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Abstract: We re-derive a general procedure to substitute any rigid body by
an equivalent system of exactly four masses, located at vertices of an irregular
tetrahedron.
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1. INTRODUCTION

In his book ”An elementary treatise on the dy-

namics of a system of rigid bodies”, article N. 44,
E. J. Routh [1], posed a question whose solution he
only sketched: Is there a system of four masses dy-
namically equivalent to that of a given rigid solid?
This important property seems to have been for-
gotten, as we have not found any proper demon-
stration at all. It is assumed that two geometri-
cally different bodies are dynamically equivalent
if their inertial matrices are equal. In the well-
known and respected ”Lagrangian Dynamics”, D.
A. Wells [2], in chapter 7, stablished that different
continuous mass distributions may be substituted
by a variable number of puntual masses, from four
to six of them, conveniently distributed, and omit
the fact that any mass distribution can be substi-
tuted by exactly four masses at the vertices of an
irregular tetrahedron. Moreover, D. A. Wells uses
not only different number of masses, but different
values for them, whilst the four equivalent masses
have all the same value. The result is found nor
in ”A treatise on Analytical Dynamics” by L. A.
Pars [3], neither in ”Classical Mechanics” by H.
Goldstein [4]. Furthermore , E.T. Whittaker in his
”Treatise on Analytical Dynamics of particles and

rigid bodies” [5], pg. 121, states that a solid, regu-
lar tetrahedron is equimomental with four masses
located at the vertices of a regular tetrahedron,
plus a fifth located at the center of masses of
the solid tetrahedron: ”Shew that a uniform solid

tetrahedron of mass M is equimomental to a set of

five particles, four of which are each of mass 1

20
M

and are situated at the vertices of the tetrahedron,

while the fifth particle is at the centre of gravity

of the tetrahedron and is of mass 4

5
M”. The fact

than only four masses are sufficient seems to have
passed unnoticed. We will re-derive this elegant
result in a more updated language, inserting it
in the standard material about inertia matrix,
principal axes and rotation.

2. INERTIAL MATRIX OF A REGULAR
TETRAHEDRON

Let M be the mass of a rigid solid. As the first
step, we construct a regular tetrahedron, placing
equal masses of value m = M/4 at each of its
vertices. Choosing the arbitrary point (1, 0, 0) on
the xy plane, and rotating it ±2π/3 we complete
a equilateral triangle. The fourth point is on
the z axis, at height

√
2. Now, we translate the

reference system to the center of masses of the
tetrahedron, whose coordinates are (0, 0,

√
2/4),

the side of the tetrahedron being
√
3. In the

reference system with origin at the center of
masses, the coordinates of the four vertices are:




1
0

−
√
2/4



 ;





−1/2√
3/2

−
√
2/4



 ;





−1/2

−
√
3/2

−
√
2/4



 ;





0
0

3
√
2/4



(1)

from which we readily derive the inertial matrix:

I =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 (2)

where



Ixx =
∑

i

mi(y
2

i + z2i )

Iyy =
∑

i

mi(x
2

i + z2i )

Izz =
∑

i

mi(x
2

i + y2i )

Ixy = Iyx = −
∑

i

mixiyi

Ixz = Izx = −
∑

i

mixizi

Iyz = Izy = −
∑

i

miyizi (3)

Substituting Eq. (1) into Eq. (3) we have a diag-
onal matrix, whose principal moments are equal,
having the value of 3m. So, the tetrahedron inertia
matrix is:

I =





3m 0 0
0 3m 0
0 0 3m



 (4)

3. SCALING

Consider a generic inertia matrix for a rigid solid
defined as:

I =





I11 I12 I13
I21 I22 I23
I31 I32 I33



 (5)

calculated in a given reference system ’o’. We can
find the directions of the principal axes of inertia,
for which the inertia matrix is diagonal:

I =





I1 0 0
0 I2 0
0 0 I3



 (6)

where I1, I2 and I3 are the principal moments of
inertia.

