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A new approach stemming from the adiabatic-connection (AC) formalism is proposed to derive
parameter-free double-hybrid (DH) exchange-correlation functionals. It is based on a quadratic form
that models the integrand of the coupling parameter, whose components are chosen to satisfy several
well-known limiting conditions. Its integration leads to DHs containing a single parameter control-
ling the amount of exact exchange, which is determined by requiring it to depend on the weight
of the MP2 correlation contribution. Two new parameter-free DHs functionals are derived in this
way, by incorporating the non-empirical PBE and TPSS functionals in the underlying expression.
Their extensive testing using the GMTKN30 benchmark indicates that they are in competition with
state-of-the-art DHs, yet providing much better self-interaction errors and opening a new avenue to-
wards the design of accurate double-hybrid exchange-correlation functionals departing from the AC
integrand. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890314]

The recent interest for double-hybrid (DH) approxima-
tions within the field of density-functional theory (DFT)
strongly increased since the pioneering work of Ernzerhof
in 1996.1 Popularized by Grimme with the so-called B2-
PLYP approach,2 this class of approximation introduces a
fraction of second-order Møller-Plesset (MP2) correlation
into a standard global-hybrid (GH) exchange and correlation
expression:

EDH
xc [ρ] = axE

HF
x + (1 − ax)EDFA

x [ρ]

+ (1 − ac)EDFA
c [ρ] + acE

MP2
c , (1)

where EHF
x denotes the Hartree-Fock like exchange, and EDFA

x

and EDFA
c stand, respectively, for the semilocal exchange and

correlation density-functional approximation (DFA). Like for
a global-hybrid, the first three terms are computed following
a self-consistent pathway. The last term is generally added a
posteriori and evaluated from the optimized GH Kohn-Sham
(KS) orbitals, even if orbital-optimized approaches already
exist.3 Following Eq. (1), plethora of DHs raised in the lit-
erature: some are based on the generalized-gradient approxi-
mation (GGA)4–9 or meta-GGA,10–13 another scale spin com-
ponents of the MP2 part,14–16 some others are built with a
perturbative term computed from B3LYP17, 18 or PBE019, 20

KS orbitals.21–23 All these DHs share the same basement: two
empirical parameters ax and ac, sometimes more, fitted on dif-
ferent datasets according to the property of interest.

More recently, some tentative of rationalization ex-
plained the origin of DHs, especially the relationship between
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the two empirical parameters. Starting from the adiabatic-
connection (AC) formalism,24–27 Toulouse et al. derived a
family of one-parameter DHs,28–30 underlining a quadratic
(ac = a2

x), and a cubic (ac = a3
x) relation between ax and

ac. Fromager extends these studies to a more general two-
parameter DH formalism with a fraction of exact exchange
and perturbation parts staying for ac � a2

x .31 While this the-
oretical purpose points out a rigorous formalism, it does not
precise specific values for the parameters, which is the key
point in the birth of a new double-hybrid. Still working on this
formalism, some of us demonstrated that an average on the
AC, a cubic relation between ax and ac, and the PBE density-
functional led to an excellent parameter-free candidate: the
PBE0-DH double-hybrid.32, 33 Later, mimicking PBE0-DH,
Chai et al. promoted a new parameter-free DH: the PBE0-2
functional.34

If the previous mentioned tentatives of rationalization
focused on the AC Hamiltonian, link between the non-
interacting KS Hamiltonian (λ = 0) and the exact Hamilto-
nian (λ = 1), they overstep the coupling-constant integral for-
mula and the developments linked to its integrand:

Exc[ρ] =
∫ 1

{λ=0}
Wα[ρ]dα, (2)

where Wα[ρ] stands for the exchange and correlation inte-
grand. Some really recent investigations follow this route. We
especially think about the work of Fromager and cowork-
ers which underlines B2-PLYP like DHs made from AC
integrands35 or the PBE-ACDH36 functional from Xu et al.
built from a complex integrand function.
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Our goal in this Communication is to propose a sim-
ple model for Wα[ρ] and use it to develop a new double-
hybrid form that provides self-interaction errors (SIEs) for
many electron systems as low as possible.37

As for the exchange and correlation energy, the exact
integrand is unknown and lets place some approximations.
Yang and coworkers already proposed a bench of mathemati-
cal expressions, starting from a linear to an exponential model
integrand.38 One of the simplest cases, yet keeping the correct
curvature of the interpolation path, consists in developing the
integrand as a quadratic function (QI) of α:

Wα[ρ] = a[ρ] + b[ρ]α + c[ρ]α2, (3)

where a, b, and c are functionals of density and orbitals. The
identification of these three functionals has to follow the limit
conditions.

