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Abstract 
The moisture content and the distribution of that moisture have a great influence 

on the durability properties of concrete structures. Several non-destructive 

techniques have been used for the determination of the total water content, but the 

moisture distribution is difficult to determine. In this work is presented the use of 

impedance spectroscopy to study the water distribution in samples of concrete 

with controlled and homogeneously distributed moisture. The technique is 

suitable for the determination of the water distribution inside the sample, using the 

appropriate equivalent circuits, and it shows that with the selected drying 

procedures there is no change in the solid phase of the samples, though for this 

purpose the technique can only be used to study variations in the solid  phase 

qualitatively when samples are too thick. The water tends to redistribute 

homogeneously forming a continuous path all over the pore walls, while there is 

enough water inside the sample. This result is very important since it is a first step 

for the study of the moisture distribution in real structures, usually partially 

saturated. 
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1.- Introduction. 

Moisture content in concrete plays an essential role in different deterioration 

processes, such as alkali-aggregate reaction [1] and freeze-thawing damage [2]. 
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Moisture is also one of the main factors that can control the corrosion rate of 

reinforcing bars in reinforced or prestresed structures [3]. It is also well know the 

effect that the saturation degree of concrete has on the transport of aggressive 

substances into concrete such as CO2 [4] and chlorides [5-7], and also has an 

important influence on the water uptake of concrete structures [8], and this water 

can have aggressive substances. 

This is the reason why many techniques have been used to determine, preferably 

using non-destructive methodologies, the moisture content of concrete samples [9-

11], as well as the modifications that happen during the drying –wetting 

processes.  The review by Parrott [9] suggests many techniques, some of them 

destructive, such as oven drying, but most of the techniques reviewed are non-

destructive. They include the measurement of the resistivity. It is well known the 

relationship among electrical conductivity (or resistivity) of concrete with the 

water content of this material [3, 12, 13]. The review also includes the 

measurement of the dielectric properties, in the very high frequency region (1-100 

GHz) [14]. In this region the water can also be distinguished from the solids in 

concrete. This is the basis for the use of the georadar to study the content of water 

in concrete [10, 11, 16], and some other techniques such as thermal conductivity 

[16-21], infrared absorption [17], and neutron scattering [18]. Most of them allow 

the determination of free water, and some distinguish the moisture gradients in a 

non-saturated sample.   

But not only the total amount of water or the moisture gradients are important. For 

the durability of the structures, especially regarding the chloride ingress, the 

distribution of water is a very important factor because the main diffusion of 

chlorides is through the aqueous phase [19]. 
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The impedance spectroscopy (IS) has been proved to be a technique that can be 

used to study the microstructure of cementitious materials in several conditions, 

and with different applications [20-23] .The main advantage of the technique is 

that it is non-destructive and allows to follow the modifications that can take place 

in the same material. The main advantage of using this technique, for this 

particular work, is that it is very sensitive, not only to the total amount of water 

[20], but also to the presence or absence of water in some pores that can vary as a 

function of the mechanical load applied [24], what means that the impedance 

spectroscopy can be suitable to detect the presence or absence of water in pores of 

a cement based material. Those determinations were made on samples kept in a 

100% RH. No previous work has been found on partially saturated concrete 

samples, with controlled percentage of saturation. 

The technique has been widely explained [25] and is based on the fact that 

different phenomena that take place in a material, with its own time constant will 

respond at a given frequency. It is essential to select properly the frequency range 

where the measurement is taken. In a material like concrete, with two phases, one 

liquid and other solid, the measurement should be taken in a frequency range from 

the kHz to the MHz [20]. The equivalent circuits used for the fitting of the 

experimental data have evolved with time. Initially there were proposed circuits 

that contained only one time constant [26, 27],but the experience showed that 

there are two time constants in the frequency range used for the determination of 

the dielectric properties[28, 29], and the presence of two time constants has been 

proved numerically [20]. One of these time constants has been related to the 

electrolyte in the pore network of concrete. It has also been established that the 

amount of solid-electrolyte interface can be studied using the appropriate 

equivalent circuit [30]. These are the reasons why the IS is considered a promising 
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technique in the field of the non-destructive determination, not only of the total 

amount of water, but also the moisture distribution inside the pore network of 

concrete. 

