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Abstract

The use of 3D data in mobile robotics provides valuable information about the
robot’s environment. Traditionally, stereo cameras have been used as a low-cost
3D sensor. However, the lack of precision and texture for some surfaces suggests
that the use of other 3D sensors could be more suitable. In this work, we examine
the use of two sensors: an infrared SR4000 and a Kinect camera. We use a com-
bination of 3D data obtained by these cameras, along with features obtained from
2D images acquired from these cameras, using a Growing Neural Gas (GNG) net-
work applied to the 3D data. The goal is to obtain a robust egomotion technique.
The GNG network is used to reduce the camera error. To calculate the egomo-
tion, we test two methods for 3D registration. One is based on an iterative closest
points algorithm, and the other employs random sample consensus. Finally, a si-
multaneous localization and mapping method is applied to the complete sequence
to reduce the global error. The error from each sensor and the mapping results

from the proposed method are examined.
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1. Introduction

Robots and autonomous vehicles use maps to determine their location or pose
within an environment, and to plan routes and trajectories [26], [40]. Thus, the
problem of automatic map building is an important topic in mobile robotics [25].
To achieve automatic map building, the mobile vehicle has to be accurately lo-
cated inside the map that is being built. Simultaneous Localization and Mapping
(SLAM) techniques [13], [9] have been proposed to overcome this issue, which
can be thought of as a chicken-and-egg problem: an unbiased map is necessary
for localization, while an accurate pose estimate is needed to build that map. On
the one hand, SLAM can be considered as a global rectification [34] of the mo-
bile robot’s poses along its route once the loop is closed, and when the robot
observes again a previously seen object. On the other hand, estimating the move-
ment performed by a mobile robot using the observations gathered between two
consecutive poses is considered to give a local rectification. This topic is usually
referred to as egomotion [29]. The methods related to this research are called
pose registration, and can be used within SLAM. Our main goal is to perform
six degrees-of-freedom (6DoF) SLAM in a semi-structured environment, i.e. a
man-made indoor environment [14].

The disadvantages of stereo cameras when used in low-textured environments
motivate the use of two new 3D sensors. First, we use an SR4000 infrared camera
[2], which measures the distance to objects using the time that the emitted infrared
light takes to hit the object and return to the sensor. The SR4000 provides a set
of 3D points, a 2D intensity image, and a map of certainty. Second, we use a
Kinect camera [3]. Such cameras (also called, generically, RGBD cameras), were

originally designed for entertainment, but have become widely popular due to



their notable accuracy and low price. Furthermore, it is relatively easy to use
them as a human interaction interface, as they easily detect human body gestures
[31]. From this camera, we obtain a 3D dataset along with a traditional 2D image.
In contrast to methods that obtain 3D shapes from sets of 2D images, such as [21],
[19], and [20], we utilize both the 3D data and 2D images obtained directly from
the SR4000 and Kinect sensors.

Obtaining the 6DoF transformation from the robot (egomotion) using only 3D
information is not an easy task. One of the first methods used to achieve this
was the Iterative Closest Points (ICP) algorithm [11], [7]. ICP is divided into two
main steps. First, the relationship between the two sets of input data is obtained
by searching for the closest points. This search gives a list of matched points. The
second step involves computing the transformation that best aligns the two sets
from the matches found in the previous step. This is used to transform the input
sets before the first step of the next iteration. The algorithm is iterated until some
convergence parameter is attained. Determining this transformation is equivalent
to finding the movement performed by the robot between the poses at which data
were captured. Some variants of the ICP algorithm have been proposed [5], [10],
[4] and [42]. Nevertheless, ICP methods do not work correctly in the presence of
outliers (features observed in one frame but not in the other) [35]. The larger the
robot movement, the greater the number of outliers.

In contrast, RANdom SAmple Consensus (RANSAC) [16] is an iterative method
for estimating the parameters of a mathematical model from a set of observed data
that contains outliers. RANSAC can be used to estimate the transformation that
best aligns two sets of matched features extracted from two consecutive poses.

In this paper, we propose the use of scale-invariant visual features (SIFT) [32]



from the 2D image, together with a 3D representation of the scene based on a
Growing Neural Gas (GNG) network [18], [33], [17]. By means of competitive
learning, GNG adapts the reference vectors of the neurons, as well as their inter-
connection network, to obtain a mapping that tries to preserve the topology of a
scene. In addition, GNG networks are capable of a continuous re-adaptation pro-
cess, even if new patterns are entered, with no need to restart the learning. Thus,
GNG provides a fast and high-quality representation of a 3D space, obtaining an
induced Delaunay triangulation of the input space that is very useful for deter-
mining features such as corners, edges, and so on. We modify the original GNG
method to enable its application to sequences: the GNG is adapted sequentially,
1.e. the result in a given frame is taken as the input for the next frame. Some 3D
reconstruction applications of neural networks can be found in [12], [36], [28],
[15], and [27]. However, none of these studies consider sequences of 3D data.

