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1 Introduction

The problem of �nding continuous solutions of a functional equation is usually
more easy than the search of the noncontinuous ones. As an example we have
the functional Cauchy equation

f(x+ y) = f(x) + f(y); x,y 2 R, (1.1)

whose noncontinuous solutions were found about a century after the continuous
ones appeared, because its existence was conditioned to the discovery of the
notion of Hamel basis [1, Chap. 2].
In [3], it was found a family of basic solutions of the functional equation

F (z) + F (2z) + :::+ F (nz) = 0, n � 2,

on the complex domain 
 := Cn (�1; 0]. Then, as these solutions are analytic
on 
, the real and imaginary part of their restrictions on (0;1) form a family
of continuous solutions, actually of class C1, of the real functional equation

f(x) + f(2x) + :::+ f(nx) = 0, x > 0. (1.2)

Equation (1.2) for small values of n has been used to model some physical
processes [3] and, in general, for every integer n � 2 it represents an important
equation as consequence of its connection with the partial sums of the Riemann
zeta function, as we will see below. In this paper our aim is the search of vector
spaces of solutions of equation (1.2) on R, putting emphasis on the noncontin-
uous ones. To do it, for the �rst values of n, we will introduce an algebraic
procedure, whereas for arbitrary n, we will link (1.2) to the corresponding nth

partial sum of the Riemann zeta function

�n(z) :=
nX
k=1

1

kz
, n � 2,
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and we will see then how its zeros produce solutions to (1.2) whose continuity
depends on the sign of the real part of each zero. Finally, a special class of
real subsets having the property of the n-sum (see De�nition 17) will yield the
desired vector spaces of noncontinuous solutions of our functional equation.

2 The equation f(x) + :::+ f(nx) = 0, x 2 R, for
small values of n

For n = 2 we have the equation

f(x) + f(2x) = 0, x 2 R, (2.1)

whose solutions present a discontinuity at the point x = 0 whose meaning will
be better understood after Theorem 15 below.

Proposition 1 Any solution not identically null of the functional equation (2.1)
is not continuous at x = 0.

Proof. Let f be a solution not identically null of (2.1). Then, since f(0) = 0,
there exists a real number a 6= 0 such that f(a) 6= 0. By considering the sequence�
2�ka

�
k=1;2;:::

, from (2.1), we have

f(2�ka) = (�1)kf(a) for all k � 1,

which proves that limx!0 f(x) does not exist and then the result follows.
The uniqueness of the irreducible expression of a rational number, distinct

from 0, as quotient of two integers, allows us to introduce the notion of binary
characteristic of a real number.

De�nition 2 The binary characteristic of a real number x, denoted by [x]2, is
de�ned as

[x]2 =

(
(�1)k, if x 2 Qn f0g , with x = p

q
(irreducible)

0, otherwise

where k is the power of 2 in the factorial decomposition of p or q.

Noticing the expression
p

q
is irreducible, the binary characteristic is well

de�ned because 2k can only appear either in the factorial decomposition of p or
q. If p and q are both odd, k = 0 and then the binary characteristic is 1.
Since the binary characteristic satis�es

[x]2 + [2x]2 = 0, for any x 2 R,

the next result is immediate.
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Proposition 3 The binary characteristic is an everywhere noncontinuous so-
lution of (2.1).

Since the graph of each noncontinuous solution of Cauchy equation (1.1) is
everywhere dense in the plane [1, Theorem 3, p. 14], and the binary character-
istic is a bounded noncontinuous solution of (2.1), it follows that this equation
is essentially di¤erent from Cauchy�s equation.
In the next result we prove that two arbitrary numbers a and b, with ab < 0,

are su¢ cient to characterize the solutions of (2.1).

Theorem 4 Given a, b real with a > 0, b < 0, let Fa, Gb be the families of all
real functions de�ned on [a; 2a) and (2b; b], respectively. Then, f(x) is solution
of (2.1) if and only if

f(x) =

8<: (�1)mxgb(2
�mxx), if x < 0

0 , if x = 0
(�1)kxfa(2�kxx) , if x > 0

(2.2)

where gb 2 Gb, fa 2 Fa and mx, kx are the unique integers such that x 2�
2mx+1b; 2mxb

�
if x < 0 and x 2

�
2kxa; 2kx+1a

�
if x > 0.