So the objective of this work is to study the influence of the water content in the 

dielectric response of samples of three different concretes in the frequency range 

from 100 Hz to 100MHz. The samples were previously conditioned, and they had 

time enough to eliminate the moisture gradients due to the laboratory drying by a 

natural redistribution of water. The reason for this redistribution of water was, on 

one hand to investigate the effect of the total amount of water, avoiding wet and 

dried regions that could hide some information about dielectric properties of the 

material. On the other hand, these conditions are more similar to real structures 

exposed to an average relative humidity in a real environment, where the 

structures will be serving. Due to the electric nature of the IS technique it is 

reasonable to expect obtaining information about the distribution of the 

electrolyte, especially due to the electric nature of the technique and the capacity 

to study the interface solid-electrolyte. 

2.- Experimental setup. 

2.1.- Sample preparation 

Three different concrete dosages were used for the samples. The dosages are 

shown in Table 1. The concretes will be called H1, H2 and H3 from now on, 

according to the different dosages used, as defined in Table 1. The cement used 

was Ordinary Portland Cement (CEM I 42,5R), according to the Spanish 

standard), the aggregates used were of calcareous nature, and the plasticizer used 

was modified polycarboxylate. As it is shown in Table 1, three water to cement 

ratios (w:c, mass of water per mass of cement) have been used, form 0.6 to 0.38. 
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Table 2 shows the results of compressive strength, Abrams slump cone, and the 

standard test method for specific gravity, absorption, and voids in hardened 

concrete (ASTM C642-90).  The saturation method used for the determination of 

the density and porosity has been the vacuum saturation instead of boiling, 

because it seems to be a more efficient method [31]. As it can be seen in the table, 

all the concretes are of standard resistant class (30-40 MPa).  

The concrete was cast in cylinders of 10 cm diameter and 12 cm height. The 

cylinders were kept in humidity chamber (20º C and 95% RH) for 24 hours. After 

one day the samples were demoulded, and cut into slices of 3 or 4 cm thick. Also 

standardised samples for the determination of the compressive strength 

(mechanical resistance) were prepared. 

These slices were kept completely submerged in a Ca(OH)2 solution until the 

complete maturation of the concrete (1 year). 

2.2.- Moisture conditioning. 

Once the age of 1 year was reached samples were prepared to get the desired 

saturation degree. The procedure used is based on the RILEM recommendation 

TC-116 [32], and has been described elsewhere [33].  The first step consists in 

obtaining the basic drying data: drying curves and total water absorption of the 

concretes. For that purpose the samples are saturated with distilled water [34], and 

then kept in air in an oven at 50 °C for 550 hours. The temperature was chosen to 

avoid changes in the pore network due to high temperature [35]. The mass of each 

sample was periodically measured to register the mass loss versus drying time. 

The result will permit the calculation of the mass loss necessary to achieve a fixed 

moisture saturation degree, as well as the approximate time necessary to reach that 

saturation degree.  
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Each sample was water saturated, then dried to the desired moisture saturation 

degree, calculated using the previously presented methodology. Once the desired 

mass was reached the samples were introduced in empty hermetic recipients and 

once closed they were put inside the oven at 50ºC. This temperature accelerates 

the redistribution and equilibration of the moisture content inside the sample.  The 

time for the redistribution was chosen according to the recommendations of 

Parrott [35], and varied from 3 days for saturation degree of 90% to more than 20 

days for the concrete type 3 and a saturation degree of 18%. The complete list of 

times necessary for the redistribution of the moisture is given in Table 3, as well 

as the constant water saturation degree (SD) achieved after the redistribution 

stage.  

