
RECSI 2014, Alicante, 2-5 septiembre 2014

An Elliptic Curve Based Homomorphic
Remote Voting System

M.A. Cerveró V. Mateu J.M. Miret F. Sebé J. Valera
Dept. Matemàtica, Universitat de Lleida. Jaume II, 69, 25001, Lleida, Spain.

{mcervero, vmateu, miret, fsebe, jvalera}@matematica.udl.cat

Abstract—A remote voting system allows participants to cast
their ballots through the Internet. Remote voting systems based
on the use of homomorphic public key cryptography have proven
to be a good option for carrying out simple elections with a
reduced amount of candidates. In this paper, we present a new
system that makes use of the additive homomorphic capabilities
of the Elliptic Curve ElGamal (EC-ElGamal) cryptosystem.
All the stages of the system are described together with an
experimental analysis section which provides an assessment on
the type of election our system would be suitable for.

Index Terms—Electronic Voting, Elliptic Curve Cryptography,
Knapsack Problem

I. INTRODUCTION

Electronic voting (e-voting) refers to the use of advanced
technology to election processes. E-voting systems reduce
the economic cost of an election and increase the speed and
accuracy of vote tallying. An e-voting system allowing voters
to cast their ballots through the Internet is called a remote
voting system. The security provided by such a system should
include, at least, the following features:

• Authentication: only people in the electoral roll can vote.
• Unicity: every participant can vote once at most.
• Privacy: votes can not be related to voter identities.
• Fairness: no partial results can be revealed before the end

of the voting period.
• Verifiability: correctness of the process can be checked.
• Uncoercibility: nobody can prove that a voter voted in a

particular way.

The previous security requirements are obtained by making
use of advanced cryptographic techniques. Current remote
voting systems can be classified into three main paradigms:
blind signature-based, mix-type and homomorphic tallying.

In the blind signature-based paradigm [1]–[3], a voter
authenticates against a trusted authority which is responsible
for checking that the voter appears in the electoral roll and she
has not voted before. In that case, voter’s ballot (the encrypted
vote) is blindly signed by that authority. The polling station
only accepts ballots that have been properly signed by the
authority. When the voting period is concluded, ballots are
decrypted and tallied.

In the mix-type paradigm [4]–[9] a voter casts her ballot
after having signed it. Once the voting period has ended, the
polling station shuffles and re-encrypts (mixes) the collected
ballots in order to break the relation between each ballot and

the identity of the voter who cast it. After that, the mixed
ballots are decrypted and tallied.

In homomorphic tallying schemes [10]–[15], participants
cast their ballots encrypted under some public key cryptosys-
tem having a homomorphic property. The received ballots
are homomorphically aggregated by the polling station into a
single or a set of ciphertexts whose decryption will show the
result of the election. These systems require the votes to be
coded in such a way that the final tally can be recovered from
the cleartext of the aggregated ballots. Also, each voter has
to prove in zero-knowledge that her ballot has been composed
properly.

It is well known that homomorphic tallying systems do not
scale well as the number of candidates increases. Despite their
benefits regarding decryption (just one decryption is needed),
homomorphic tallying systems need an additional decoding
step in order to get the amount of votes for each candidate
from an aggregated ballot cleartext. The method employed
for coding votes should permit to get the election result at
a reasonable processing time. It is also important to be able
to manage a large enough amount of candidates and voters.

A. Contribution and Plan of this Paper

In homomorphic tallying remote voting systems, the bal-
lots are encrypted using some public key cryptosystem. In
elections with few candidates, the Elliptic Curve ElGamal
(EC-ElGamal) cryptosystem turns out to be more efficient
that ElGamal implemented over a multiplicative group. ElGa-
mal requires 1024 bit long keys while EC-ElGamal achieves
an equivalent security employing just 160 bits. Hence, EC-
ElGamal provides better memory and computational costs.
However, in elections with a large amount of candidates, EC-
ElGamal becomes not as efficient as ElGamal.