Once the GNG network has been obtained, the 2D visual features are hooked
to the closest element on the Delaunay mesh. Then, an egomotion method is used
to find the transformation between two consecutive frames. In this paper, we test
the two egomotion methods of ICP and RANSAC to establish which offers the
best results. We modify the original ICP method to incorporate visual features in
the matching process. Correspondences are found that allow us to compare the
descriptors of each feature. RANSAC may be more appropriate for this issue, as
it is less sensitive to outliers. We empirically compare both approaches in section
5.

The rest of the paper is organized as follows: first, section 2 describes the
cameras used in this paper; then, the GNG algorithm is explained in section 3.

In section 4, we detail the complete method for solving the SLAM problem; the



experiments discussed in section 5 demonstrate our results, and we present our

conclusions and ideas for future work in section 6.

2. SR4000 and Kinect

In recent years, stereo cameras have been replaced by those better able to
provide 3D data. Stereo cameras have a very important problem: the lack of
texture. In this situation, no 3D information is provided. Nowadays, two new

camera models are available. We briefly describe both.

Figure 1: Left: SwissRanger SR4000 Time-of-Flight camera. Right: Kinect camera.

The first kind, known as Time-of-Flight (ToF) cameras, were developed to
deliver range (distance) and amplitude maps using a modulated light source. Their
main advantage with respect to other 3D devices is the possibility to acquire data
at video frame rates, and to obtain 3D point clouds without scanning and from a
single point of view.

The basic principle of ToF cameras involves an amplitude-modulated infrared
light source and a sensor field that measures the intensity of the backscattered
infrared light. The infrared source is constantly emitting light that varies sinu-
soidally. Objects situated at different distances are reached by different parts of

the sinusoidal wave. The reflected light is then compared to the original wave,



allowing the phase shift to be calculated by measuring the intensity of the incom-
ing light (as the phase shift is proportional to the ToF of the light reflected by a
distant object). A detailed description of the ToF principle can be found in [23].
The device used in this work is the SwissRanger SR4000 ToF camera, pictured in
Figure 1.

In our tests, all the data were acquired directly from the camera, which delivers
XYZ point coordinates, amplitude data of the scene, and a confidence map of the
distance measurements. In particular, the confidence map is obtained using a com-
bination of distance and amplitude measurements and their temporal variations.
This map represents a measure of the probability that the distance measurement
of each pixel is correct, so it can be used to select regions containing high-quality
measurements or reject low-quality ones. The output data are arranged in 16-bit
arrays, of length 176 x 144 = 25344. By default, the amplitude data is converted
into a value that is independent of distance and position in the image array. The
amplitude data has a range of 0-Ox7FFF. In our experiments, the amplitude data
has low contrast, so we have used an equalization method.

The Kinect device has been a great advance in the field of robotics. It is com-
posed of two sensors: an IR (infrared) projector and IR CMOS camera, and an
RGB camera. IR sensors provide depth information—the IR projector sends out
a fixed pattern of light and dark speckles, and depth is calculated by triangula-
tion against a known pattern from the projector. The pattern is memorized at a
known depth, and then for each pixel, the correlation between the known pattern
and current pattern is calculated, providing the current depth at this pixel. The
RGB camera has a resolution of 640 x 480 (307200 pixels) and a working range

of between 1 and 8 metres. The advantage of this camera against the SR4000



is that RGB information is obtained, whereas the SR4000 provides information
in the infrared spectrum, which cannot return good results using current feature

detectors.

3. GNG Algorithm

Under the GNG algorithm [18], a growth process starts from a network of
minimal size, successively inserting new units using a particular type of vector
quantization [30]. To determine where the new units should be inserted, local
error measures are gathered during the adaptation process, and each new unit is
inserted near the unit with the highest accumulated error. At each adaptation
step, a connection between the winner and the second-nearest unit is created, as
dictated by the competitive Hebbian learning algorithm. This process continues
until an end condition is fulfilled, for example, the determination of the optimal
network topology or some time deadline. In addition, the learning parameters in
GNG networks are constant in time, in contrast to other methods where learning
is based on decaying parameters. In the rest of this section, we describe the GNG

algorithm and end condition used in this study. The network is specified as:

e A set NV of nodes (neurons). Each neuron ¢ € N has an associated reference
vector w, € R?. The reference vectors can be considered as positions in the

input space of their corresponding neurons.

e A set of edges (connections) between pairs of neurons. These connections
are not weighted, and their purpose is to define the topological structure.
An edge aging scheme is used to remove connections that become invalid

due to the motion of the neuron during the adaptation process.



