the selected parameters.

JavaVisDesktop is an interesting tool to learn the behavior of
the available algorithm. For example, the student is able to check
what happens when applying the Canny algorithm using different
values for its sigma parameter in order to understand its behavior
and to select the optimum value for a given problem. In fact, this
feature is greatly appreciated by the students, because it speeds up
their implementations.

Figure 5 shows the GUI for the Desktop. The GUI is simple
and easy to use. There is a canvas where functions can be placed.
Every subwindow (a state) inside this canvas is a JavaVis function
and the arrows indicate the operational sequence. It always must
have a first function called LoadImage (it is included when a new

project is created). This first function is used to load an image. The
input of each subwindow is the output of the preceding one, except
the first one, so we always need the LoadImage function at the
beginning. A subwindow consists in the following: at the left hand,
two buttons, Run (it executes the function to the input image) and
Params (it allows to change the parameters to the function) and a
colored circle in either red or green color. If it is green, it indicates
that this function was already executed. If any parameter is
changed, the circle changes back to red. At the right side, the result
of applying the function is showed. If the user clicked on that part, a

Figure 3 Applying Binarize to an image. The parameters are asked before applying the function. Right, result of the
execution. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4 Graphic user interface of JavaVis2D used to visualize images
and to apply functions. The bottom window is for information: the
coordinates of the cursor and the value of that pixel. It also allows changing
the frame and the band inside the current frame. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

6 CAZORLA AND VIEJO

floating window (like the ones in the figure) appears containing the
image.

Any function of the JavaVis2D part can be used, even the
geometrical ones. In Figure 5a, sequence of three functions is
shown: LoadImage, SmothGaussian, and Canny. In the same
figure, there is a window for changing parameters to the Canny
function. This window is the same as the one used in JavaVis2D.
The last two windows inside the canvas show the result of applying
Canny with different parameters. That is the main feature of
JavaVisDesktop: the student can try different parameters and
compare the results in order to reach the best performance for his/
her implementation.

JavaVis3D

We have noted that several subjects explain algorithms which
manage 3D data. Most of the basic 3D geometric entities have been
implemented in the core of JavaVis3D. Points, vectors, normals,
segments, and planes classes are included in a geometric package
that allows JavaVis3D to operate with them, applying trans-
formations, performing input/output operations, etc. Nevertheless,
the user does not work with 3D geometric entities directly. The
equivalent class for an image in JavaVis3D is the 3D geometric set.
A 3D geometric set will include one ormore objects from one of the
basic 3D geometric class. Nevertheless it is possible to work with
several heterogeneous sets at the same time as we can do with
image sequences. For example, we can load a 3D point set captured
from a scene using a stereo camera, computing these points to
obtain the normal vector for the scene surfaces at every point and
finally storing this set of normal vectors in a file to be used in a
future.

Some of the state‐of‐the‐art 3D algorithms have been also
implemented in JavaVis3D such as ICP, that computes the
transformation that best align two sets of 3D points, NormalSVD,
that obtains the normal vector of the surfaces of a 3D scene

represented as a set of 3D points, PlanarPatch, that estimates planar
patches for the planar surfaces of a set of 3D points and
FastEgomotion3D that computes the six degrees of freedom
transformation that best aligns two sets of 3D planar patches. There
are also support functions for data smoothing or spatial
transformations.

The file format used by JavaVis3D is different from the one
used by JavaVis2D. 3D data are represented by its geometric
properties such a list of coordinates and, if available, color
information for a set of 3D points, a list of belonging points, a
normal vector for planes, etc. File format starts with a header
containing metadata information and after that the list of geometric
elements, one for each line. The equivalent class in 3D for a
sequence of images is the Trajectory3D class. A trajectory in
Javavis3D consists in a bunch of 3D geometric sets. Furthermore,
extra information can be provided with the trajectory in order to
place the sets included in the trajectory into a common reference
frame. This is useful, for example, if we need to represent together
3D scenes captured from a stereo camera at different poses in the
same environment and the position of the camera at each pose is
known. Adding new functions to JavaVis3D follows the same steps
than in the 2D case. This homogeneous programming stile reduces
learning efforts especially for those students that already know
programming for the JavaVis2D part.

In addition, JavaVis3D is able to read data sets obtained from
different 3D devices, like stereo cameras, 3D lasers, time‐of‐flight
cameras such as SR4000 [19] or RGB‐D cameras such as
Kinect [20]. Recently, we have prepared JavaVis to be able to
capture data on the fly from the Kinect camera.

Current 3D implemented algorithms are:

� Transform: Several data transformation. From3DTo2D,
From3DToImage, FromImageTo3D, Transform.