Each sample, once the equilibration time was finished, was left inside the 

hermetic recipient closed for 48 hours to reach the room temperature, as suggested 

by the RILEM recommendation [32].   

The relative humidity reached in the container was measured using a hygrometer 

Vaisala MI70 and the samples were kept in big containers with the same relative 

humidity as that determined in their equilibrium. The relative humidity was 

achieved using saline or glycerine solutions, prepared using the corresponding 

standard [36] until their utilization for the characterization. 

2.3.- Mercury intrusion porosimetry measurements. 

The pore structure of the matures concretes was determined using the mercury 

intrusion porosimetry (MIP). The technique is well known, and has been widely 

described [20, 37]. The porosimeter employed was the AUTOPORE IV 9500 by 

Micromeritics that permits the determination of the volume of pores whose 

accessible diameter is between 5nm and 0.9 mm. The total porosity, the mercury 
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retention after the experiment, and the volume of pore on each decade measured 

were determined for each concrete. For each concrete type two samples were 

tested. 

2.4.- Impedance Spectroscopy. 

The impedance spectra were obtained using an Agilent 4294 Impedance 

Gain/Phase analyzer. The equipment has a maximum resolution of 10-15 F, and 

can measure from 10-14 to 0.1F. Even though the equipment allows the 

measurement in a frequency range from 40 Hz to 110 MHz, the spectra have been 

taken in the range from 100 Hz to 100MHz. 

The measurements have always been made using two electrode configurations. 

For each saturation degree the samples were measured with the two electrodes in 

contact with the sample (contact measurement), and interposing a polymer sheet 

between the sample and each electrode (non-contact measurement) [20]. In Fig. 1 

there is a scheme for each configuration. The impedance spectrum of the 

polymeric sheets was also measured and it was subtracted from the overall 

impedance, to get only the impedance of the sample. The measurements are taken 

separately and made for the same frequency range and the same frequency values. 

For each frequency, the value of the impedance corresponding to the isolating 

films is subtracted from the value of the overall impedance, as a simple 

subtraction of complex numbers. This fact minimizes the fringe effects, since 

there is a subtraction of two impedances, where the fringe effects are similar.  Fig. 

2.a shows the impedance spectra for a sample with two saturation degrees 

obtained measuring the sample in contact with the electrodes. Fig. 2.b shows the 

Cole-Cole diagrams [29] (capacitance representation) of the same sample obtained 

from the non-contacting measurement. 
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The impedance spectra obtained were fitted with previously established 

equivalent circuits for this kind of materials which are shown on Fig. 2 for each 

electrode sample configuration used. The equations corresponding to each circuit 

are shown in Eq. 1 and 2. 
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The first equation is used for the calculation of the electric parameters of the 

measurement using contact electrode-sample. The electrical parameters have 

already been described [20, 30], resistances RR1R and RR2R, capacitances CR1R and CR2R,  

and dispersion factors αR1R and αR 2R. Equation number 2 is called the Havriliak-

Negami equation and the meaning of the parameters has also been described and 

in deep discussed [20, 23, 30]. The electrical data are calculated by fitting the 

experimental results to the proposed equivalent circuit. The values of these 

parameters are used for the study of the microstructure. 

Three measurements have been made on different samples for every material 

tested and every saturation degree. The results presented will be the average of the 

measurement, including the error bar. Since the electrodes and the cables were 

always the same, samples were tested at laboratory temperature, that did not 

change much, and the same calibration was made for every set of measurements, 

the deviation on the measurements could be assigned only to the inhomogeneity 

of the material. 
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3.- Results and discussion 

The main results have been obtained using the impedance spectroscopy. However 

the results of mercury intrusion porosimetry are very helpful for the discussion of 

the overall results, and will be shown first. 