In this paper, we present an e-voting system belonging to
the homomorphic tallying paradigm based on the use of the
Elliptic Curve ElGamal (EC-ElGamal) cryptosystem. Its vote
coding system allows a large number of candidates while
offering a good performance at the decoding step.

The paper is structured as follows: Section II presents some
basic concepts of elliptic curve cryptography and the EC-
ElGamal cryptosystem. Section III provides the description of
of the proposed e-voting system, while Section IV emphasizes
a special case: the Referendum. Then, Section V is dedicated
to prove the security of the system and Sections VI and VII
are devoted to experimental results, conclusions and future

ISBN: 978-84-9717-323-0

82 M.A. Cerveró, V. Mateu, J.M. Miret, F. Sebé, J. Valera

work. Finally, Annex A presents the elliptic curves used in
the experimental part of this work.

II. PRELIMINARIES

An elliptic curve E defined over a finite field Fp is an
equation of the form

E : y2 = x3 + ax+ b, (1)

with 4a3 + 27b2 6= 0. The set of points of the curve, denoted
E(Fp), is composed of the points (x, y) ∈ Fp × Fp satisfying
Equation (1) together with the point at infinity, O. The set
E(Fp) can be endowed with an abelian group structure,
having O as the identity element, by means of the chord-
tangent method [16]. This method provides an operation for
adding curve points. Given two curve points P and Q, the
elliptic curve discrete logarithm problem (ECDLP) consists
of finding an integer d satisfying Q = d · P . The ECDLP
is computationally hard when the cardinality of E(Fp) has a
large prime factor. The assumed intractability of the ECDLP
has led to the design of public key cryptosystems constructed
over the group of points of an elliptic curve [17].

A. The Elliptic Curve ElGamal Cryptosystem

The Elliptic Curve ElGamal (EC-ElGamal) cryptosystem is
composed of the following procedures.

1) Set up: A finite field Fp is first selected. After that, two
integers a and b defining an elliptic curve E over Fp

(see Eq. 1) are chosen so that the cardinality of E(Fp)
has a large prime factor q. Finally, a point P of order
q is taken as a generator of the order q cyclic subgroup
of E(Fp). The values (p,E, P, q) are made public.

2) Key generation: Given the set up parameters, a private
key is generated by randomly choosing an integer d in
the range [1, q − 1]. Next, its related public key Q is
computed as Q = d · P .

3) Encryption: A plaintext M consisting of a point of
E(Fp) is encrypted under public key Q by computing

EQ(M) = C = (A,B) = (r · P, M + r ·Q) , (2)

where r is an integer selected randomly in the range
[1, q − 1]. Each encryption makes use of a different
random r, whose value must be kept secret.

4) Decryption: If the private key d is known, a ciphertext
C can be decrypted by computing

Dd(C) = B − d ·A.

The cleartext M is obtained as a result.
The EC-ElGamal cryptosystem has an homomorphic prop-

erty. Let C1 = (A1, B1) and C2 = (A2, B2) be two ciphertexts
encrypting M1 and M2, respectively. They are aggregated by
computing,

C = C1 + C2 = (A1 +A2, B1 +B2).

The decryption of C will provide M1 +M2 as a result.

III. OUR PROPOSAL

The presented remote voting system is composed of the
following parties:

• Polling Station: It coordinates the system. It is responsible
for collecting the votes and publishing the final election
result. When all the ballots have been collected and
aggregated, it asks the key storage trusted party to decrypt
the aggregated ballots. The received ballots are published
on some publicly accessible bulletin board for verifiability
purposes.

• Participants: They are voters able to emit a vote.
• Key Storage Trusted Party (KSTP): It is responsible for

generating and storing the election private key and pub-
lishing the election public key material. When required,
it will decrypt the ciphertexts containing the aggregation
of cast ballots. The election public key should be certified
to ensure its authenticity.

Next, the different stages of an election are explained in
detail.

