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Abstract (250 words)

Purpose: The DBA/2J mouse line develops essential iris atrophy, pigment dispersion,
and glaucomatous age-related changes, including an increase of intraocular pressure,
optic nerve atrophy and retinal ganglion cell death. The aim of this study was to
evaluate possible morphological changes in the outer retina of the DBA/2J mouse
concomitant with disease progression and aging, based on the reduction of both the a-
and b-waves and photopic flicker ERGs in this mouse line.

Methods: Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8 and 16
months of age using photoreceptor, horizontal and bipolar cell markers. Sixteen month
old C57BL/6 mice retinas were used as controls.

Results: DBA/2J mice had outer retinal degeneration at all ages, with the most severe
degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor
cells and the thickness of the OPL were reduced. In addition, there was a loss of
horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration
occurred in patches, and in the outer retina overlying these patches, cone morphology
was impaired with a reduction in size as well as loss of outer segments and growth of
horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age,
connectivity between photoreceptors and horizontal and bipolar cell processes
overlying these patches was lost.

Conclusions: DBA/2J retinal degeneration includes photoreceptor death, loss of
bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-

dependent manner.
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Introduction

Glaucoma is a heterogeneous group of chronic ocular diseases in which retinal
ganglion cells (RGC) die by apoptosis'?2. Glaucoma is the second most frequent cause
of blindness in the worldwide representing 8% of all cases, according to the World
Health Organization®. Angled-closure glaucoma usually develops an increase in
intraocular pressure (IOP) leading to optic nerve damage, RGC death and a permanent
loss of vision?. The DBA/2J mouse line**® has been suggested as a secondary angle-
closure glaucoma model because of its closely resemblance to this type of human
glaucoma’. At 3 to 6 months of age, the DBA/2J mouse eye begins to develop
essential iris atrophy, pigment dispersion, and glaucomatous age-related changes,
including an increase of IOP, optic nerve atrophy and RGC death. The DBA/2J mouse
line carries recessive mutations in genes encoding, glycosylated protein nmb (Gpnmb;
NCBI GenelD 93695) and tyrosinase-related protein 1 (Tyrp1; NCBI GenelD 22178)%°.
Mice with these mutations spontaneously develop iris atrophy, pigment deposition in
the anterior segment and eventually blockage of ocular drainage structures®, elevated
IOP, optic nerve atrophy and RGC degeneration, usually by apoptosis®®. This ocular
pathology may begin as early as three months of age'®. Previous studies have
evaluated and documented RGC degeneration and reduction of the inner retina

concomitant with aging and disease progression in the DBA/2J mouse line'®".

Electroretinograms (ERGs) performed on young DBA/2J mice (2-3 months) showed
that both, the oscillatory potentials and photopic flicker ERGs, are lower than those
from age matched C57BL/6 mice', whereas scotopic ERG responses had similar
amplitudes in their a- and b-waves''. However, older DBA/2J mice (195 to 305 days)
have lower amplitudes in their a- and b-waves compared to C57BL/6 mice™.
Furthermore, a significant reduction of the scotopic a- and b-wave amplitudes has also

been reported for two-year-old DBA/2J mice'®, suggesting changes in the functional
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integrity of the outer retina, since these waves are mainly generated by photoreceptor
and ON bipolar cell responses'®'’. Fuchs and cols '® found a narrowing of the OPL that
they attribute to structural synaptic ribbon impairment in the axon terminal of rod
photoreceptors. However, there is poor information available regarding cellular or
synaptic changes in the outer retina of the DBA/2J line with aging and disease
progression that could account for these changes in the ERG. In this study, we have
evaluated the cellular morphology of the outer nuclear layer (ONL) and the
organization of the outer plexiform layer (OPL) of the DBA/2J mouse retina at different

ages, before and after the onset of RGC degeneration.
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Materials and Methods

Animals and tissue preparation

DBA/2J (Gpnmb™**®* and Tyrp1?) mice female at 3, 8 and 16 months old, with a total
of 12 animals, were used in this study. C57BL/6 mice female at 16 months old were
used as controls. Animals were obtained from the Jackson Laboratory (Bar Harbor,
ME, USA) and they were maintained and bred in temperature and light controlled
rooms with a 12 hours light/dark cycle and had food and water ad libitum at the David
Geffen School of Medicine at the University of California, Los Angeles (UCLA).
DBA/2J is a well-studied secondary angle-closure glaucoma model presenting IOP
increase. The IOP measurements reported by others and us showed increased IOP in
this model starting around 6 months-old and is maintained with aging*'?. All
experiments were performed in accordance with the guidelines and policies for the
welfare of experimental animals established by the U.S. Public Health Service Policy
on Human Care and Use of Laboratory Animals (2002), the UCLA Animal Research
Committee, and the ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. The mice were deeply anesthetized with 1-3% isofluorane (Novaplus, Lake
Forest, IL). The eyes were enucleated and fixed in cold 4% paraformaldehyde in 0.1 M
phosphate saline buffer (PBS), pH 7.4, for 60 minutes at room temperature (RT). Eyes
were immersed in 15 and then 20% sucrose in PBS for one hour each, and left in 30%
sucrose in PBS overnight at 4°C. The following day, the cornea, lens and vitreous body
were removed and embedded in Tissue-Tek OCT (Sakura Finetek, Zoeterwouden,
Netherlands) and frozen in liquid N,. Vertical sections of the retina were cut at 16 pm
thickness on a cryostat (Leica CM 1900, Leica Microsystems) in a horizontal plane,
and mounted on Superfrost Plus slides (Menzel GmbH & Co KG, Braunschweig,