The GNG learning algorithm mapping the network to the input manifold is as

follows:

1. Start with two neurons a and b at random positions w, and wy in R4,

2. Generate a random input pattern £ according to the data distribution P(¢)

of each input pattern.
3. Find the nearest neuron (winner neuron) s; and the second-nearest s,.
4. Increase the age of all the edges emanating from s;.

5. Add the squared distance between the input signal and the winner neuron to

a counter error for sy, such as:
Nerror(s)) = [Jws, —&||*. (1)

6. Move the winner neuron s; and its topological neighbors (neurons con-
nected to s;) towards £ by a learning step ¢, and ¢,, respectively, for the

total distance:

Awsl = 610(5 - w81) 2)
Aws, = €,(§ —ws,) 3)

for all direct neighbors n of s;.

7. If s; and sy are connected by an edge, set the age of this edge to 0. If the
edge does not exist, create it.

8. Remove edges older than a,,,,. If this results in isolated neurons (without
emanating edges), remove them as well.

9. For every )\ input patterns generated, insert a new neuron as follows:

e Determine the neuron ¢ with the maximum accumulated error.



e Insert a new neuron 7 between ¢ and its farthest neighbor f:
w, = 0.5(w, + wy). ()]

e Insert new edges connecting neuron r with neurons ¢ and f, removing

the old edge between ¢ and f.

10. Decrease the error variables of neurons ¢ and f by multiplying them by a
constant «. Initialize the error variable of r with the new value of the error
variable of ¢ and f.

11. Decrease all error variables by multiplying them by a constant .

12. If the stopping criterion is not yet achieved (in our case the stopping crite-

rion is the number of neurons), go to step 2.

Figure 2 shows a flowchart of the GNG learning algorithm. With regard to the
processing of image sequences, we have introduced several improvements to the
network to accelerate the representation and allow the architecture to work faster.

For the experiments, we used GNG parameters of N = 2000, A = 500, ¢,, =
0.1, €, = 0.001, a = 0.5, v = 0.95, and a4, = 250. Figure 3 shows the result
of applying this GNG algorithm to a 3D points set from a Kinect camera.

The GNG process takes almost 2 s to process the first pose, but then, thanks
to our adaptive method, less than 50 ms is required to process subsequent poses.
It has been shown [41] that applying GNG to 3D data reduces the error in 3D
data alignment processes. We use the GNG process when (Project number 44173)
from the camera is noisy. In fact, the SR4000 camera is much noisier than the

Kinect, and thus we apply the GNG process to data from the SR4000.
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Figure 2: GNG flowchart.

3.1. Representation of Point Cloud Sequences

The GNG algorithm has been adapted to represent point cloud sequences us-

ing models learnt from previous data acquisitions. We have introduced several
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Figure 3: Applying GNG to the Kinect dataset. Green lines are the GNG structure.

improvements to the network that accelerate the representation and allow the ar-
chitecture to work faster. The main difference when using the GNG algorithm
is the omission of insertion—deletion actions (steps 9 to 11) after the first frame.
Because no neurons are added or deleted, the system maintains correspondence
during the whole sequence, intrinsically solving the correspondence problem by
using neurons as fixed markers. At the initial moment ¢, the representation is ob-
tained by performing a complete adaptation of a GNG. However, for the following
frames, the previous network structure is employed. Hence, the new representa-
tion of the input space is obtained by iterating the internal loop of the learning al-
gorithm of the GNG, relocating the neurons, and creating or removing the edges.

This adaptive method can also handle real-time constraints, because the number

11



A of times that the internal loop is performed can be chosen according to the time
available between two successive frames, which depends on the acquisition rate.
A more detailed description of this method can be found in [41]. The average time
required to obtain a GNG network on a frame is less than 50 ms, using this adap-
tive method. GNG reduces the amount of input data, at the same time preserving
its structure. This gives us two advantages. First, we have to process fewer points,
so the next step of feature extraction is accelerated. Second, the number of out-
liers, which are one of the main sources of errors in this kind of application, is

reduced.

3.2. Time Consumption per Stage

After presenting the different stages of the algorithm, it is necessary to com-
pute the percentage of instructions executed at each step with respect to the total
number. To achieve this, we use a profiler so that, depending on the values of the
parameters with which we have adjusted the algorithm (number of neurons and
number of input patterns), we obtain the percentage of instructions executed at
each stage.