A. Set Up

Let us consider an election with m candidates. The collected
ballots will be aggregated into packages containing n votes
each.

Let t be an integer so that t ≤ m (for the sake of simplicity,
we are assuming that t | m). The KSTP generates an elliptic
curve E defined over a finite field Fp so that the cardinality
of E(Fp) has t large prime factors. That is,

#E(Fp) = h

t∏
i=1

qi,

with h being a small integer and each qi being a large prime
(at least 160 bits long). Next, an order q =

∏t
i=1 qi point P

is chosen.
Since #E(Fp) has t large prime factors, the group of points

E(Fp) has t large cyclic subgroups. Next, a generator Pi for
each subgroup is generated by computing,

Pi =
(∏

1≤j≤t
j 6=i

qj

)
· P, (3)

so that ord(Pi) = qi.
Then, the KSTP creates the election private key d by

choosing its value randomly in [1, q−1], computes the election
public key Q = d·P and publishes all the previous parameters
(the private key is stored privately in a safe place).

After that, the KSTP generates m points {M1, . . . ,Mm},
each one representing a different candidate. Being s = m/t,
the points are computed as shown in Table I. Note that points
M1, . . . ,Ms are in the subgroup of E(Fp) generated by P1,
points are Ms+1, . . . ,M2s in the subgroup generated by P2,
and so on.

An elliptic curve based homomorphic remote voting system 83

Table I
GENERATION OF A CURVE POINT FOR EACH CANDIDATE.

Base Point P1 Base Point P2 ... Base Point Pt

M1=P1

M2=(n+1)·P1

...

Ms=(n+1)s−1·P1

Ms+1=P2

Ms+2=(n+1)·P2

...

M2s=(n+1)s−1·P2

...

M(t−1)s+1=Pt

M(t−1)s+2=(n+1)·Pt

...

Mts=(n+1)s−1·Pt︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
Candidates from Candidates from Candidates from

1 to s s + 1 to 2s (t− 1)s + 1 to ts = m

B. Voting

The voting process starts when a participant P wants to vote
by electing a candidate. It is composed of four steps: candidate
choice, electoral roll checking, vote coding verification and
vote packing.

1) Candidate Choice: Let McP be the curve point repre-
senting the choice of participant P who emits her vote by
performing the following steps:
• Encrypt McP under the public key Q. The encrypted vote

CP = EQ(McP) is generated as shown in Eq. (2).
• Compute the signature of the encrypted vote.
• Send CP together with its signature to the polling station.
2) Electoral Roll Checking: When the polling station re-

ceives a ballot, it first checks the validity of its digital
signature. Next, it checks that the voter who has cast it appears
in the electoral roll and that she has not voted before. In that
case, the voter is asked to prove that her ballot was correctly
generated. This is done as described next.

3) Vote Coding Verification: The participant has to demon-
strate that the cleartext of the ballot she is casting corresponds
to a point representing one of the candidates. This demon-
stration is performed by means of a zero knowledge proof. It
consists of a data exchange between the Prover (participant P)
and the Verifier (polling station). This proof does not leak any
information about the actual choice of the voter. The following
proof is an adaptation of the proof presented in [18] for its
use on elliptic curve cryptography.

The Prover has to prove that her vote CP = (AP , BP) =
(rP · P,McP + rP · Q) is an encryption of one of the
points in the set M = {M1, . . . ,Mm} (the points of E(Fp)
representing each of the candidates). In order to do that, the
Prover generates the points Ak, Bk, for 1 6 k 6 m:

Ak = wk · P + uk ·AP , ∀k 6= cP ;
AcP = s · P,
Bk = wk ·Q+ uk · (BP −Mk), ∀k 6= cP ;
BcP = s ·Q,

where wk, uk, s ∈ [1, q − 1], are random values. Next, the
Prover computes

chall = H(A1, A2, . . . , Am, B1, B2, . . . , Bm),
ucP = chall −

∑
k 6=cP

uk,

wcP = s− ucP rP ,

where H is some cryptographic hash function like SHA256
[19]. Finally, the Prover sends Ak, Bk, uk, wk for 1 ≤ k ≤ m
to the Verifier.