� Normals: Calculate the normals of a set of 3D points.
NormalSVD, NormalSR4k.

Figure 5 JavaVisDesktop. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

JAVAVIS: AN INTEGRATED COMPUTER VISION LIBRARY 7

� Egomotion: Calculate the egomotion of a device (mobile
robot) from time to time. Egomotion2D, Egomotion3D, ICP,
FastICP, FastICPFeatures.

� Model3D: Obtain 3D models, like planar patches, from a 3D
point set. PlanePatch, Modelize, ProcessTrajectory.

� Mapping: Obtain a 3D map from a trajectory. PointFilter,
PointTrajectory.

� Image: Get different images from a SR4000 camera.
SR4kConfidence, SR4kIntensity.

� Others: Several functions. SR4kProcess, DivideHorz, Di-
videVert, DivideDepth, ErrorReductionStereo.

JavaVis3D also includes a specific GUI for showing the 3D
data (see Fig. 6). This GUI is built using the 3D Java API Java3D.
Java3D is a 3D library based on OpenGL which ensures that an
efficient 3D graphics management and display is available for
almost every operating system. 3D Data sets can be loaded/
unloaded into the GUI. It also provides tools for changing the way
the 3D sets look. The point of view for the observer, it is said, the
virtual camera, can be freely transformed by the user in order to
have a better sight of the scene. The representation for geometric
data can be also altered in size and color which can be useful for

visualization purposes. JavaVis3D GUI also provides an easy‐to‐
use method for launching different 3D functions over the 3D data.

Teaching Experience With JavaVis

JavaVis has been used for years (since 2000) as the main tool for
several Computer Vision related subjects (Artificial Intelligence
(200 students/year), Computer Vision (20 students/year), Autono-
mous Robots (50 students/year), some master’s subjects and
several final degree projects) at the University of Alicante (Spain).
JavaVis has let us work at two different levels. First of all, using
some of the most useful and used computer vision algorithms, as
many of them are already implemented in JavaVis. At this level,
students can observe what happens when the algorithm explained
in theory classes is applied. Furthermore, the student can take a
look at the implementation, thus obtaining a deeper understanding
of the method explained in class. Then, a second level is available.
Students can develop their own algorithms. At this level, we look
for simplicity. It is necessary to know almost nothing about the
library in order to program with JavaVis. They just must know the
classes and methods for manipulating an image, but nothing about
graphical classes or internal file structure.

Figure 6 JavaVis3D framework. The right window shows the current pose of the camera. Using the keys we can navigate
around the 3D scene. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

8 CAZORLA AND VIEJO

Several different assignments have been proposed during the
last 10 years. One example can be seen in Figure 7. In this
assignment, students had to build a new function able to identify
the number of coins in the image. Firstly, students used the Desktop
to select the best parameters for the already available methods
(Canny, Binarize, color format conversion) used for segmentation.
Then, they generated a new JavaVis function and then developed a
new method (Hough transform for circumferences). The result can
be observed in Figure 7.

The practical sessions were conducted as follow. First, a short
introduction to JavaVis (3 h) was presented. In this introduction, we
remarked the main features of JavaVis and a guided example of
using JavaVis was done. Then, we presented the practical
assignment and proposed to use the Desktop to create a function
based on already defined functions and set the parameters for those
functions. After that, students had to implement the rest of the
assignment, developing their own code. With this schema we
afforded two goals: students had to check the behavior of several
functions and they developed their own code, allowing to know the
complexity of computer vision problems.

CONCLUSIONS

In this article, we have presented a framework for teaching computer
vision: JavaVis. JavaVis is a multiplatform framework written in
Java. It is divided into three parts. First, JavaVis2D is used to process
2D images. It has several very interesting features, such as image
format, image sequence processing and geometrical image type.
Then, Javavis3D supports 3D data, such as 3D points, planes,
trajectories, etc. Finally, JavaVisDesktop allows students to
understand what happens when parameter values are changed and
it also allows developing easily a new algorithm based on already
developed ones. Although other computer vision frameworks have
better performance and more implemented algorithms, JavaVis has
some interesting features which provide to the students a better way
to learncomputer vision related subjects.Oneof them is that it is easy
to use and learn, thus it is easy to implement newmethods. Another

one is that students can easily take a look at the source code, so it
provides a learning help. JavaVis has been used for years in several
computer vision related subjects at University of Alicante (Spain).

As future work, we plan to merge JavaVis with OpenCVand
PCL, providing a teaching GUI to those libraries. We are also
planning to continue incorporating new computer vision algo-
rithms and whatever features we identify in our teaching.

ACKNOWLEDGMENTS

This work was supported by project GRE10‐35 from Universidad
de Alicante (Spain) and grant GITE‐09017‐UA of University of
Alicante.