It can be seen that most of the execution time of the algorithm is consumed
in the search for winning neurons, at which stage the Euclidean distances are also
calculated.

Table 3.2 shows the percentage of instructions performed at each stage of the
algorithm for different values of the number of neurons /N and input patterns .
The table also shows how stage 3 increases its percentage with respect to the total
when N and A are increased.

An accelerated version of the GNG algorithm has been developed and tested

on a machine with an Intel Core i3 540 3.07 GHz processor. The multi-core
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Neurons Patterns Stage2 Stage3 Stage 4,5,6,7 Stage8 Stage9

1000 500 1.8  73.30 15 1.2 0.8
5000 500 0.7  88.80 5.8 0.9 1
10000 500 04  93.20 33 0.6 0.8
20000 500 0.3 97.60 1.9 0.5 0.9
1000 1000 1.8  69.60 21.3 0.6 0.3
5000 1000 0.7 90 5.6 0.5 0.5
10000 1000 0.4 94.3 3.2 0.3 0.4
20000 1000 0.3 96.5 1.9 0.2 0.4

Table 1: Percentage of instructions executed at each stage of the GNG algorithm illustrated in

figure 2

CPU implementation of the GNG algorithm was developed using Intel’s Thread-
ing Building Blocks (TBB) library [1], taking advantage of the multi-core pro-
cessor capabilities and avoiding the existing overhead [8]. The number of threads
used in the multi-core CPU implementation is the maximum defined in the speci-

fications of Intel’s i3 540 processor.

3.3. CPU vs GPU Implementation

In Figure 4, it can be appreciated that the CPU version is faster during the
first iterations, while the multi-core CPU implementation is slower because of the
existing overhead caused by the management of threads and the subdivision of the
problem. However, after a number of iterations, the performance of the multi-core
CPU stabilizes and improves the CPU results.

In our application, we used maps with 2000 neurons, but in the case of larger

maps, we should accelerate the process using a multi-core CPU or even multi-core
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GPUs.
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3.4. Rate of Adjustments per Second

We have also performed experiments that show how the multi-threaded CPU
implementation of the GNG algorithm is not only capable of learning faster than
a single-threaded CPU, but can also obtain more adjustments per second. For in-
stance, after learning a network of 20000 neurons, we can perform 8 adjustments
per second using the multi-core CPU, whereas the single-core CPU achieves only
2.8 adjustments. This number grows from 22 to more than 30 for a network of
5000 neurons (our application). This means that the multi-core CPU implementa-
tion can obtain a better topological representation under time constraints. Figure 5
shows the adjustment rate per second performed by both implementations. The
figure also shows that, when the number of neurons increases, the CPU imple-
mentation cannot attain a high rate of adjustments.

Adjustments per second GNG
120
100
% mCPU
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40 N Multi-core CPU

Adjustments per second

__

20
\

GNG 1000 N GNG 5000 N GNG 10000 GNG 20000 GNG 1000 N GNG 5000 N GNG 10000 GNG 20000
500 500A N 500 A N 500 A 1000 A 1000 A N 1000 A N 1000 A

Figure 5: Rate of adjustments performed by different GPU devices and CPU.



4. SLAM from Features

Once we are able to model 3D data, we obtain 2D features and place them in
3D, using the 3D information provided by the cameras. In the case of the SR4000,
we extract features from the amplitude of the infrared image, which is similar to
a grey-scale image but in the range of the infrared spectrum. For the Kinect, we
directly use the 2D image provided. In this work, we will use SIFT features [32].
Nevertheless, the method can be applied to any other 2D feature detector.

The SIFT method is widely used in computer vision systems to detect and
describe features in an image. It performs a local pixel appearance analysis at
different scales, and obtains a descriptor for each feature that can be used for
different tasks, such as object recognition. The SIFT features are designed to be
invariant to image scale and rotation. Currently, there are a number of feature
detectors and descriptors, like SURF [6], but it is beyond the scope of this work to
determine the most efficient. For a good study of different features, see [22] and
[39].

Once the features have been detected, they are hooked to the GNG or directly
to the corresponding 3D point. For the case of GNG, the 2D coordinates of a
SIFT feature are projected to 3D using the Kinect library. The SIFT feature is then
attached to the closest node (using the Euclidean distance between the 3D SIFT
coordinates and the 3D node coordinates) of the GNG structure. The SR4000
camera has the advantage of a confidence value, which can be used to remove
those features that cannot be trusted. This represents an improvement over stereo
systems and the Kinect camera, as it enhances accuracy by removing erroneous
points.