Germany), and air-dried.
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Immunohistochemistry

For immunohistochemistry, at least three animals were studied at each time point.
Retinas from C57BL/6 and DBA/2J mice were processed in parallel, and retinal
sections were treated as in previous studies'®?. Briefly, the sections were thawed and
washed 3x10 minutes in 0.1 M PB, pH 7.4, and then incubated in blocking solution
(10% normal donkey serum in 0.1 M PB containing 0.5% Triton X-100) for 1 hour at RT
in the dark. The sections were then incubated in the primary antibodies diluted in PB
containing 0.5% Triton X-100 overnight at RT. All primary antibodies used in this work
(summarized in Table 1) had been utilized in several previous studies and are well
characterized by others and us regarding cell type specificity. The sections were
subsequently washed in PB and incubated in the corresponding secondary antibodies
at a 1:100 dilution for 1 hour at RT. Secondary antibodies used in this work were Alexa
Fluor 488—anti-rabbit 1gG, Alexa Fluor 555—anti-mouse IgG donkey and Alexa Fluor
633—anti-guinea pig IgG donkey (Invitrogen, Carlsbad, CA). The nuclear marker, TO-
PRO-3 iodide (Invitrogen) was added at 1 uM with the secondary antibodies. The
sections were finally washed 3x10 minutes in PB, mounted in Citifluor (Citifluor Ltd;
London, UK) and cover slipped for viewing with a Leica TCS SP2 laser-scanning
confocal microscope. To control for non-specific staining, some sections were
processed without the primary antibody. Final images from C57BL/6 and DBA/2J
retinas were processed in parallel using the Adobe Photoshop 10 software (PhotoShop

10; Adobe, San Jose, CA).

Morphometric analysis.

ONL measurements were performed on retinal sections stained with TO-PRO 3-iodide.
Sections stained with antibodies against calbindin at different ages were used to
quantify the invaginated terminal tips of horizontal cell into the photoreceptor axon
terminals. All measurements were taken in the central area, near the optic nerve head,

of at least 3 animals in 8 single scanned pictures at each eye and age-point. At 8 and
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16 months, digital images were taken inside and outside the patches. The patches in
retinal sections were defined as areas with greater loss of photoreceptor cells,
decreased synaptic connectivity in the OPL with high diminution in the horizontal cell
plexus. In addition, it was possible to find inside these areas vascular alterations in the
superficial plexus together with retinal remodelation (Figure 4 and supplementary
material S1). Imaged software (National Institutes of Health, Bethesda, MD, USA) was
used for the morphometric analysis of the confocal images; the quantification of

horizontal cell tips was done manually using the cell counter plugin.

Statistical analyses

Results were analyzed by Graphpad Prism (GraphPad Software, Inc. La Jolla, CA
92037 USA). For statistical analysis two-tailed Student’'s t-test was performed to
compare the ONL thickness and the number of horizontal cell tips found at each age-
point compared with control retina. P values of less than 0.05 were considered to be

statistically significant.
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RESULTS

Retinal thickness in the DBA/2J mice

The thickness of the outer and inner nuclear layers was evaluated using a nuclear
stain, TO-PRO 3-iodide. Measurements were made on vertical sections central retina,
100 microns from the optic nerve head. In vertical sections of 16 month old C57BL/6
retinas, the ONL consisted of 12-14 rows of photoreceptor cell bodies, the inner
nuclear layer (INL) consisted of 5 rows of cell bodies and there was a regular
distribution of cells including RGCs in the ganglion cell layer (GCL) (Fig. 1A). In 3
month old DBA/2J retinas, the thickness of both nuclear layers appeared normal
compared with C57BL/6 retinas, although there were some subtle alterations in the
OPL, including misplaced nuclei resulting in discontinuities in the thickness of the OPL
(Fig. 1B). These observations in the OPL at 3 months are consistent with findings from
a previous report'®. At 8 months old, the ONL was reduced to 9-11 rows of
photoreceptor cell bodies and the INL was about 4 cellular rows (Fig. 1C).
Quantification of ONL thickness showed a statistically significant reduction of about 20
microns in DBA/2J mice compared to C57BL/6, which can be converted in the loss of
about 3-4 photoreceptor rows (Fig. 1E). The width of the OPL and IPL, at this age, was
noticeably thinner than the OPL and IPL in the control retinas, and there was a marked
reduction in cell number in the GCL (Fig. 1C). At 16 months of age, DBA/2J mice
displayed a high variability between different animals in the ONL thickness. We found a
reduction of 6 to 7 rows of photoreceptor cell bodies, the quantification showed a
statistically significant reduction compared with C57BL/6 retinas (Fig. 1E). Furthermore,
the reduction in the OPL and IPL thickness was evident, and in some areas, the OPL

was difficult to identify (Fig. 1D, arrows).
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Alterations in the connectivity at the OPL level

d®2° consists of a rod or cone axon terminal

The photoreceptor synaptic tria
characterized by a synaptic ribbon, and two horizontal processes and a bipolar

dendrite that invaginate the axonal terminal.