The Verifier checks that

Ak = wk · P + uk ·AP , ∀k ∈ [1,m],
Bk = wk ·Q+ uk · (BP −Mk), ∀k ∈ [1,m],
chall =

∑m
k=1 uk,

with chall computed asH(A1, A2, . . . , Am, B1, B2, . . . , Bm).
This verification ensures that the voter has voted for a point
in set M. If all the checkings are satisfied, the signed ballot
and the data required to verify it was properly generated are
published on the bulletin board so that any external entity can
check its correctness.

4) Vote Packing: The verified votes are homomorphically
aggregated into packages. Each package is an aggregation of
up to n ballots.

Let us consider a set of ballots C = {CP1
, . . . , CPn

} that
will be aggregated into package S`. Package S` is generated
as:

S` =

n∑
j=1

CPj
, (4)

where CPj
=
(
rPj
· P, McPj

+ rPj
·Q
)

. Hence, package S`

is of the form,

S` =

 n∑
j=1

rPj · P ,

m∑
k=1

xk ·Mk +

n∑
j=1

rPj ·Q

 , (5)

where xk is the number of votes for the candidate k in this
package and

∑m
k=1 xk = n is the capacity of the package.

C. Vote Opening

Once the election has finished, it is time to decrypt the
ballots and tally the votes. This process can be divided into
four steps: decryption, unpacking, scrutiny and publication.

1) Decryption: When the election is finished, the polling
station has a set of aggregated packages that have to be
decrypted. The KSTP is asked to decrypt them.

2) Unpacking: After decryption, the polling station has
to obtain the amount of votes for each candidate from the
cleartext of each package. A decrypted package is of the form
Ŝ` =

∑m
k=1 xk ·Mk, or equivalently,

Ŝ` =

t∑
i=1

s∑
k=1

xk+(i−1)s(n+ 1)k−1 · Pi, (6)

where
∑m

k=1 xk = n and ts = m.
Ŝ` is decoded as follows:
1) For each base point Pi, compute zi =

∏
1≤j≤t,j 6=i qj :

Ŝ`,i = zi · Ŝ` =

s∑
k=1

xk+(i−1)s(n+1)k−1 ·(zi · Pi) . (7)

2) For each i, compute the values xk+(i−1)s for 1 ≤ k ≤ s
which satisfy equation 7. This bounded discrete loga-
rithm can be solved as a knapsack problem using the
Meet in the Middle (MITM) algorithm as described next.
In a preprocessing phase, compute

∑s
k=s/2+1 xk(n +

1)k−1 · (zi · Pi) for all the feasible combinations of xk

84 M.A. Cerveró, V. Mateu, J.M. Miret, F. Sebé, J. Valera

values (those whose addition is not greater than n), and
store each resulting point, together with the related xk

values in a hash table.
Also in a preprocessing phase, compute

∑s/2
k=1 xk(n +

1)k−1 · (zi · Pi) for each feasible combination of xk

values and store each result, together with the related
xk values, in an array.
At decoding, each point R in the array is taken and
subtracted from Ŝ`,i,

Ŝ′`,i = Ŝ`,i −R.

If Ŝ′`,i is in the hash table, we are done. In that case, the
values xk+(i−1)s for 1 ≤ k ≤ s are obtained from the
values stored together with R (in the array) and Ŝ′`,i (in
the hash table). Notice that if s = 1, the algorithm can
directly cast Ŝ`,i against the hash table.
The explained MITM algorithm achieves a good balance
between computational cost and memory consumption.
If no precomputed data were used, the required com-
puting time would be too large. On the other hand,
precomputing and storing all the feasible combinations
would be unaffordable in terms of memory storage
requirements.