Proof. The families of disjoint intervals��
2ka; 2k+1a

�
: k 2 Z

	
,
��
2k+1b; 2kb

�
: k 2 Z

	
,

constitute partitions of (0;1) and (�1; 0), respectively. Then, given x > 0,
there is only one integer kx such that

x 2
�
2kxa; 2kx+1a

�
(2.3)

and, for x < 0, there exists only one integer mx such that

x 2
�
2mx+1b; 2mxb

�
. (2.4)

Thus, for each fa 2 Fa, gb 2 Gb, we claim that any function f(x) de�ned by
(2.2) is solution of (2.1). Indeed, since f(0) = 0, the case x = 0 is trivial. By
assuming that x > 0, from (2.3), x 2

�
2kxa; 2kx+1a

�
, so 2x 2

�
2kx+1a; 2kx+2a

�
and then we get

f(x) + f(2x) = (�1)kxfa(2�kxx) + (�1)kx+1fa(2�kx�12x) =

= (�1)kxfa(2�kxx) + (�1)kx+1fa(2�kxx) = 0.

In a similar way, when x < 0, by using (2.4), we also have f(x)+ f(2x) = 0,
which means that the claim is true. Conversely, suppose f(x) is a solution of
(2.1). Then, by reiterating (2.1), one has

f(x) = (�1)kf(2kx), for all x 2 R and every integer k. (2.5)
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Now, we de�ne the functions

fa(x) := f(x), x 2 [a; 2a) (2.6)

and
gb(x) := f(x), x 2 [2b; b) . (2.7)

Then, given x > 0, from (2.3), there exists only one integer kx such that 2�kxx 2
[a; 2a). By putting k = �kx in (2.5), because (2.6), we get

f(x) = (�1)�kxf(2�kxx) = (�1)kxfa(2�kxx). (2.8)

For x < 0, by repeating verbatim the above reasoning and by taking into account
(2.7), we obtain

f(x) = (�1)�mxf(2�mxx) = (�1)mxgb(2
�mxx). (2.9)

Then, the expressions (2.8) and (2.9) jointly with fact that f(0) = 0, show that
f(x) can be written of the form (2.2). Hence the theorem follows.
In order to study the equation

f(x) + f(2x) + f(3x) = 0, x 2 R, (2.10)

we de�ne the ternary characteristic concept.

De�nition 5 The ternary characteristic of a real number x, denoted by [x]3, is
de�ned as

[x]3 :=

(
(�1)m, if x 2 Qn f0g with x = p

q
(irreducible)

0, otherwise

where m is the power of 3 in the factorial decomposition of p or q.

It is immediate to check the validity of the following property of the ternary
characteristic.

Lemma 6 The property

[2x]3 = [x]3 , [3x]3 = � [x]3
holds for any x 2 R.

By using the above lemma and the solutions of Cauchy functional equation
(1.1), the next result allows us to obtain families of noncontinuous solutions of
(2.10).

Theorem 7 Let ' be a solution, not identically null on the rationals, of Cauchy
functional equation. Then

F3;'(x) := ' (x [x]3)

is a non-continuous solution of (2.10).
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Proof. Noticing the linearity of ', for every x 2 R we have

F3;'(x) + F3;'(2x) + F3;'(3x) = ' (x [x]3 + 2x [2x]3 + 3x [3x]3) ,

but according to Lemma 6, we get

x [x]3 + 2x [2x]3 + 3x [3x]3 = 0

and then
F3;'(x) + F3;'(2x) + F3;'(3x) = '(0) = 0,

which proves that F3;'(x) is a solution of (2.10). It only remains to prove that
F3;'(x) is noncontinuous. Indeed, since ' is not identically null on the rationals
and '(q) = q'(1) for all q 2 Q, it follows that '(1) 6= 0 and consequently
'(q) 6= 0 for all q 6= 0. Then for a �xed rational a 6= 0, given any sequence of
irrational numbers (sn) such that sn ! a, by virtue of the de�nition of ternary
characteristic, we have

F3;'(sn) = 0.