Connectivity between photoreceptor and rod bipolar cells

To evaluate the distribution of rod bipolar cell dendrites in rod synaptic triads, we
performed double label immunostaining using antibodies against PKC-a, for rod bipolar
cells, and Bassoon, a marker of the arciform density underlying the synaptic ribbon?
(Fig. 2). In C57BL/6 retinas at 16 month old (Fig. 2A-C), the outer retina appeared to
have a normal morphology, with bipolar cell dendrites terminating near Bassoon
immunoreactive puncta, which demark the photoreceptor synaptic ribbon (Fig. 2A-C).
In 3 month old DBA/2J retinas (Fig. 2D-F), the rod bipolar cell dendrites (green, Fig.
2D) were retracted with shorter tips compared to bipolar cells in C57/BI retinas, and
there was a significant decrease of Bassoon immunoreactive puncta (red, Fig. 2E).
These anatomical changes are more apparent at older ages. In 8 month old DBA/2J
retinas (Fig. 3G-I), most rod bipolar cells lacked dendrites, although there were a few
dendrites that extended into the ONL (Fig. 2G). In addition, there were few Bassoon
immunostained puncta (Fig. 2H) compared to earlier ages, and some of these puncta
were not associated with bipolar dendrites (Fig. 2I, arrowhead), whereas other
Bassoon immunoreactive puncta were localized at the end of dendrites in the ONL
(Fig. 2I, arrow), indicative of a retraction of the rod spherules. In 16 month old DBA/2J
retinas, only a few bipolar cell dendrites remained (Fig. 2J) and there was an overall

reduction of Bassoon immunoreactive puncta (Fig. 2K-L).

Connectivity between photoreceptors and horizontal cells

10
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To identify horizontal cell axons and dendrites we used an antibody to calbindin®’ (Fig.
3A,C). Photoreceptor axonal terminals were identified using an antibody to

synaptophysin, a protein associated with synaptic vesicles®® (Fig. 3B,C).

C57BL/6 retinas at 16 months old showed a regular distribution of horizontal cell
dendritic tips and synaptophysin staining in rod and cone photoreceptor axon terminals
associated with horizontal cell endings (Fig. 3A-C). In 3 month old DBA/2J retinas (Fig.
3D-F), there was a shortening of horizontal cell processes and a clear reduction of
horizontal cell endings (Fig. 3D, arrowheads) compared with C57BL/6 retinas (Fig. 3A,
arrowheads); although, the expression of synaptophysin immunostaining in the
photoreceptor axon terminals (Fig. 3E) appear to remain at the same level as control
retinas (Fig. 3B). In 8 month old DBA/2J retinas (Fig. 3G-l), the loss of horizontal cell
processes and tips were more apparent (Fig. 3G, |, arrowheads) compared to control
retinas (Fig. 3A, arrowheads). The staining of photoreceptor axon terminals with
synaptophysin showed only 1 to 2 rows at the OPL at this age (Fig. 3H-I). In 16 month
old DBA/2J retinas (Fig. 3 J-L), there was a discontinuous plexus of horizontal cell
processes in the OPL with few endings (Fig. 3J, L), as well as a reduction of the

photoreceptor axon terminals (Fig. 3K, H).

Degeneration in retinal “patches”
At 6-8 months of age in the DBA/2J retina, degeneration and loss of cells in the GCL is

t 4191 and located in discontinuous retinal areas®. Over time, these areas of

apparen
RGC loss expand to cover most of the retina (See supplementary materials S2).

In retinal sections, we identified areas with changes in the inner and outer retina, which
were referred to as “patches” compared to other areas in the same retinal section (Fig.
4). These patches (Fig. 4C) are areas where photoreceptors are lost and the OPL and

INL presents alterations with a substantial decrease in the horizontal cell plexus (See

supplementary materials S1), increased retraction of photoreceptor cell axons

11
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accompanied by sprouting of horizontal and bipolar cells (Fig. 4A, C; arrowheads).
Inside these areas it is possible to find vascular alterations (Fig. 4A, C; arrows)
compared to neighbor areas with normal appearance (Fig. 4B, D).

Cone photoreceptors

To evaluate cone photoreceptor morphology, retinal sections were immunostained with
an antibody against y-transducin, a specific marker for cone photoreceptors *°. To
avoid the differences in cone density in different areas of the retina, the photographs
for cone morphology studies were taken in the temporal area near optic nerve and
inside the patches in all animals. The morphology of cone photoreceptors was well
preserved in the DBA/2J retina at 3 (Fig. 5B), 8 and 16 months of age outside of the
patches (Fig. 5C, E). In C57BL/6 retina at 16 months of age, the nuclei of cone
photoreceptor cells were located in the distal ONL (Fig. 5A). In the DBA/2J retina at 3
months of age, some cone nuclei were located in the middle of the ONL (Fig. 5B,
arrows). At 8 months of age there were patches with a greater degeneration compared
to other areas of the retina. There was a marked loss of rows of photoreceptor cell
bodies in the ONL in these regions. Cone photoreceptor morphology was altered, with
an overall reduction in length, shorter outer segments (OS) and swollen inner
segments (IS) (Fig. 5D, arrowheads). At 16 months of age, cone morphology was
markedly impaired (Fig. 5F) compared with outer retinal regions that overlay retinal
regions with RGCs (Fig. 5E). At this age, most cone photoreceptor cells lacked an
obvious axon terminal (Fig. 5F, double arrowhead) and only a few cone photoreceptor
cells were observed having a short axonal terminal (Fig 5F, arrows). In addition, the
cone IS were swollen (arrowheads) and the OS were quite small (Fig. 5F), compared

with control retinas (Fig. 5E).