3) Scrutiny: When each package Ŝ` has been decoded, the
polling station adds all the votes to finally scrutiny the election
result. The total amount of votes for candidate k is

∑L
`=1 x

`
k,

where L is the total number of packages and {x`
1, . . . , x

`
m}

are the values obtained from package Ŝ`.
4) Publication: Finally, the election result is published on

the bulletin board. At the end of the election, the bulletin board
contains all the information needed to verify the correctness
of the whole process. That is,

1) The result of the election (amount of votes for each
candidate).

2) The electoral roll (name and public key of each partici-
pant).

3) The received ballots together with their digital signature
and proof of correct composition.

4) Each aggregated package, S`, together with its cleartext
Ŝ`, and the amount of votes it contains for each candi-
date.

IV. SPECIFIC CASE - REFERENDUM

A Referendum is an election in which the voters can vote
for yes, no, or blank. Next, we will show that such an election
can be implemented very efficiently.

1) Set Up: We propose to choose an elliptic curve E over a
finite field Fp whose group order has t = 3 large prime factors
q1, q2, q3. Hence, #E(Fp) = h · q1 · q2 · q3, with q = q1 · q2 · q3
being a 480 bits long integer. Finally, we take an order q point
P .

Since there are three possible options (candidates), we
generate the following points: P1 = q2 ·q3 ·P , P2 = q1 ·q3 ·P ,
P3 = q1 · q2 · P , satisfying that ord(Pi) = qi. This way, we
can code each option in a different base point, so that s = 1.

Table II shows the three options represented by those base
points.

Table II
THE POINTS REPRESENTING THE OPTIONS IN A Referendum.

Option Yes Option No Option Blank
M1 = P1 M2 = P2 M3 = P3

2) Unpacking: Since s = 1, the unpacking process can be
carried out in a very fast way. In the preprocessing phase of
the MITM algorithm, we store all the possible values for each
option {0 · Pi, 1 · Pi, . . . , n · Pi} in the hash table so that the
unpacking operation for each choice can be solved through a
single hash lookup.

V. SECURITY ANALYSIS

In this section we show how the proposed system achieves
the security requirements enumerated in Section I.

1) Authentication: Each ballot is digitally signed by the
participant who casts it. Hence, the polling station can authen-
ticate the voter and check that she appears in the electoral roll.
Moreover, the electoral roll and the received ballots are made
publicly available on the bulletin board so that any entity can
check that all the ballots have been cast by an authenticated
participant.

2) Unicity: Unicity is composed of two requirements:

• The system must ensure that every voter votes only once.
• The system must ensure that each ballot contains only

one vote. That is, a ballot can only encrypt a single point
of list M.

The first item is addressed by keeping a register of the voters
that have already voted. If any participant tried to cast two or
more ballots, the system would only accept the first one. The
second item is ensured by means of the zero knowledge proof
of ballot correct composition (see Section III-B3).

3) Privacy: Privacy of the choice made by a participant
holds on the following facts:

• All the votes are encrypted using the EC-ElGamal cryp-
tosystem, so that no information can be obtained from an
encrypted ballot.

• All the encrypted votes are homomorphically packed, and
only the resulting packages are decrypted. As a result, the
voter and her choice are decoupled.

• Only the aggregated packages are decrypted. This is
achieved by considering the KSTP is a trusted party
which acts honestly.

• The proof needed to ensure that a ballot was correctly
composed is zero knowledge. Hence, no information leaks
from it.

4) Fairness: Assuming a correct praxis of the KSTP, no
vote is decrypted before the opening stage, which takes place
after the ending of the voting period.

An elliptic curve based homomorphic remote voting system 85

5) Verifiability: The verifiability of our system is based in
four points:

• The electoral roll is public and all the received (signed)
ballots are also made public. Hence, any entity can check
all the ballots come from an authenticated participant.