At the weak-interaction limit (α → 0), the integrand
tends to the exact exchange term at zeroth-order, and to the
second-order Görling-Levy39, 40 (GL2) at first-order of α:

W0[ρ] = EHF
x ,

∂Wα[ρ]

∂α

∣∣∣∣
α=0

= 2EGL2
c , (4)

where EGL2
c is written as

EGL2
c = EMP2

c + E�HF
c . (5)

In the previous expression (5), EMP2
c denotes the known

second-order Møller-Plesset correlation energy computed
from the KS orbitals, and E�HF

c stands for the single-
excitation contribution. As this last term is negligible for most
of the systems (EGL2

c ≈ EMP2
c ), the identification of expres-

sions (3) and (4), plus the decomposition (5) give:

a[ρ] = EHF
x , (6)

b[ρ] = 2EMP2
c . (7)

The last quadratic term c has still to be determined. For
that, we will focus on the integrand behavior close to the up-
per limit (α → 1). Using scaling relations derived from the
work of Levy and Perdew,41 the integrand is expressed as

Wα[ρ] = ∂

∂α
(α2Exc[ρ1/α])

= EDFA
x [ρ] + 2EDFA

c [ρ1/α]α + ∂EDFA
c [ρ1/α]

∂α
α2, (8)

where ρ1/α is the coordinate-scaled density such as ρ1/α(r)
= α−3ρ(r/α). Close to the upper limit, the coordinate-scaled
density is very close to the density itself ρ1/α(r) ≈ ρ(r). As
a result, the density-scaled correlation energy tends to the
density-functional correlation energy:

EDFA
c [ρ1/α] ≈ EDFA

c [ρ], (9)

and its derivative with respect to α vanishes. At the upper
limit, the integrand can be approximated by

W1[ρ] ≈ EDFA
x [ρ] + 2EDFA

c [ρ], (10)

or more generally by

W1,λ
x
[ρ] = λxE

HF
x + (1 − λx)EDFA

x [ρ] + 2EDFA
c [ρ], (11)

with the parameter λx ∈ [0, 1] controlling the amount of ex-
act exchange present. When λx tends to zero, W1,λ

x
tends to

Eq. (10), and when λx tends to one, the exchange part is esti-
mated with full exact exchange. From Eqs. (3) and (11), the
identification of c gives

c[ρ] = (λx − 1)EHF
x + (1 − λx)EDFA

x [ρ]

− 2EMP2
c + 2EDFA

c [ρ]. (12)

The model integrand of Eq. (3) is now a function of
known energy terms. Applying the integration formula (2) to
the quadratic exchange and correlation integrand (3) leads to

Exc[ρ] =
[
a[ρ]α + 1

2
b[ρ]α2 + 1

3
c[ρ]α3

]1

{λ=0}

= a[ρ] + 1

2
b[ρ] + 2

3
c[ρ], (13)

and replacing a, b, and c functionals by their corresponding
assignments (see Eqs. (6), (7), and (12)) gives the quadratic
integrand double-hybrid (QIDH) model:

E
QIDH
xc,λ

x
[ρ] = λx + 2

3
EHF

x + 1 − λx

3
EDFA

x [ρ]

+ 1

3
EMP2

c + 2

3
EDFA

c [ρ]. (14)

A direct comparison with Eq. (1) reveals that

∀λx ∈ [0, 1], ax(λx) = λx + 2

3
, ac = 1

3
, (15)

which means that for all considered values of λx, ax varies
between 0.66 and 1.00. Another important consideration is
the verification of the inequality31 ac � a2

x for all λx.
To evaluate the DFA exchange and correlation terms of

Eq. (14), the PBE42 and the TPSS43 semilocal functionals
are chosen. The advantage of such functionals is their non-
empirical background, and especially for TPSS, a correlation
component free of self-interaction. In this way, the two mod-
els defined as PBE-QIDH and TPSS-QIDH just contain one
parameter: the fraction of exact exchange.

The fraction of exact exchange has still to be determined.
As ac is fixed, a parallelism can be established with the lin-
early scaled one-parameter double-hybrid,29, 30 pragmatically
known for the relation ac = a3

x and its nice performances for
the chosen semilocal functionals, will help to determine λx.
In this way, a first idea is ax = 3−1/3, so λx = 32/3 − 2. To
validate this hypothesis, the influence of the amount of exact
exchange ax on the performances of the QIDH model is mea-
sured on two different types of properties (Fig. 1): atomiza-
tion reactions through the AE6 dataset44 and self-interaction
error related problem through the SIE1145 test set. The first
set is a simple benchmark test over six representative atomiza-
tion energies, and the second set brings together 11 SIE-prone
chemical systems. On atomization energies, our hypothesis
works very fine for PBE-QIDH (ax,min = 0.70), and overesti-
mates the minimum for TPSS-QIDH (ax,min = 0.60). For self-
interaction errors, the one-dimensional surfaces are very flat
around the minima, and both QIDH approaches show a re-
spective minimum close to ax,min = 0.75 and ax,min = 0.70.
These values are still in agreement with our hypothesis and
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FIG. 1. Mean absolute deviations for the AE6 (left) and SIE11 (right) test sets as function of the parameters ax for QIDH based on PBE and TPSS exchange
and correlation density functionals. All the reactions are evaluated with the quadruple-ζ def2-QZVP basis set.

confirm the validity of a parameter-free approach. As a result
we fix ax = 3−1/3, so λx = 32/3 − 2.