Bipolar cells

12
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Guanine nucleotide-binding protein B3 (GNB3), an isoform of the 3 subunit of a G-
protein commonly associated with transmembrane receptors, is expressed by cone
photoreceptors, and ON cone and ON rod bipolar cells '. Therefore, we used an
antibody against GNB3 to evaluate bipolar cell morphology in the C57BL/6 and DBA/2J
retinas (Fig. 6). In 3 month old DBA/2J retinas, GNB3 immunostaining showed a slight
reduction of the bipolar cell dendrites (Fig. 6B, arrowheads) and the bipolar axon
terminals in the IPL appeared to be less frequent and swollen compared with bipolar
cells in C57BL/6 (Fig. 6A). In 8 month old DBA/2J retinas, a few GNB3 immunostained
bipolar cell dendrites were present in middle of the ONL (Fig. 6C, D; arrows). The IPL
was thinner at this age, and there were fewer bipolar cell axon terminals that were
smaller than the bipolar cell axonal terminals in the C57BL/6 retina. In 16 month old
DBA/2J retinas, a greater number of bipolar cell dendrites showed growth into the ONL
(Fig. 6E, arrows). In addition, at this age, bipolar cell bodies were disorganized in the
INL, and there was a loss of axonal terminals and lateral varicosities in the IPL,

especially over regions of RGC loss (Fig. 6F).

Synaptic connectivity between photoreceptor and horizontal cells

To evaluate alterations in the synaptic connectivity between photoreceptors and
horizontal cells in the OPL, we performed triple immunostaining studies using markers
for photoreceptor axonal terminals, the photoreceptor synaptic ribbon and horizontal
cell processes. Antibodies against the vesicular glutamate transporter type 1
(VGLUT1), which transports glutamate into synaptic vesicles *?, was used to visualize
cone and rod axon terminals. To identify the synaptic ribbon in the photoreceptor axon
terminal, antibodies were used to detect the C-terminal binding protein 2 (CtBP2),
which is domain B of RIBEYE, a structural protein of synaptic ribbons ***. Antibodies
to calbindin were used to visualize horizontal cell processes (Fig. 7). In the C57BL/6
retina (Fig. 7A), VGLUT1 immunostaining showed 3-4 rows of rod spherules in the

OPL, and each rod spherule contained a synaptic ribbon, identified by CtBP2

13
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immunoreactive puncta adjacent to the tip of the horizontal cell ending (Fig. 7A). In 3
month old DBA/2J retinas (Fig. 7B), there was a small reduction in the thickness of the
OPL compared to the C57BL/6 retinas (Fig. 7A). The quantification of the number of
horizontal cell showed a reduction of 10% compared to C57BL/6 retinas (Fig. 7G). In 8
and 16 month old DBA/2J retinas, the loss of connectivity between photoreceptors and
horizontal cells endings were evident (Fig. 7C, E). There was a loss of about 40% and
48% of the horizontal cell tips at 8 and 16 months, respectively over the retinal regions
with RGCs (Fig. 7G). In contrast, in outer retinal regions overlying regions of RGC loss
(“patches”) at 16 months the decrease in the number of horizontal cell tips was about
80% (Fig. 7G), and only a very few horizontal cell tips, axonal terminals and
photoreceptor ribbons were identified (Fig. 7F). In addition at 8 and 16 months,
overlying regions where retinal ganglion cell remain, a few horizontal cell tips were
observed in the ONL indicating growth into the photoreceptor nuclear layer (Fig. 7C,
E). No VGLUT1 immunoreactivity was present in the axon terminals (Fig. 7C, E,
arrowheads), although the pairs between horizontal cell tips (calbindin, green) and

photoreceptor ribbons (CtBP2, red) were still present.

Similar findings were observed at 8 month inside the patches (Fig. 7D). At 16 months
of age, no horizontal cell bodies were found in regions above the “patches” and there
was a corresponding loss of the horizontal cell plexus in the OPL. In these regions, a
reduction of calbindin and CtBP2 immunoreactive puncta were evident (Fig. 7F,
arrows). In addition, CtBP2 and VGLUT1 immunoreactivity were found in the inner and
outer segments of the photoreceptors (Fig. 7F, arrowheads), instead of in the
photoreceptor axon terminal.

To determine if horizontal cell processes are in apposition to photoreceptor terminals
near the synaptic ribbon, and verify whether postsynaptic contacts with horizontal cells
were lost, we performed double label immunostaining with antibodies against CtBP2

(Fig. 8, red), and against syntaxin 4 (Fig. 8, green), a marker of horizontal cell tips *°.

14



342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

369

The typical horseshoe morphology corresponding to photoreceptor ribbons in rod
spherules is associated with horizontal cell tips (Fig. 8A, arrowheads) and the disk-like
morphology corresponding to photoreceptor ribbons in cone pedicles are also

associated with horizontal cell dendrites (Fig. 8A, arrows).