REFERENCES

[1] JavaVis web site (2013), http://javavis.sourceforge.net
[2] D. Viejo, Modelización Robusta de Entornos Estructurados, una

Aplicación al Mapeado 3D en Robótica Móvil, PhD Thesis,
University of Alicante, Alicante, Spain.

[3] Khoral (2013), http://www.khoral.com
[4] Open source computer vision library (2013), http://opencv.

willowgarage.com/wiki
[5] The Vigra library website (2013), http://kogs‐www.informatik.uni‐

hamburg.de/�koethe/vigra
[6] M. Zuke and S. E. Umbaugh, CVIPtools: A software package for

computer imaging education, Comput Appl Eng Educ 5 (1997), 213–
220.

[7] S. E. Umbaugh, Digital image processing and analysis: Human and
computer vision applications with CVIPtools, 2nd ed., CRC Press,
Taylor & Francis Group, Boca Raton, FL, 2011, 956 p, ISBN:
9781439802052, http://cviptools.ece.siue.edu/

[8] Point Cloud library (2013), http://pointclouds.org/
[9] Java imaging and graphics library (2013), http://rivit.cs.byu.edu/jigl
[10] The java advanced imaging website (2013), http://java.sun.com/

products/java‐media/jai
[11] D. Lyon, Image processing in Java, Prentice Hall, Upper Saddle River,

NJ, 1999.
[12] The java vision toolkit website (2013), http://marathon.csee.usf.edu/

�mpowell/jvt
[13] The ImageJ website (2013), http://rsb.info.nih.gov/ij
[14] G. Bebis, D. Egbert, and M. Shah, Review of computer vision

education, IEEE Trans Educ 46 (2003), 2–21.
[15] C. H.‐W. Yapp and A. K. B. See, Teaching image processing: A two‐

step process, Comput Appl Eng Educ 16 (2008), 211–222.
[16] J. F. Martin and L. Chiang, Low cost vision system for an educational

platform in artificial intelligence and robotics, Comput Appl Eng Educ
10 (2002), 238–248.

[17] T. Baloukas, JAVENGA: JAva‐based Visualization Environment for
Network and Graph Algorithms, Comput Appl Eng Educ 20 (2012),
255–268.

[18] C. A. Jara, F. A. Candelas, J. Pomares, and F. Torres, Java software
platform for the development of advanced robotic virtual laboratories,
Comput Appl Eng Educ 21 (2011), 14–30.

[19] The Vista website (2013), http://www.cs.ubc.ca/nest/lci/vista/vista.
html

[20] S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nüchter, and J.
Hertzberg, Three‐dimensional mapping with time‐of‐flight cameras, J
Field Robot (Special Issue on Three‐Dimensional Mapping, Part 2) 26
(2009), 934–965.

Figure 7 An example of assignment: counting coins. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

JAVAVIS: AN INTEGRATED COMPUTER VISION LIBRARY 9

http://javavis.sourceforge.net
http://www.khoral.com
http://opencv.willowgarage.com/wiki
http://opencv.willowgarage.com/wiki
http://kogs-www.informatik.uni-hamburg.de/&x223C;koethe/vigra
http://kogs-www.informatik.uni-hamburg.de/&x223C;koethe/vigra
http://kogs-www.informatik.uni-hamburg.de/&x223C;koethe/vigra
http://cviptools.ece.siue.edu/
http://pointclouds.org/
http://rivit.cs.byu.edu/jigl
http://java.sun.com/products/java-media/jai
http://java.sun.com/products/java-media/jai
http://marathon.csee.usf.edu/&x223C;mpowell/jvt
http://marathon.csee.usf.edu/&x223C;mpowell/jvt
http://rsb.info.nih.gov/ij
http://www.cs.ubc.ca/nest/lci/vista/vista.html
http://www.cs.ubc.ca/nest/lci/vista/vista.html

BIOGRAPHIES

Miguel Cazorla received a BS degree in
Computer Science from the University of
Alicante (Spain) in 1995 and a PhD in Computer
Science from the same University in 2000. He is
currently Associate Professor with the Depart-
ment of Computer Science and Artificial Intelli-
gence of the University of Alicante. He has
published several papers on robotics and com-
puter vision. His research interest areas are
computer vision and mobile robotics (mainly

using vision to implement robotics tasks).

Diego Viejo obtained his Bachelor Degree in
Computer Science in 2002 and his PhD. in 2008
both from the University of Alicante. Since
2004, he is a lecturer and a researcher for the
Department of Computer Science and Artificial
Intelligence (DCCIA) at the University of
Alicante. His research interests are focused on
3D vision applied on mobile robotics.

10 CAZORLA AND VIEJO