3.1 Microstructural characterization of concretes.  

The total porosity has been determined using the standard ASTM C642-90. As it 

can be seen in Table 2 the concrete type 1 shows higher water absorption after 

immersion, and after immersion and boiling, as could be expected due to the 

higher w:c ratio used for this concrete type. The values are lower for concrete type 

2, and the lowest for concrete type 3. The same tendency has been observed for 

the volume of permeable pores measured. However the value for the bulk and 

apparent density does not change much from one sample to another. 

The results of the MIP determinations are shown in Fig. 3. It shows the total 

intrusion volume per gram of sample, which indicates the total porosity of the 

sample and also shows the distribution of the total porosity in the different ranges 

for the diameters of the pores. As it can be seen, the total porosity shows the same 

tendency as the ASTM C642 test, the concrete type 1, with a higher w:c ratio has 

the highest porosity, while the concrete type 3 shows the lowest porosity of the 

series, as expected from the lowest w:c ratio. 

More important than this fact is the pore distribution for each concrete. As it can 

be also seen in Fig. 3 as the w:c ratio decreases, the contribution of the smaller 

pores, with  diameter below 100 nm, increases. The volume of pores with 

diameter among 1 μm and 100 nm decreases, and the volume of pores with bigger 

diameter remains more or less constant, with independence of w:c ratio. This 
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means that the lower w:c ratio produces a higher amount of small pores, and less 

pores in the diameter range from 1 μm to 100 nm. 

3.2.- Impedance spectroscopy results. 

As it was mentioned before, in the experimental section, the measurements were 

taken using both the contacting and non-contacting methodologies. As it can be 

seen in Fig. 2 both methodologies give results for the capacitances CR1R and CR2R, and 

the resistance RR2R, while the resistance RR1R can only be obtained from the 

contacting method. These parameters have been shown to be dependent on the 

dimensions of the measured sample, especially on the thickness of the sample [20, 

30]. Since not all the samples had the same thickness, and in order to compare the 

obtained values it is necessary to normalize the parameters to the thickness of the 

sample. The capacitance CR1R has been proved to be a dielectric capacitance, and 

has an inverse relationship with the thickness. The rest of the parameters increase 

as the thickness of the sample does. So, the parameters studied here will be CR1R·d, 

CR2R/d, RR1R/d, and RR2R/d, being d the thickness of the sample. Three samples were 

tested for each condition, and the average results are presented. 

The evolution of the parameters does not depend on the experimental setup used. 

Fig. 4 shows the evolution of the capacitance CR1R·d and the resistance RR2R/d, for all 

the samples of concrete type 1. The result is equivalent for the rest of concrete 

types. The evolution of the parameters is very similar for both setups, and the 

values of the resistance are very similar. The values for the capacitance are higher 

when they are obtained using the contacting setup. This result has already been 

reported for cement pastes [20], even though the samples were thinner, and the 

differences were associated to the runaway capacitance, that is eliminated in the 

non-contacting measurements. Since the tendencies obtained for the parameters 
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that are common for both methods are very similar, and the sensitivity of the 

fitting of the measurements made using the contacting method is lower, the 

parameters CR1R, CR2R, and RR2R will be discussed based on the results of the non-

contacting method. 

Fig. 5 shows the influence of the saturation degree of the sample on the resistance 

RR1R. This resistance has been proved to be representative of the total volume of 

pores that connect both sides of the sample.   

In saturation condition the value of the resistance of the samples is inverse 

proportional to their porosity. The bigger resistance is for concrete H3, and the 

lower resistance for concrete type H1. The value of the resistance increases 

exponentially as the saturation degree decreases for every concrete type. Concrete 

types 1 and 2 follow the same tendency with the saturation degree.  Concrete type 

3 (H3) shows a change in the tendency below 45% percentage of saturation, with 

a resistance always higher than for the rest of the concrete types. For a percentage 

of saturation below 45% the value of the resistance for concrete type 3 is lower 

than for concretes H1 and H2. This result could be due to the more refined 

microstructure of this kind of concrete, with a bigger amount of pores below 100 

nm diameter, as the MIP results show.  