In 3 month old DBA/2J retinas (Fig. 8B), there was a clear decrease of photoreceptor
ribbons together with a loss of their horseshoe morphology compared with C57BL/6
retinas (Fig. 8A). Some of the CtBP2 puncta observed were lacking their corresponding
syntaxin 4 immunoreactive spot (Figure 8B, arrowheads). In 8 month old DBA/2J
retinas, there was a reduction of the CtBP2 and syntaxin 4 pairs. In addition, the
horseshoe morphology of the ribbon changed to a small immunoreactive puncta and
pairs of CtBP2 and syntaxin 4 immunoreactive puncta were rare (Fig. 8C, arrowheads).
These changes were more evident in outer retinal regions above the patches of RGC
loss (Fig. 8D, arrowheads). The impairment of synaptic contacts was more evident at
16 months of age (Fig. 8E), where there were many examples of CtBP2
immunoreactive puncta without a corresponding syntaxin 4 immunoreactive puncta
(Fig. 8E, arrowheads). In outer retinal regions over the patches lacking RGCs at 16
months old, the pairs CtBP2 and syntaxin 4 in the OPL were infrequent. Only sporadic
pairs can be recognized (Fig. 8F, arrow). Some CtBP2 puncta were located in the

ONL and were not associated with syntaxin 4 immunoreactivity (Fig. 8F, arrowhead)

Photoreceptor axon terminal morphology

Neurotransmitter release requires ATP for synaptic vesicle release, which is generated
by large mitochondrion in the rod photoreceptor terminals ***-*°. To study the
energetic conditions of the photoreceptor axon terminals we used antibodies against
Cytochrome C (Cyt C) as a marker of mitochondrion. VGLUT1 and calbindin
antibodies were used to visualize rod spherules and cone pedicles, and horizontal cell

endings, respectively. In the C57BL/6J mouse retina at 16 months of age, rod

15
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spherules express VGLUT1 immunoreactivity, and the horizontal endings in the
synaptic triad can be easily recognized (Fig. 9A, inset, arrow). The giant mitochondrion
expressing Cyt C immunoreactivity (Fig. 9, blue) was also visualized in the rod
spherules *. In 3 month old DBA/2J retinas, VGLUT1 immunoreactivity was absent in
some of the photoreceptor axon terminals, which were identified by the presence of
punctae Cyt C immunostaining (Fig. 9B, arrows, inset, arrow). In 8 month old DBA/2J
retinas, there was a widespread loss of VGLUT1 immunostaining in the photoreceptor
axon terminals. Horizontal cell processes extended to the vicinity of the mitochondria in
the ONL, and these regions of the photoreceptor lacked VGLUT1 immunoreactivity
(Fig. 9C, arrows). Some horizontal cell endings ramified in the ONL and were isolated
from photoreceptor axon terminals and mitochondria (Fig. 9C, arrowheads). Horizontal
cell endings in the rod spherules were not present (Fig. 9C, inset) and the rod
spherules containing VGLUT1 immunoreactivity were reduced in size. All of these
morphological changes were more prominent in regions of the outer retina overlying

patches of the inner retina lacking RGCs (Fig. 9D, inset).

In 16 month old DBA/2J retinas (Fig. 9E-F), the OPL was disrupted with a marked
reduction of VGLUT1 immunoreactive axonal terminals and loss of calbindin
immunoreactive horizontal cell processes (Fig. 9E, arrows; Fig. 9E, inset). In regions
of the OPL that did not overlie the patches of inner retina with RGC loss, the giant
mitochondrion were displaced to the ONL, whereas in ONL regions overlying the
patches lacking RGCs, the number of giant mitochondrion decreased, likely due to the
reduction of the number of photoreceptors. Furthermore, in OPL regions overlying the
inner retina patches lacking RGCs, rod spherules had smaller appearance than those
in the C57BL/6J control retinas and the horizontal cell endings, based on calbindin
immunostaining and the giant mitochondria, based on Cyt C immunostaining were not

observed (Fig. 9F, inset).
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DISCUSSION

Functional studies performed with glaucoma patients “**', and on glaucoma
experimental animal models ** and genetic models '>'>** showed that the a- and b-
waves of the ERG were diminished compared to normal, age matched controls.
Findings from the present study also show outer retina pathology in the DBA/2J model
in addition to their well-established loss of RGCs and axons. Altered ERGs are also
correlated with outer retinal damage in a model of acute ocular hypertension *?, and
recently, rod photoreceptor synaptic contacts have been reported to be reduced with
aging '®. The morphological changes described in this work could underlie the altered

ERG responses observed in the DBA/2J mouse retina reported by other authors 1318,

Photoreceptor and ON bipolar cells &'

mainly mediate the a- and b-waves of the ERG
response. In this study, we performed an exhaustive characterization of the outer retina
using immunohistochemical techniques with cellular markers for photoreceptor, bipolar
and horizontal cells, before and after an increase in IOP in the DBA/2J mouse line. In
general, IOP in this line begins to increase around 6 months of age '"**. In the DBA/2J
line, alterations in the ONL and OPL were first observed at 3 months of age, before the
increase of IOP. At this age, there was a diminution of photoreceptor cell bodies and
OPL thickness, as well as a reduction in the occurrence of both pre and postsynaptic

markers. The present study is in contrast to two earlier findings that the outer retina is

unchanged in the DBA/2J mouse retina following the development of ocular pathology