On the other hand, since [a]3 = �1, we get

F3;'(a) = '(�a) = �'(a) 6= 0,

which proves that F3;' is not continuous at a. Now the proof is completed.
A large class of solutions of (2.10) is obtained by using the notion of Hamel

basis [1, Chap. 2].

Theorem 8 Let B = fxi : i 2 Ig be a Hamel basis of R on Q, h an arbitrary
real function on B and ' a solution of Cauchy functional equation. Then

F3;';h(x) :=
X
i2Ax

'(qi [qi]3)h(xi)

is a solution of (2.10), where Ax is the �nite subset of the index set I which
expresses x =

P
i2Ax

qixi under a unique form.

Proof. By expressing
x =

X
i2Ax

qixi,

it follows
2x =

X
i2Ax

2qixi, 3x =
X
i2Ax

3qixi.

From Theorem 7, F3;'(x) := ' (x [x]3) is a solution of (2.10); then, for every
x 2 R we have

F3;';h(x) + F3;';h(2x) + F3;';h(3x) =

=
X
i2Ax

F3;'(qi)h(xi) +
X
i2Ax

F3;'(2qi)h(xi) +
X
i2Ax

F3;'(3qi)h(xi) =

5



=
X
i2Ax

[F3;'(qi) + F3;'(2qi) + F3;'(3qi)]h(xi) = 0,

which proves that F3;';h(x) is a solution of (2.10).
For the equation

f(x) + f(2x) + f(3x) + f(4x) = 0, x 2 R, (2.11)

we can also obtain basic families of noncontinuous solutions by de�ning the
quaternary characteristic concept.

De�nition 9 The quaternary characteristic of a real number x, denoted by [x]4,
is de�ned as

[x]4 :=

(
(�1)k+m, if x 2 Qn f0g with x = p

q
(irreducible)

0, otherwise

where k, m are the powers of 2 and 3, respectively, in the factorial decomposition
of p and q.

From the above de�nition, for any real x we have:

[2x]4 = [3x]4 = � [x]4 ; [4x]4 = [x]4 . (2.12)

Property (2.12) allows us to prove similar results to the preceding cases n = 2,
3, as follows.

Proposition 10 The quaternary characteristic function is a noncontinuous so-
lution of the functional equation (2.11).

Theorem 11 Let ' be any solution of Cauchy functional equation not identi-
cally null on the rationals. Then the function

F4;'(x) := '(x [x]4)

is a noncontinuous solution of (2.11).

Theorem 12 Let B = fxi : i 2 Ig be a Hamel basis of R on Q, h an arbitrary
real function on B and ' a solution of Cauchy functional equation. Then

F4;';h(x) :=
X
i2Ax

'(qi [qi]4)h(xi)

is a solution of (2.11), where Ax is the �nite subset of the index set I that
expresses x =

P
i2A qixi under a unique form.
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3 The equation f(x) + :::+ f(nx) = 0, x 2 R, for
any n � 2

As far as we know, by means of the procedure exhibited in the cases n = 2; 3; 4,
it is still possible to construct, for each particular value of n � 2, the nth

characteristic of a real number to obtain basic noncontinuous solutions of

f(x) + f(2x) + :::+ f(nx) = 0, x 2 R, (3.1)

nevertheless, it is not necessary to resort to the nth characteristic concept to
�nd noncontinuous solutions of (3.1), as we will see. Indeed, as an alternative
method we propose, �rstly, to consider the continuous solutions of equation (1.2)

f(x) + f(2x) + :::+ f(nx) = 0, x > 0,

generated by the zeros of the Riemann zeta partial sums

�n(z) :=

nX
k=1

1

kz
, n � 2,

and, secondly, to de�ne the concept of real subset having the n-sum property
(De�nition 17).
The next result proves that each zero of �n(z) generates a vector space of

continuous solutions of (1.2).

Theorem 13 Fixed any integer n � 2, every zero of the nth partial sum �n(z)
of the Riemann zeta function generates a vector space of real continuous solu-
tions of (2.1).