The rest of the parameters have been obtained from the non-contacting 

measurements, as explained before. 

The results for the resistance RR2R are shown in Fig. 6. The tendency is equal to the 

observed for the resistance RR1R. In fact, in the non-contacting measurements both 

resistances will be included in the value of RR2R. The only difference is that for RR2R, 

the evolution of the resistance with the saturation degree is exponential and it is 

higher when the concrete porosity is lower, as expected for every resistance. For 

this parameter the influence seems to be higher from the total porosity than from 



12 

the pore size distribution, perhaps because these pores are not directly opened to 

the surface of the sample (and include the occluded pores) and their drying 

kinetics could be more influenced for the total volume of pores. The opened 

pores, represented by RR1R are easier to dry, and the drying kinetics will be 

influenced by the pore size present. The occluded pores, and not accessible pores, 

represented by R2 are more difficult to dry, and their drying, looking at the 

impedance spectroscopy results, is influenced by the total porosity.  

Fig. 7 shows the evolution of the normalized capacitance CR1R·d with the saturation 

degree of the samples. As it can be seen there are no important changes with the 

saturation degree of the samples in the value of the capacitance. This is in 

agreement with the nature of this parameter that has been reported to be related to 

the solid fraction of the samples [20, 21, 30]. The saturation degree does not 

influence the solid fraction of the sample, as reflected by the evolution of the 

capacitance CR1R. 

The value of the capacitance CR1R is related to the solid fraction in the sample. It 

remains constant with the saturation degree, but can vary from one concrete type 

to another. The results of mercury intrusion porosimetry, and the ASTM C642 test 

say that the concrete type 1 is the most porous of all the concrete types studied, 

and the concrete type 3 is the less porous. With these results, the value of the 

capacitance   CR1R for concrete type 1 should be the lowest, and the values of this 

parameter for concrete type 3 should be the highest. The obtained result, as shown 

in Fig 7, is not in agreement with this hypothesis. The reason for this 

disagreement may come from two reasons, or the similar densities observed, as 

shown in Table 2, or the experimental setup. The dielectric capacitance CR1R should 

be measured using a flat infinite condenser. This means two electrodes separated 

by the concrete to be characterized, where the dimensions of the electrode are 
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bigger than the thickness of the sample. In our case the electrodes used for the 

measurement were of 7 cm diameter, and the thickness of the samples was about 3 

to 4 cm. both dimensions are comparable and will influence the calculated values 

of the capacitance CR1R. However since the dimensions were similar for all the 

studied concrete types the variations of the capacitance CR1R can be used to evaluate 

differences in the solid phase of the concrete samples. 

This result is important because in the case of using this technique in a real 

structure, the electrodes will not be in any case much bigger than the structure 

dimension, but the technique will allow determining the changes that may occur 

in the solid phase as well. 

The evolution of the capacitance CR2R with the saturation degree of the samples is 

shown in Fig. 8. As it can be seen in that figure, the value of the capacitance 

remains approximately constant with independence of the saturation degree of the 

concrete sample, This parameter represents the amount of pore surface in contact 

with liquid [30]. According to the results obtained the pore surface in contact with 

liquid does not vary. This result can mean that the electrolyte present in the pores 

is redistributed, if the necessary time is given. This result has been proposed by 

some researchers, [38] but had not been yet confirmed. This result also confirms 

that the times proposed by Parrott are enough to ensure the redistribution of the 

liquid present in the concrete homogenously over the pore surface. 

The results of the dispersion factors also can be useful to corroborate this result. 

The results are shown in Fig. 9. The value of these parameters vary from 0 to 1, 

and the physical meaning is 1 means no dispersion, and 0 total dispersion. As it 

has been proved the symmetrical dispersion factor α represents the wideness of 

the pore families present in the porous structure, and the asymmetrical dispersion 

factor β shows the presence of pores of diameters very different from each other 
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[30], what means the presence of different pore families. As it can be seen in Fig. 