10,29

In the DBA/2J retina at all ages, there are changes in the connectivity of photoreceptor
cells and their post-synaptic contacts, shown by a reduction in their connections with
bipolar cell dendrites and horizontal cell processes. In addition, we have found

retraction of bipolar and horizontal cell processes and a disruption of the photoreceptor
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synaptic triad. Interestingly, in the 8 and 16 month old DBA/2J retinas, some horizontal
and bipolar cell processes were located in the ONL, suggesting their growth was
concomitant with outer retinal degeneration; interestingly, at 3 months of age bipolar
and horizontal cell processes were shorter, suggesting a retraction of their processes.
These results disagree with Fuchs and cols® findings. They described no alteration in
horizontal and bipolar cells and attributed the thinning of the OPL to structural changes
in rod synaptic ribbon but not cone photoreceptors’®. We have carefully evaluated the
pre and post-synaptic elements of the synaptic contacts in the OPL showing the loss of
bipolar and horizontal cell dendrites and axons.

The growth of bipolar cells dendrites into the overlying ONL is a common feature in
animal models of photoreceptor degeneration, including rd mice**™*’, the Royal College

of Surgeons rats (RCS)*® and P23H rats?’.

There are only a few functional and morphological studies of young DBA/2J mouse
retinas; smaller amplitudes of the 2nd harmonic component of the flicker responses are
noted at 2-3 month old compared to those registered in wild type animals, which could
be due to the disruption of the synaptic triad in the photoreceptor terminals’.
Furthermore, alterations in RIBEYE staining in rod photoreceptor ribbons were
detected at 2 months old'®. These findings are consistent with the idea that the Tyrp1
mutation that DBA/2J mice carry is expressed in the RPE*’, which may indirectly affect
photoreceptor cells, since the health of the RPE is essential for the integrity of
photoreceptors and normal retinal function®. For instance, in the adult retina, mutations

altering the function of RPE lead to photoreceptor death*®*",

With aging and IOP increased, the morphological changes in the OPL become quite
prominent. In regions of the outer retina inside patches cellular degeneration is
accelerated compared to other retinal regions. Moreover, at 16 months of age, the

photoreceptor triad is disrupted and apparently absent in most cases, and the
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horizontal cell plexus is absent. These morphological alterations in the OPL have been

also described in an animal model of experimentally-induced increase of IOP*2,

Using double and triple immunostaining with markers for the synaptic ribbon,
photoreceptor terminal, as well as for bipolar and horizontal cell processes, we studied
the organization of the synaptic ribbon in the DBA/2J model. A decrease in
photoreceptor ribbons with increased age was observed in the DBA/2J retina, based
on the loss of Bassoon and CtBP2 immunoreactivity. Furthermore, we showed that
although some photoreceptor axons expressed CiBP2, there was an absence of
VGLUT1 immunoreactivity in the same terminals, suggesting that synaptic release of
glutamate is greatly diminished or absent in the OPL®* which is essential for visual
information transmission®®. These findings, together with the decoupling between
photoreceptor terminals, bipolar cell dendrites and horizontal cell processes revealed
by the loss of PKC and syntaxin 4 immunoreactivity, respectively, adjacent to synaptic

ribbon markers is indicative of an impairment of the rod and cone synaptic structure.

Overall, these findings indicate a reduction in outer retinal signaling between
photoreceptors, and bipolar cell dendrites and horizontal cell processes. This
suggestion is consistent with a reduced ERG b-wave® in the Bassoon knockout

mouse, which is characterized by a severely disrupted photoreceptor triad.

There are several different possibilities to account for the outer retinal pathology we

observed in the DBA/2J retina:

First, outer retina impairment might be related to mutations of RPE genes and not to
elevated IOP since the Tyrp1 gene is expressed by the RPE, at least at the initial
stages of outer retinal degeneration. RPE dysfunction is a well-established cellular

mechanism for photoreceptor and outer retinal diseases. RCS is a good example of a
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retinitis pigmentosa animal model carrying a mutation in a RPE gene®. Mutations in
Tyrp1 gene have been related to the etiology of human Oculocutaneous albinism type
3 (OPA3). Moreover, mutations in this gene generate endoplasmic reticulum (ER)
stress due to misfolded protein accumulation®®, which could drive to RPE alterations. In
addition, it has been shown that number of rod-photoreceptors is closely related to
melanin levels in the RPE®" and the fact that photoreceptors from albino animals are

58,59

more susceptible to light damage suggests the basis for outer retinal degeneration

in DBA/2J mice.

Second, the increase of the IOP could result in two independent events; A) RGC and
axonal damage that lead to RGC death, and B) photoreceptor cell damage that leads
to outer retinal degeneration. This possibility cannot account for the changes in the

outer retina that occur in young DBA/2J mice, before an increase of IOP.