Let us individually scale the axes of the reference
system in which the tetrahedron was previosly
defined. This is equivalent to simply putting the
four masses in their appropiate positions. We
express this scaling by:

x′ = αx

y′ = βy

z′ = γz (7)

The elements out of the diagonal remain zero,
while the principal moments of the tetrahedron
are transformed into

Itx =mβ2
∑

i

y2i +mγ2
∑

i

z2i

Ity =mα2
∑

i

x2

i +mγ2
∑

i

z2i

Itz =mα2
∑

i

x2

i +mβ2
∑

i

y2i (8)

where xi, yi and zi are the coordinates of the reg-
ular tetrahedron, before scaling. We are looking
for (α, β, γ) such that





Itx
Ity
Itz



 =





I1
I2
I3



 (9)

were (Itx, I
t
y, I

t
z) are the principal moments of

inertia of the scaled tetrahedron and (I1, I2, I3)
are the principal moments of inertia of the rigid
solid. From (1)-(8)-(9):

3m

2





0 1 1
1 0 1
1 1 0









α2

β2

γ2



 =





I1
I2
I3



 (10)

whose solutions are (negative solution are dis-
carded, as they have no physical meaning)

α=
1√
3m

√

−I1 + I2 + I3

β =
1√
3m

√

I1 − I2 + I3

γ =
1√
3m

√

I1 + I2 − I3 (11)

4. ROTATION

Our last step is rotation. Given the inertia matrix
of the rigid body in a reference system ’o’, in gen-
eral not diagonal, it is known ([2],[4]) that there is
a reference system ’p’ in which the inertia matrix
is diagonal. The coordinates of the material points
of the solid in the original reference system, ro,
are related to the coordinates in the new system
’p’ by ro = Rrp, being R a symmetrical matrix
whose columns are the eigenvectors of the inertia
matrix in reference system ’o’. But, by scaling a
symmetrical tetrahedron, we constructed a non
symmetrical one, whose inertia matrix equal the
inertia matrix of the rigid body expressed in ’p’.
So, the coordinates so of the vertices of the scaled
tetrahedron in reference system ’o’ and the coordi-
nates of the same vertices in system ’p’ are linked
by the same rotation R:

so = Rsp (12)

But we have already found sp, and so, the coor-
dinates of the vertices of the tetrahedron in the
system in which the rigid body has a (in general)
non diagonal matrix are precisely so, and are given
by (12).



5. AN EXAMPLE

The inertial matrix of a set of eight masses,
summing M = 1, located at the vertices of a cube
of side 1, in positions:





0
0
0



 ;





1
0
0



 ;





1
1
0



 ;





0
1
0



 (13)





0
0
1



 ;





1
0
1



 ;





1
1
1



 ;





0
1
1



 (14)

is

I =





1 −1/4 −1/4
−1/4 1 −1/4
−1/4 −1/4 1



 (15)

We will substitute this set by a dynamically equiv-
alent set of four masses of value m = 1/4. The
eigenvalues and eigenvectors of the matrix are

I1 = 0.5;u =





0.57735
0.57735
0.57735



 (16)

I2 = 1.25;v =





−0.40825
−0.40825
0.81650



 (17)

I3 = 1.25;w =





0.70711
−0.70711

0



 (18)

from where

R =





0.57735 −0.40825 0.70711
0.57735 −0.40825 −0.70711
0.57735 0.81650 0



 (19)

Note that the columns of the rotation matrix are
the eigenvectors. The determinant of the matrix
is +1, given the fact that R is a rotation matrix.
From (11), we have α = 1.63300, β = 0.81650 y
γ = 0.81650. If we scale (1), the vertices of the
tetrahedron become:





1.63300
0.00000
0.28868









−0.81650
0.70711
−0.28868









−0.81650
−0.70711
−0.28868









0.00000
0.00000
0.86603



 (20)

We apply the rotation R to these vertices, obtain-
ing the final positions:





0.73869
1.14694
0.94281









−0.96421
−0.55596
0.10595









−0.386855
0.021397
−1.048761









0.61238
−0.61238
0.00000



 (21)

To ensure the correcteness of the procedure, we
calculate the inertial matrix of the equivalent
system of four equals masses of value m = 1/4:

I =





1 −1/4 −1/4
−1/4 1 −1/4
−1/4 −1/4 1



 (22)

This matrix equals the inertial matrix of the
original system of eight masses of value m = 1/8

6. CONCLUSION

An apparently forgotten, elegant result has been
re-derived, showing that any solid rigid can be
replaced by an equivalent system of exactly four
equal masses located at the vertices of an irregu-
lar tetrahedron. Our re-derivation has been per-
formed in a slightly more contemporary language,
linking it with a problem of scaling and rotating.
We expect to enlighten undergraduate students,
providing them with an additional conceptual and
computational tool for the study of rigid bodies.
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