Proof. We �x n � 2; let �n be an arbitrary zero of the nth partial sum �n(z).
By taking the principal logarithm, we de�ne the function

gn(z) := z
��n

on the complex domain 
 := Cn(1; 0], and we claim that the family of functions
on the interval (0;1) of the form�

�Re(x��n) + � Im(x��n) : �; � 2 R
	

(3.2)

is a vector space of continuous solutions of (1.2). Indeed, the structure of the
functional equation (1.2) is linear in the following sense: if f(x) and g(x) are
solutions of (1.2), then the function

h(x) := �f(x) + �g(x),

for arbitrary reals � and �, is also a solution of (1.2). A similar argument proves
that if f(z) is a solution of the complex functional equation

F (z) + F (2z) + :::+ F (nz) = 0, z 2 
, (3.3)
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then the function
�Re f(x) + � Im f(x)

is a solution of (1.2) on (0;1), and therefore the claim is true. Now, it only
remains to check that the function gn(z) = z��n , z 2 
, is a solution of (3.3).
Indeed, by taking into account that �n is a zero of �n(z), we have

gn(z) + gn(2z) + :::+ gn(nz) = z
��n + (2z)��n + :::+ (nz)��n =

= z��n(1 + 2��n + :::+ n��n) = z��n�n(�n) = 0,

which de�nitively proves the theorem.
An easy consequence of the previous theorem is the following:
every function f(x) of the form (3.2) de�nes a function

Fn(x) =

8<: f(x), if x > 0
0, if x = 0
f(�x), if x < 0

(3.4)

which is a continuous solution of (3.1), except possibly at the point 0.
Since all the zeros of �2(z) are on the imaginary axis, the next result must

be necessarily formulated for n > 2.

Theorem 14 For each n > 2, every zero of the nth partial sum �n(z) of the
Riemann zeta function situated in the left half-plane generates a vector space of
real continuous solutions of (3.1).

Proof. Let �n = an+ibn be a zero of �n(z) with an < 0. Noticing the preceding
theorem, it is enough to prove that

lim
x!0+

Fn(x) = 0,

where Fn(x) is de�ned by (3.4) and f(x) belongs to the family (3.2). Indeed,
for x > 0 we have

Re(x��n) = e�an log x cos(bn log x), Im(x��n) = e�an log x sin(bn log x). (3.5)

Then, by taking into account that an log x > 0 for 0 < x < 1, we get

lim
x!0+

Re(x��n) = lim
x!0+

Im(x��n) = 0

and consequently
lim
x!0+

Fn(x) = 0,

as we claimed. The proof is now completed.
We have just seen that if �n = an + ibn is a zero of �n(z), n � 2, then (3.5)

are basic solutions of equation (1.2). Now, the next result easily follows.

8



Theorem 15 For each n � 2, every zero �n, with Re�n � 0, of the nth

partial sum �n(z) of the Riemann zeta function generates a vector space of real
continuous solutions of (3.1) except at the point x = 0.

Proof. It is enough to note that, since an = Re�n � 0, the limits

lim
x!0

e�an log x cos(bn log x), lim
x!0

e�an log x sin(bn log x)

do not exist.
For all n > 2, the existence of zeros of every �n(z) outside the imaginary

axis is guaranteed by means of the following result.

Theorem 16 For n > 2, every partial sum �n(z) of the Riemann zeta function
possesses in�nitely many zeros in at least one half-plane.

Proof. By de�ning
Gn(z) := �n(�z), n � 2,

the sets of zeros of the functions Gn(z) and �n(z) satisfy the relation

ZGn(z) = �Z�n(z). (3.6)

About the zeros of Gn(z) we note that in [3, Propositions 1,2,3] it was proved:
a) Every Gn(z), n � 2, is an entire function of order 1 and it has in�nitely

many zeros.
b) There exist real numbers rn, sn, such that all the zeros of Gn(z) are in

the vertical strip fz 2 C : rn � Re z � sng.
c) The functions Gn(z) do not have all the zeros on the imaginary axis,

except for n = 2.
Now, assume by reductio ad absurdum that there exists an integer m > 2

such that all the zeros of Gm(z) are:

(�(l)m )l=1;2;:::p, p � 1, with Re�(l)m 6= 0; (�m;k)k=1;2;::: with Re�m;k = 0. (3.7)

Taking into account that, for any n � 2, Gn(z) = Gn(z) for all z 2 C, the zeros
of Gm(z) are conjugate. Then, p is even, so p = 2q � 2, and �m;k = �iyk with
yk > 0 for all k � 1. Hence, the polynomial de�ned by the zeros (�(l)m )l=1;2;:::p ,
say Pm(z), will be

Pm(z) = (z
2 � 2a(1)z +

����(1)m ���2) � � � (z2 � 2a(q)z + ����(q)m ���2), (3.8)

where a(l) = Re�(l)m , l = 1; :::; q . Now, the function

Hm(z) :=
Gm(z)

Pm(z)
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is entire of order 1 with zeros (�iyk)k=1;2;::: and then, from Hadamard�s factor-
ization theorem [2, Theorem 4.4.3], we have

Hm(z) = e
Az+B

1Y
k=1

�
1 +

z2

y2k

�
, (3.9)

where the constants A, B, because (3.8), are given by

eB = Hm(0) =
m����(1)m :::�

(q)
m

���2
and

A =
H 0
m(0)

eB
=
log(m!)

m
+

a(1)����(1)m ���2 + :::+
a(q)����(q)m ���2 .

Noticing (3.9), the function Hm(z)e�Az is even and then

Hm(z)e
�Az = Hm(�z)eAz,

which means that
Pm(�z)
Pm(z)

=
Gm(�z)e2Az
Gm(z)

. (3.10)

Now, assume all the zeros of Pm(z) are zeros of Pm(�z), then necessarily
Pm(z) � Pm(�z) and hence the zeros are conjugate and opposite. In conse-
quence q is even and then

a(1)����(1)m ���2 + :::+
a(q)����(q)m ���2 = 0,

which implies that

A =
log(m!)

m
.

Then, noticing (m!)2 > mm for all m > 2, by taking the limit in (3.10) when
z = x ! +1 we are led to a contradiction because the left side of (3.10) is
identically equal to 1 whereas the right side tends to +1.
On the other hand, the right side of (3.10) is a quotient of exponential

polynomials whose number of poles is �nite and then, Shields�s theorem [4]
implies that this quotient is an exponential polynomial. Hence if we suppose that
at least one zero of Pm(z) is not a zero of Pm(�z), we are led to a contradiction
consisting on the left side of (3.10) is a meromorphic function with at least a
pole whereas the right side one is an exponential polynomial. As consequence,
there is no function Gn(z), n > 2, having its zeros like in (3.7). It means that
every function Gn(z), n > 2, has in�nitely many zeros in at least one half-plane
and consequently, from (3.6), the result follows.
Now, by using the family (3.2) of continuous solutions of (1.2) we can con-

struct large families of noncontinuous solutions of (3.1). To do it, we introduce
a new class of real subsets.
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De�nition 17 Given an integer n � 2, a proper subset S of R is said to have
the n-sum property if for each x 2 S one has

2x; 3x; :::; nx 2 S,

and for each x 2 RnS one has

2x; 3x; :::; nx 2 RnS.

Observe that if S � R has the n-sum property, then RnS also has the same
property. For each integer n � 2, a non-trivial example of a real subset S
having the n-sum property is the multiplicative group �n generated by the set
fp1; p2; :::; pkng of all prime numbers less than or equal to n,

�n :=
�
x = p�11 p

�2
2 :::p

�kn
kn

: �1; �2; :::�kn 2 Z
	
. (3.11)

At this point we obtain the following result.

Theorem 18 For every integer n > 2, let �n be the multiplicative group de�ned
in (3.11) and ' any solution of Cauchy functional equation not identically null
on the rationals. Then for any Fn(x) of the form (3.4), not identically zero, the
function

Fn;'(x) :=

�
'(Fn(x)), if x 2 R n�n
0, if x 2 �n

(3.12)

is a noncontinuous solution of (3.1).

Proof. Firstly, since ' is not identically null on the rationals, necessarily

'(q) = q'(1) 6= 0, for all q 2 Q, q 6= 0.