• Each zero knowledge proof of correct ballot composition
is published on the bulletin board so that it can be checked
by any entity which will get convinced that each ballot
is coding a single vote.

• The homomorphic packing operation can be performed
by any entity and next check that the obtained packages
correspond to those published on the bulletin board.

• The decryption carried out by the KSTP can be performed
verifiably [20].

Our proposal offers end-to-end verifiability: the correctness of
the whole process can be verified by everyone.

6) Uncoercibility: Uncoercibility can be provided by ap-
plying any coercion-resistance solution like [21].

VI. EXPERIMENTAL RESULTS

The most time consuming part of the proposed system is
given by the unpacking step. Hence, we have developed a test
program to check the time and memory consumption of the
MITM algorithm proposed for solving that step. The program
has been implemented in C++ using the library Crypto++
and has been executed in a PC with an Intel Core i5 650
3.2GHz CPU with 6GB of RAM running Debian 8.0 Jessie
as OS. Table III shows the data extracted during the tests using
elliptic curves with 160, 320 and 480 bits long cardinalities
(the used elliptic curves are shown in Annex A). The columns
Preprocess time and Memory concern to the time and memory
consumption of an unpacking operation.

Table III
TIME AND MEMORY CONSUMPTION USING 160, 320 AND 480 BITS

ELLIPTIC CURVES WITH PACKAGES OF 200 VOTES.

EC #Base #Cands. Preprocess Unpacking Memory
(bits) Pnts. Base Pnt. time (s) time (s) (MB)

160 1 4 4.474 0.089 4.337
5 225.768 0.081 148.895

320 2 4 81.920 0.196 8.674
5 4 254.340 0.175 297.791

480 3 4 243.798 0.286 13.010
5 12 571.200 0.251 446.686

As we can see, the most time consuming part corresponds
to the generation of the preprocessed data, which can be
performed some days before the election takes place. This
preprocessed data permits to unpack packages at a very
reduced time. This last operation has to be fast because it
determines the delay between the end of the voting period and
the publication of the results. Table III shows that the proposed
system is able to unpack packages with 200 votes and 15
candidates very efficiently (see the last row, corresponding
to 5 candidates per base point). Furthermore, the memory
needed to store the data generated during the preprocessing

has a reasonable size which can be perfectly stored by any
commodity PC.

We have also analyzed the time and memory consumption
in the Referendum case, which requires the use of an elliptic
curve with a 480 bits long cardinality and 3 cyclic subgroups.
Table IV highlights the efficiency of our system to resolve
elections with 3 candidates, needing a little more than 3
milliseconds to unpack a 200 votes package. The memory
requirements and preprocessing time are negligible.

Table IV
TIME AND MEMORY CONSUMPTION FOR THE Referendum CASE WITH

PACKAGES OF 200 VOTES.

Preprocess time (s) Unpacking time (s) Memory (MB)
0.599 0.003 0.064

Furthermore, our system can deal with larger packets.
Table V shows the time and memory consumption when work-
ing with packets aggregating 1000000 votes. Although the
preprocessing time and the memory requirements increase, the
time required for unpacking keeps constant for any package
size.

Table V
TIME AND MEMORY CONSUMPTION FOR THE Referendum WITH PACKAGES

OF 1000000 VOTES.

Preprocess time (s) Unpacking time (s) Memory (MB)
3 395.550 0.003 320.435

By comparing our referendum system with that presented
by Peng et al. [15], we can see that our unpacking algorithm
is much more efficient than that in [15] (also implemented
in C++ using Crypto++ and executed in the same PC).
The proposal in [15] is implemented using the multiplicative
homomorphic property of ElGamal cryptosystem over a mul-
tiplicative group. When using a 1024 bits public key, it can
only manage packages of up to 440 votes, while our proposal
can manage much bigger packages, as it can be seen in
Table V. Moreover, the system in [15] requires 0.022 seconds
to decode a 440 votes package while our system can perform
an equivalent operation employing only 0.003 seconds.