Lastly, the mutations that the DBA/2J mice carry lead to ocular pathology typical of
glaucoma before |IOP increase, suggesting that this mouse glaucoma model is an IOP-
independent glaucoma model. This suggestion is also based on findings that the
DBA/2J model has two episodes of RGC loss'®, one occurs before the increase of IOP
and is mainly mediated by apoptosis, and the second occurs after an increase IOP
and is mainly mediated by necrosis. These observations are consistent with the early
alterations in the outer and inner retina during an IOP-independent component followed

by a component with increased IOP.
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FIGURE LEGENDS:

Figure 1. Vertical sections from C57BL/6J retina at 16 months (A), and DBA/2J retina at 3, 8
and 16 months (B-D). Immunostained with the nuclear marker TO-PRO 3-iodide showed a
reduction in the number of cellular rows in the ONL and INL and a reduction in cell bodies in
the GCL, likely corresponding to RGCs. The quantification is shown in E (**p < 0.01). ONL:
outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform

layer; GCL: ganglion cell layer. Scale bar: 20 um.

Figure 2. Immunolabeling for a-PKC (green) and Bassoon (red) on vertical sections. (A-C)
C57BL/6J retina at 16 months of age. DBA/2J retina at 3 months (D-F), 8 months (G-I) and
16 months (J-L). (A, D, G, J): Immunolabeling for a-PKC showing loss of dendrites of rod
bipolar cells in the DBA/2J retina in older animals. (B, E, H, K): Immunolabeling for Bassoon
showing the diminution of synaptic ribbons in the OPL in this animal model. (C, L, F, I)
Merge. ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer. Scale

bar: 10 um.

Figure 3. Cryostat sections of C57BL/6J (A-C) and DBA/2J retinas at 3 months (D-F), 8
months (G-l) and 16 months (J-L). Immunolabeling for calbindin (A, D, G, J; arrowheads)
showing the loss of terminal tips of horizontal cells in the DBA/2J retina. Immunolabeling for
synaptophysin (B, E, H, K) showing the diminution of the photoreceptor axon terminals. (C,
L, F, I) Merge. ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer.

Scale bar: 10 pm.

Figure 4. Low magnification cross section of retinas labeled with antibodies against a-PKC

(red), calbindin (green) and VGLUT1 (blue). DBA/2J retina at 16 months old (A) showing a
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panoramic view of a retinal patch (area underlying white line). In high magnification of this
area (C: high magnification from C’) the loss of photoreceptor cells, sprouting of bipolar and
horizontal cells into the ONL (arrowheads), loss of horizontal plexus in the OPL and vascular
alterations (arrows) can be observed compared to areas outside patches (B, D: high
magnification from B’ and D’ in A, respectively). ONL: outer nuclear layer, INL: inner nuclear

layer, GCL: ganglion cell layer. Scale bar: (A) 200 um; (B-D) 40 um.

Figure 5. Retinal morphology of cone photoreceptor. y-transducin antibodies were used to
visualize cone morphology in vertical retina sections of C57BL/6 retinas (A), DBA/2J retinas
at 3 months (B), 8 months (C, D) and 16 months (E, F). The nuclei of cone photoreceptor
showed an abnormal localization at the ONL level at 3 months (B, arrow) and at 16 months
(E, arrow). Inside the patches (D, F) the IS of cones were swollen (arrowheads) and had
short axons or absents (double arrowheads). OS: outer segments; IS: inner segments; ONL:
outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform

layer. Scale bar: 20 um.

Figure 6. Bipolar cells immunostained with GNB3 antibodies. The GNB3 staining showed
retraction of bipolar dendrites at 3 months old in the DBA/2J retina (B, arrowheads)
compared with C57BL/6 retina (A). DBA/2J retinas have bipolar cell dendritic growth at 8
months (C, D, arrows) until 16 months of age (E, arrows; F). This dendritic growth was more
evident inside the patches (D, F). ONL: outer nuclear layer; OPL: outer plexiform layer; INL:

inner nuclear layer; IPL: inner plexiform layer. Scale bar: 20 um.

Figure 7. Three specific markers of synaptic structure were used to study the connectivity
between photoreceptor and horizontal cells. Antibodies against CtBP2 (red) and VGLUT1
(blue) were used to visualize the axon terminal structures of photoreceptor cells, and

calbindin (green) were used to visualize horizontal cell dendrites. A thinning in the OPL was
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observed at 3 months old in the DBA/2J retinas (B) compared with C57BL/6 retinas (A).
From 8 months (C, D) to 16 months (E, F), DBA/2J retinas showed growth of horizontal cells
and synaptic contacts without VGLUT1 immunoreactivity (arrowheads). At 16 months old,
inside the patches, only some synaptic contacts were complete (F, arrows) and the plexus of
the horizontal cells at OPL level were nearly absent. Quantification of horizontal cell terminal
tips is shown in G (*p < 0.05). ONL: outer nuclear layer; OPL: outer plexiform layer; INL:

inner nuclear layer. Scale bar: 10 um.

Figure 8. Study of connectivity lost between photoreceptor and horizontal cells. A double
immunostaining against syntaxin 4 (green) and CtBP2 (red) was used to evaluate the loss of
photoreceptor and horizontal contacts. In the C57BL/6 retinas (A) and in DBA/2J retinas at 3
months old (B), each point of CtBP2 had the corresponding syntaxin 4 (STX4) spot. This
relation was disrupted from 8 months old inside the patches (D, arrowheads) to 16 months
old in the DBA/2J retinas (E, F, arrowheads). There was a reduction in the contacts at 8

months old in the DBA/2J retinas. OPL: outer plexiform layer. Scale bar: 10 um.