9 the value of the asymmetrical dispersion factor is lower for all concrete types at 

a 100% saturation degree. This result could be expected, because of the status of 

total saturation of the pores, and there is a contribution to the impedance spectrum 

of pores with size very different one to each other as shown in Fig. 10.a. As the 

saturation degree decreases, the surface of most pores is still in contact with 

electrolyte, but not all the pores remain full of liquid. The dimension of the pore 

that can conduct will decrease, initially for the bigger pores. This fact can conduct 

to the situation reflected in Fig 10.b, in that situation all the pores have similar 

dimensions for the liquid phase that contain. In that situation the importance of the 

asymmetrical dispersion factor decreases (value closer to 1), because there are no 

big differences in effective pore dimension, and increases the importance of the 

symmetrical dispersion factor because there will be small differences in the 

effective pore dimensions. This tendency continues until the saturation degree of 

60% or 45%. At these values the asymmetrical dispersion factor is very close to 1, 

and this could mean that the conducting surface of each pore is approximately 

equal to the dimension of the smallest pores (Fig 10.b). At lower saturation 

degrees the value of the asymmetrical dispersion factor gets more importance, and 

values lower than 1, may be due to the higher difficulty to dry small pores [40] 

(see Fig 10.c), and the difference of the thickness of the continuous path formed 

over the pore walls is thicker for the smaller pores, and as a consequence the 

asymmetrical dispersion factor decreases because important differences in the 

effective pore dimensions appear again. 

In this situation the pure diffusion of chlorides will be very difficult, because they 

are forced to diffuse through the water continuous layer that will be very thin for 

low saturation degrees. 
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In addition to that, the impedance spectroscopy technique seems to be suitable to 

study in a non-destructive way the water content, and the water distribution in real 

structures.  

4.- Conclusions 

With the results previously presented and discussed the following conclusions can 

be extracted: 

• The impedance spectroscopy is a non-destructive technique that can be 

used to study the distribution of water in partially saturated concrete 

samples. 

• The solid phase does not vary under drying processes, but the 

determination of the solid fraction using this technique is not very suitable 

for samples with thickness similar to the electrode diameter. 

• When there is enough time, in conditions of partial saturation of concrete 

samples, the water is redistributed forming a continuous path all over the 

pore walls.  

• The times given for the water redistribution used in this work seem to be 

enough to achieve the moisture redistribution inside the sample. 
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Figures and Tables 

 

                  

 

Figure 1. Schematic of the electrode-concrete sample configurations used for the obtention 

of the impedance spectra of the materials.  
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Figure 2. : Impedance spectra for a sample of concrete type 3, for a sample with a degree of 

saturation of 100%, and for a saturation degree of 75%. The sample thickness was of 3.06 cm. (A) 

corresponds to the contact method, while (B) corresponds to the Cole-Cole representation of the 

sample using the polyester sheet between electrode and sample. 
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Figure 3. Distribution of the total porosity on pore diameter ranges, for the three types of 

concrete studied. The total range of pore diameters studied has been divided in 5 regions, 

of at least one decade of pore ranges in each region. 
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Figure 4. : Comparison of the tendencies of the values of the average normalized 

capacitance C1 and the average normalized resistance R2, obtained using the contacting 

and non-contacting setups as a function of the saturation degree of the sample. 
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Figure 5. Evolution of the resistance R1 with the degree of saturation. Measurements with 

contact electrode-sample. 
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Figure 6. Evolution of the resistance R2 with the degree of saturation. Measurements 

without contact. 
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Figure 7. Evolution of the high frequency capacitance, C1, with the degree of saturation. 

Measurements without contact. 
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Figure 8. Evolution of the low frequency capacitance C2 with the degree of saturation. 

Measurements without contact. 
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Figure 9. Evolution of the dispersion parameters, α and β, with the degree of saturation. 

Measurements without contact. 