VII. CONCLUSION AND FUTURE WORK

A new e-voting system that makes use of the EC-ElGamal
cryptosystem has been proposed. The new proposal makes use
of a MITM algorithm to unpack aggregated ballots at a high
speed. Our system can be used in an election with a large
amount of candidates. The experiments carried out have shown
that our proposal is faster than the multiplicative homomorphic
ElGamal cryptosystem proposed by Peng et al. [15], in the case
of referendum type elections.

As future research, we will investigate techniques to further
reduce the time devoted to ballot unpacking.

ACKNOWLEDGMENTS

Research of the authors was supported in part by grants
MTM2010-21580-C02-01 (Spanish Ministerio de Ciencia e

86 M.A. Cerveró, V. Mateu, J.M. Miret, F. Sebé, J. Valera

Innovación), 2014SGR-1666 (Generalitat de Catalunya) and
IPT-2012-0603-430000 (Spanish Ministerio de Economı́a y
Competitividad).

APPENDIX

In this appendix we show the elliptic curves used in our
experiments. Finding elliptic curves with a given cardinality is
a hot topic of research. Several algorithms have been proposed
to this end. The most widely known was proposed by Atkin
and Morain [22] but there exist other approaches like that
proposed by Agashe et al. [23], or that by Bröker et al. [24],
[25]. In particular, the curves used in this paper have been
generated using the algorithm described in [25].

Elliptic Curve with a 160 bits Cardinality
Prime number p: 1461501637330902918203684832716283019655932542983
Coefficient a: 1268133167195989090596625406312984755854486256116
Coefficient b: 386736940269827655214118852806596527602892573734
#E(Fp): 1461501637330902918203684149283858612734394057783

Elliptic Curve with a 320 bits Cardinality
Prime number p: 53399675898022752059875542654238802865067613060\\

39270277656609164265354514010464991959371747702617
Coefficient a: 2088105959680623325842477250435045284830027862785\\

870211433492825096738057013555851670055268682213
Coefficient b: 1163755670441028554302599764553789716846705580467\\

529854789623514071878399983353288619261210338191
#E(Fp): 2 · 1461501637330902918203684832716283019655932542983 ·

· 1826877046663628647754606040895353774569915678761

Elliptic Curve with a 480 bits Cardinality
Prime number p: 995057350413222523752884116996571759957365658\\

06960442686765831936327048927557952103036515329315\\
96765152853320844768094929978936522271668818569113

Coefficient a: 270706995841250690260282444781369402799068818395\\
622388832076793348602062306022242786736095545104\\
4640503732397723488780961683652364955407331149336

Coefficient b: 453643358730721143232319227433832954359228021278\\
359649203504732666066364663535035456892962202950\\
7484145388525397790533006611631792360854156270441

#E(Fp): 2 · 1461501637330902918203684832716283019655932542983 ·
· 1552845489664084350591415134761050708384428327041 ·
· 2192252455996354377305527249074424529483898814481

REFERENCES

[1] D. Chaum, “Security without identification: transaction systems to make
big brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp.
1030–1044, 1985.

[2] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme
for large scale elections,” in Advances in Cryptology – AUSCRYPT ’92,
ser. LNCS, vol. 718, 1993, pp. 244–251.

[3] M. Ohkubo, F. Miura, M. Abe, A. Fujioka, and T. Okamoto, “An
improvement on a practical secret voting scheme,” in ISW ’99, ser.
LNCS, vol. 1729, 1999, pp. 225–234.

[4] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme: A practical
solution to the implementation of a voting booth,” in Advances in
Cryptology – EUROCRYPT ’95, ser. LNCS, vol. 921, 1995, pp. 393–
403.

[5] M. Jakobsson, “A practical mix,” in Advances in Cryptology – EURO-
CRYPT ’98, ser. LNCS, vol. 1403, 1998, pp. 448–461.