To evaluate the performances of the two defined QIDH on
chemical properties, the well known GMTKN30 benchmark13

is investigated (Fig. 2), and the results are compared to those
of a reference double-hybrid: PBE0-DH, for which ax = 1/2
and ac = 1/8. The new PBE-QIDH functional yields better
results than PBE0-DH in almost every case, the only remark-
able exception being the reaction energies of the DARC sub-
set. On the other hand, the TPSS-QIDH functional performs
slightly worse on average than PBE-QIDH. It is worth men-
tioning the large improvement on SIEs, around 50%, provided
by both QIDH functionals over PBE0-DH, probably due to

the increase of exact exchange proportion in the new function-
als. On the other hand, the larger fraction of MP2 correlation
energy in QIDH functionals, as compared to that of PBE0-
DH, would explain the better results on weak interaction and
conformer errors obtained with the former. Another impor-
tant tested property is the vertical-excitation process through
12 π -conjugated compounds.46 Similar performances are de-
noted by direct comparison to PBE0-DH.

In this Communication, we built a new model of double-
hybrid functional from the adiabatic-connection exchange
and correlation integrand. We developed the integrand as a
quadratic function of the AC parameter, and showed that
after integration, the amount of correlation computed by
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FIG. 2. Mean absolute deviations for all the subsets of the GMTKN30 database for QIDH based on PBE and TPSS exchange and correlation density functionals
and λx = 32/3 − 2. The left graph shows the performances of the three models of DHs according to the type of properties tested in the GMTKN30 database plus
excitation energies. The right graph displays the DH performances on the different GMTKN30 subsets. All the reactions are evaluated with the quadruple-ζ
def2-QZVP basis set.
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perturbation is fixed to 1/3, and the proportion of exact ex-
change can vary between 2/3 and 1. This quadratic integrand
double-hybrid is coupled with PBE and TPSS semilocal func-
tionals, and the amount of exact exchange is set to decrease
the SIE of many-electron systems. The overall performances
of QIDH are close to that of PBE0-DH but improve the SIE
treatment. We hope that this study will stimulate the new de-
velopment of parameter-free DHs through the AC exchange
and correlation integrand.

Computational details: All the computations were done
with the Gaussian program package47 except for the PCONF,
WATER27, IDISP, ISOL22, and the excitation subsets. These
last five datasets were computed with the Orca software48

making use of the RI-MP249–51 approach. An ultrafine inte-
gration grid is set for TPSS-based DHs computations. As rec-
ommended by Grimme,13 the large Ahlrichs’ type quadruple-
ζ basis set def2-QZVP52 is used to compute the GMTKN30
database.13 Particularly for electron affinities and binding en-
ergies of water (subsets G21EA and WATER27), diffuse s and
p functions are taken from the Dunning aug-cc-pVQZ53 and
added to def2-QZVP to obtain the aug-def2-QZVP basis. Ver-
tical excitation energies are obtained using the Tamm-Dancoff
approach and with the def2-TZVPP basis set. Note that these
excitation energies (	DH) are obtained54 as 	DH = 	GH
+ ac�(D), where �(D) is a CIS(D)-like correction,55 scaled by
ac, and added to the excitation energy computed with a GH.

To give a more representative view of the performances
of the investigated DHs, the 31 subsets of the GMTKN30 are
clustered according to the eight tested properties. Atomiza-
tion and decomposition cluster groups together the MB08-
165, W4-08, and W4-08WOMR subsets. Adiabatic process
cluster brings together G21EA, G21IP, and PA subsets. Self-
interaction error cluster is composed by the SIE11 subset.
Barrier cluster assembles BHPERI and BH76 subsets. Re-
action cluster gathers together BH76RC, RSE43, O3ADD6,
G2RC, AL2X, NBPRC, ISO34, ISOL22, DARC, ALK6, and
BSR36 subsets. Difficult cases cluster is composed by the
DC9 subset. Weak interaction cluster groups together the
IDSIP, WATER27, SS2, ADIM6, RG6, and HEAVY28 sub-
sets. Conformer cluster brings together PCONF, ACONF,
SCONF, and CYCONF subsets. For a more complete descrip-
tion of all the subsets the reader is oriented to the GMTKN30
reference.13

J.C.S.G. and A.J.P.J. thank the “Ministerio de Educación
y Ciencia” of Spain and the “European Regional Develop-
ment Fund” through project CTQ2011-27253 for financial
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