 

Figure 10. Scheme for the evolution of the moisture content in the pores as the drying of the 

sample progresses 

 

 

 

Table 1 :dosage used for each concrete specimens 

 PC60 (H1) PC50 (H2) PC38 (H3) 

Cement (Kg) 350 350 450 

Sand (Kg/m3) 630.3 662.8 628 

Gravel 4/6 (Kg/m3) 465.5 489.5 523 

Gravel 6/12 (Kg/m3) 679 714 637 

Water/cement ratio 0.6 0.5 0.38 

Plasticizer (%) 0.4  1.4  1.5  
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Table 2 : results of the standard test method for Abram’s slump cone, compressive strength, 

specific gravity, absorption, and voids in hardened concrete (ASTM C642-90)  

Concrete 1 2 3 

Abrams’ slump cone (cm) 15 17.5 20 

Av. Compr. Strength. 31.3 40.3 40.2 

Absorption after immersion (%) 7.0 5.4 4.5 

Absorption after immersion and boiling(%) 7.1 5.6 4.6 

Bulk sp gr, dry (g/cm3) 2.18 2.23 2.29 

Bulk sp gr after immersion (g/cm3) 2.34 2.35 2.39 

Bulk sp gr after immersion and boiling (g/cm3) 2.34 2.36 2.39 

Apparent sp gr (g/cm3) 2.59 2.56 2.56 

Volume of permeable pore space (voids) (%) 15.6 12.6 10.5 

 

 

 

 

Table 3 : Saturation degree aimed and achieved after equilibration in the hermetic chambers 

used for the redistribution of the moisture. 

 

Concrete type Aimed SD(%)  
Equilibrium Chamber (50ºC) 

SD(%) 

Equilibrium time, 

days 

1 90 89.2 3 

2 90 83.7 3 

3 90 89.9 3 

1 75 75.2 3 

2 75 74.7 3 
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3 75 75.0 3 

1 60 59.6 4 

2 60 56.5 4 

3 60 59.0 4 

1 45 44.7 6 

2 45 45.1 5 

3 45 45.0 8 

1 33 32.9 10 

2 33 32.9 9 

1 18 16.3 18 

2 18 16.9 14 

3 18 18.5 23 

 

Table 4 : mercury intrusion porosimetry results 

 Concrete 1 Concrete 2 Concrete 3 

Total Porosity, % 12.33 10.17 8.59 

Hg retention, % 46.79 55.17 59.53 

 

Figure and table captions. 

Figure 1. Schematic of the electrode-concrete sample configurations used for the obtention 

of the impedance spectra of the materials.  

Figure 2.  Impedance spectra for a sample of concrete type 3, for a sample with a degree of 

saturation of 100%, and for a saturation degree of 75%. The sample thickness was of 3.06 

cm. (A) corresponds to the contact method, while (B) corresponds to the Cole-Cole 

representation of the sample using the polyester sheet between electrode and sample. 

Figure 3. Distribution of the total porosity on pore diameter ranges, for the three types of 

concrete studied. The total range of pore diameters studied has been divided in 5 regions, 

of at least one decade of pore ranges in each region. 
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Figure 4. Comparison of the tendencies of the values of the average normalized 

capacitance C1 and the average normalized resistance R2, obtained using the contacting 

and non-contacting setups as a function of the saturation degree of the sample. 

Figure 5. Evolution of the resistance R1 with the degree of saturation. Measurements with 

contact electrode-sample. 

Figure 6. Evolution of the resistance R2 with the degree of saturation. Measurements 

without contact. 

Figure 7. Evolution of the high frequency capacitance, C1, with the degree of saturation. 

Measurements without contact. 

Figure 8. Evolution of the low frequency capacitance C2 with the degree of saturation. 

Measurements without contact. 

Figure 9. Evolution of the dispersion parameters, α and β, with the degree of saturation. 

Measurements without contact. 

Figure 10. Scheme for the evolution of the moisture content in the pores as the drying of the 

sample progresses 
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