[6] F. Sebé, J. M. Miret, J. Pujolàs, and J. Puiggalı́, “Simple and efficient
hash-based verifiable mixing for remote electronic voting,” Computer
Communications, vol. 33, no. 6, pp. 667–675, 2010.

[7] J. Puiggalı́ and S. Guasch, “Eficiencia y privacidad en una mixnet
universalmente verificable,” in XI Reunión Española sobre Criptologı́a
y Seguridad de la Información (RECSI), 2010, pp. 159–164.

[8] K. Peng, “An efficient shuffling based eVoting scheme,” J. Syst. Softw.,
vol. 84, no. 6, pp. 906–922, 2011.

[9] V. Mateu, J. M. Miret, and F. Sebé, “Verifiable encrypted redundancy
for mix-type remote electronic voting,” in EGOVIS 2011, ser. LNCS,
vol. 6866, 2011, pp. 370–385.

[10] J. D. Cohen and M. J. Fischer, “A robust and verifiable cryptographically
secure election scheme,” in 26th Annual Symposium on Foundations of
Computer Science, 1985, pp. 372–382.

[11] K. Sako and J. Kilian, “Secure voting using partially compatible homo-
morphisms,” in Advances in Cryptology – CRYPTO ’94, ser. LNCS, vol.
839, 1994, pp. 411–424.

[12] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” in Advances in Cryptology –
EUROCRYPT ’97, ser. LNCS, vol. 1233, 1997, pp. 103–118.

[13] M. Hirt and K. Sako, “Efficient receipt-free voting based on homomor-
phic encryption,” in Advances in Cryptology – EUROCRYPT 2000, ser.
LNCS, vol. 1807, 2000, pp. 539–556.

[14] K. Peng, R. Aditya, C. Boyd, E. Dawson, and B. Lee, “Multiplicative
homomorphic e-voting,” in INDOCRYPT 2004, ser. LNCS, vol. 3348,
2004, pp. 61–72.

[15] K. Peng and F. Bao, “Efficient multiplicative homomorphic e-voting,”
in ISC 2010, ser. LNCS, vol. 6531, 2011, pp. 381–393.

[16] J. H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag,
1986.

[17] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[18] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in Advances in
Cryptology – CRYPTO ’94, ser. LNCS, vol. 839, 1994, pp. 174–187.

[19] “FIPS 180-2: Secure Hash Standard,” NIST, 2002.
[20] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in

Advances in Cryptology – CRYPTO ’92, ser. LNCS, vol. 740, 1993, pp.
89–105.

[21] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic
elections,” in WPES ’05, 2005, pp. 61–70.

[22] A. O. L. Atkin and F. Morain, “Elliptic curves and primality proving,”
Math. Comput., vol. 61, no. 203, pp. 29–68, 1993.

[23] A. Agashe, K. Lauter, and R. Venkatesan, “Constructing elliptic curves
with a given number of points over a finite field,” Cryptology ePrint
Archive, Report 2001/096.

[24] R. Bröker and P. Stevenhagen, “Elliptic curves with a given number of
points,” in ANTS-VI, ser. LNCS, vol. 3076, 2004, pp. 117–131.

[25] R. Bröker and P. Stevenhagen, “Efficient CM-constructions of elliptic
curves over finite fields,” Math. Comput., vol. 76, no. 260, pp. 2161–

2179, 2007.

	Introduction
	Contribution and Plan of this Paper

	Preliminaries
	The Elliptic Curve ElGamal Cryptosystem

	Our Proposal
	Set Up
	Voting
	Candidate Choice
	Electoral Roll Checking
	Vote Coding Verification
	Vote Packing

	Vote Opening
	Decryption
	Unpacking
	Scrutiny
	Publication

	Specific Case - Referendum
	Set Up
	Unpacking

	Security Analysis
	Authentication
	Unicity
	Privacy
	Fairness
	Verifiability
	Uncoercibility

	Experimental Results
	Conclusion and Future Work
	Appendix
	References