On the other hand, from the linearity of ', the n-sum property of the subsets
�n, R n �n, and the fact of Fn(x) is of the form (3.4), it follows that every
function de�ned by (3.12) is a solution of (3.1). Now we observe that, for each
x 2 �n, there exists

min fjy � xj : y 2 �n, y 6= xg > 0

and hence there is some yx 2 �n with yx 6= x such that either (yx; x) or (x; yx) is
contained in Rn�n. Then, as Fn(x) is a function of the form (3.4) not identically
zero, it is continuous and not constant on (0;1). Therefore, either the image
Fn((yx; x)) or Fn((x; yx)) is a connected set of R not reduced to a point and
consequently either Fn((yx; x)) or Fn((x; yx)) contains at least a rational, say
qx, distinct from 0. Then, there exists zx 2 R n �n such that Fn(zx) = qx 6= 0
for which we have

'(Fn(zx)) = '(qx) 6= 0 (3.13)

and it means that the function de�ned in (3.12) is not identically 0.
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Let us denote by Zn the set of the positive zeros of Fn(x), then we claim
that �n is not contained in Zn. Indeed, for x > 0, we have

Fn(x) = �e
�an log x cos(bn log x) + �e

�an log x sin(bn log x), �, � 2 R. (3.14)

Then, if � = 0, necessarily, � 6= 0 and therefore the claim is true by taking
x = 1. In the case � = 0, it must be � 6= 0 and, since 2 2 �n, by admitting that
2 =2 Zn, the claim is true. By supposing 2 2 Zn, we have

bn log 2 = k�, with k 6= 0, k 2 Z

and, necessarily, x = 3 is a point of �n which is not in Zn and then the claim
follows. Otherwise, if x = 3 2 Zn, then

bn log 3 = l�, with l 6= 0, l 2 Z,

implying that log 2 and log 3 are linearly dependent on the rationals, which is
false. Finally, when �, � 6= 0, clearly x = 1 2 �n but 1 =2 Zn and then the claim
is true. Therefore, let x0 be a point of �n such that Fn(x0) 6= 0; by continuity
of Fn(x), for m large enough we get

Fn(x) 6= 0 for all x 2
�
x0 �

1

m
;x0 +

1

m

�
.

Thus, by using (3.13), we can determine a sequence (zm)m 2 R n �n such that
zm 2

�
x0 � 1

m ; x0 +
1
m

�
with Fn(zm) = qm 2 Q. Now, taking into account that

zm ! x0, we get
lim
m!1

Fn(zm) = Fn(x0)

and then
lim
m!1

qm = Fn(x0).

Hence

lim
m!1

Fn;'(zm) = lim
m!1

'(Fn(zm)) = lim
m!1

'(qm) = lim
m!1

qm'(1) =

= Fn(x0)'(1) 6= 0. (3.15)

On the other hand, as x0 2 �n, we have Fn;'(x0) = 0 and then, from (3.15), it
follows that Fn;'(x) is not continuous at x0. This completes the proof.
Observe that if n = 2, by taking a function F2(x) of the form (3.14) with

� = 0, � 6= 0, we have that the group �2 � Z2, where Z2 is the set of the
positive zeros of F2(x). Therefore, the case n = 2 cannot be treated as the
preceding one. Nevertheless, when n = 2, noncontinuous solutions of (3.1) can
be obtained as follows.

Proposition 19 Let ' be a noncontinuous solution of Cauchy functional equa-
tion. Then, for any F2(x) of the form (3.4) with n = 2, not identically null, the
function

F2;'(x) := '(F2(x)), x 2 R
is a noncontinuous solution of (3.1).
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Proof. From the linearity of ' and the fact of F2(x) is a solution of (3.1) for
n = 2, it follows that F2;'(x) is a solution of (3.1). We pick an interval [a; b] with
0 < a < b and, because the continuity of F2(x) on (0;1), F2([a; b]) is a compact
and connected set of R not reduced to a point. Hence F2([a; b]) = [A;B] with
A < B. Now, noticing the image '([A;B]) is dense in R [1, Corollary 4, p. 15],
we get that F2;'(x) is a noncontinuous function. This completes the proof.
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