Figure 9. Vertical sections of retinas stained with antibodies against calbindin (green) to
visualize horizontal dendrite tips, VGLUT1 (red) for photoreceptor axon terminals staining
and cytochrome C (blue) to visualize the giant mitochondria. The panel shows normal
connections between photoreceptor and horizontal cells in C57BL/6 retinas at 16 months (A)
compared with the connections of DBA/2J retinas at 3 months where some photoreceptor
axons have lost VGLUT1 staining (B, arrows). At 8 months (C, D), DBA/2J retinas show
growth of horizontal cell processes outside the patches (C, arrows) and loss of contacts with
photoreceptor axons and horizontal tip retraction (C, arrowheads). DBA/2J retinas at 16
months of age have some axon terminals adjacent to horizontal cells processes both out and
inside the patches (E, F; arrows). ONL: outer nuclear layer; OPL: outer plexiform layer; INL:

inner nuclear layer. Scale bar: 10 um. Scale bar in the high magnification: 2 pm.
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Supplementary materials:

Figure S1. Retinal cross section labeled with antibodies against calbindin (green) and
Synaptophysin (red). (A) 16 old month DBA/2J retina showing a panoramic view of a retinal
patch (area underlying white line). (C) High magnification from C’ showing loss of
photoreceptor cells and loss of horizontal plexus in the OPL compared to high magnification
areas outside patches (B, D: high magnification from B’ and D’, respectively). ONL: outer
nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Scale bar: (A) 200 um; (B-D)

40 pm.

Figure S2. Whole mount retina stained with antibodies against Brn3a to visualize RGC loss
in C57BL/6 (A) and DBA/2J (B). DBA/2J whole mount retina at 16 months old (B) showing
areas with loss of RGCs, surrounded by areas, in which still have surviving RGCs. Scale bar:

200 pm.

28



GCL
C57BL/6 16months

IPL

GCL

DBA/2] 3months

C

ONL

OPL
INL

IPL
GCL

DBA/2] 8months

ONL thickness (um)

D

DBA/2] 16months

C57BL6 DBA-3m DBA-8m DBA-16m




C57BL/6/16months
D

DBA/2] 3months

G

DBA/2] 8months
J

PBAY2] 16months




C57BL/6 16months

DBA/2] 3months

G

INL

DBA/2] 8months

J

DBA/2] 16months




A DBA-16m

D

ONL

St mekhy e © R




orPL
INL

C57BL/6 16months

C
0s
IS

ONL

OPL

INL
DBA/2] 8months

=

0w
IS
ONL
OPL

INL
DBA/2] 16months

ONL

OPL

INL
DBA/2] 3months

D

0S.
IS

ONL
OPL

INL
DBA/2] 8months (PATCHES)

DBA/2] 16months (PATCHES)



C57BL/6 16months

IPL

DBA/2] 3months

C

ONL

OPL

INL

IPL

DBA/2] 8months

ONL
OPL

INL

IPL

DBA/2] 8months (PATCHES)

=

ONL

(0] 5

INL

IPLDBA/2] 16months

F

DBA/2] 16months (PATCHES)




IPL IPL

C57BL/6"16months DBA/2] 3months

OPL
INL
INL

DBA/2] 8months

.

TRL T

DBA/2] 16months DBA/2) 16M6nths (PATCHES)

Horizontal tips/mm
g




C57BL/6 16months

DBA/2] 3months

DBA/2]-8months

D

DBA/2] 8months (PATCHES)

DBA/2] 16months

'-('." + ] .

IS

¢ »
L] el
F i [ b |
] A .

DBA/2] 16months (PATCHES)




A C57BL/6 16months

Calbindin

C57BL/6 16months

Calbindin

DBA/2] 3months

Calingin

DBA/2] 8months

Y

Calbindin

DBA/2] 8months (PATCHES)

Calbindin

DBA/2] 16months

£

Calbindin

DBA/2] 16months (PATCHES)



Table 1.- Primary antibodies used in this work.

Molecular marker (Initials) Antibody(rferenee) Source and catalog number g\lllozking
ilution
Bassoon Mouse monoclonal® Stressgen (VAM-PS003) 1:1000
Calbindin D-28K (CB) Rabbit polyclonal*®° Swant (CB-38a) 1:500
%}‘;’;“2')”3' Binding Protein-2 Mouse monoclonal. Clone: 16/CtBP2*  BD transduction (612044) 1:1000
Cytocrome C Mouse monoclonal, clone: 6H2.B4°%" Zymed laboratories (33-8200) 1:1000
Guanine Nucleotide Binding . 31 . )
protein 3 (GNB3) Rabbit polyclonal Sigma (HPA005645) 1:50
E’Prﬁtceg)klnase C, aisoform Rabbit polyclonal® Santa Cruz Biotechnology (sc-10800) 1:100
Synaptophysin (SYP) Mouse monoclonal, cone: SY38%%'° Chemicon (MAB5258) 1:1000
Syntaxin 4 (STX4) Rabbit polyclonal®® Millipore (AB5330) 1:500
Transducin, Gac subunit (Gt) Rabbit polyclonal®?*° Cytosignal (PAB-00801-G) 1:200
vesicular Glutamate Transporter 1 g ine pig polycional®® Chemicon (AB5905) 1:1000
(VGLUT1)
Brain-specific homeobox/POU Goat polyclonal Santa Cruz Biotechnology (sc-31984 L) 1:500

domain protein 3A (Brn-3a)