To calculate the robot egomotion, we need a method to find the 3D transfor-

16



mation between two consecutive poses. We present two different methods that
obtain the egomotion performed by the robot. Both are based on the matching in-
formation provided by the features. Feature descriptors are used to determine the
matches from two consecutive poses. We now briefly describe the two methods.

The first is based on the RANSAC algorithm [16]. It is an iterative method
that estimates the parameters of a mathematical model from a set of observed data
which contains outliers. In our case, we look for a 3D Euclidean transformation
(our model) that best explains the data (matches between 3D features). At each it-
eration of the algorithm, a subset of data elements (matches) is randomly selected.
These elements are considered as inliers, and are used to compute a model (3D
Euclidean transformation). All other data are then tested against the computed
model, and included as inliers if their error is below a threshold. If the estimated
model is reasonably good (i.e. its error is low enough and it has enough matches),
it is considered to be a good solution. This process is repeated a number of times,
before the best solution is returned.

The second method is based on the ICP algorithm [7], [37], [43]. ICP is used
to match two 3D point sets, but it cannot find a good alignment in the presence
of outliers. A survey on ICP-based methods can be found in [38]. ICP does not
give good results for long-time movements, because these produce a lot of out-
liers. Using features like SIFT, along with additional information, i.e. descriptors
which are robust to brightness and point-of-view changes, is sufficient for this
task. Hence, we use descriptors to find matches, instead of using the Euclidean
distance as in the original ICP. We have decided to select features close to the
camera, because greater distances result in greater 3D errors. Thus, only features

with a Z distance below a threshold are considered for matching between two con-
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secutive sets. The movement between two consecutive frames is examined so that
sets of features can be selected which intersect and have enough features to enable
matching. If the movement is limited to, for example, 1 meter, we select features
from 1 to 2 meters in the first frame, and from O to 1 in the second, and similarly
for the angles. If there are not enough matches, we expand the limits from 1 to 3
meters and from O to 2, and so on, to find the minimal number of matches or to

reach a long distance (8 or 10 meters, depending on the camera).

Figure 6: An example of the matching method. Left: initial. Black lines indicate correct
matches. The lines in red represent incorrect matches. Right: final registration. The grey
ellipses are from one pose, black from the other pose. Finally, the green ones are the black

ones following transformation.

In Figure 6, we show an example of initial and final matching. On the left, the
initial matching (lines) between features is shown in both frames (here, a frame
has 3D points). On the right, the final pose is shown, once the 3D transformation
has been determined and applied. On the left-hand side of Figure 7, two consecu-

tive datasets are shown in the same coordinate frame. The right-hand side shows
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Figure 7: An example of matching two consecutive poses. Left: before registration. Right:

after registration.

the two frames after registration.

We apply one of the proposed methods to a sequence of robot poses. Thus, we
have an estimation of the egomotion performed by the robot, without the use of
odometry information. As the results will contain some errors, we apply a SLAM
algorithm designed for 3D mapping using a graph representation, the Toro method
[24], which adjusts to our results. This method uses a tree structure to define and
efficiently update local regions in each iteration by applying a variant of stochastic

gradient descent.

5. Results

We have used two indoor sequences to test the reliability of our method. We
have selected indoor sequences because solar light has a negative influence on
both the SR4000 and the Kinect. Besides, the cameras’ range is limited to 810
meters. Both sequences were obtained by rotating the camera over its center, until
a complete turn had been performed. The method can be applied to non-circular

sequences (translational sequences), but a circular sequence ensures that the loop
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closure is detected. Furthermore, in egomotion, rotation is the main source of
error. The first sequence was taken by the SR4000 camera, and the second by
the Kinect. The methods described in the preceding section were applied to both,
but first, we applied the classical ICP [7] to the sequences in order to compare our
results with a state-of-the-art method. As can be seen in Figure 8, the results given
by the ICP method were not good. The ICP method was unable to determine a
registration that was close to the actual one. We have tried to apply the TORO
method to the ICP result, but TORO was also unable to minimize the error.

We then applied RANSAC and the ICP-like method explained in the previ-
ous section. Figures 9 to 12 show the reconstruction obtained after applying both
methods. The red points in the middle of the images indicate the egomotion per-

formed between poses. Note that after applying SLAM, the results are improved.

Figure 8: Result of mapping using the classical ICP method for both cameras. Left:
SR4000. Right: Kinect.
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Figure 9: Result of mapping using the RANSAC method and the Kinect camera. Left:
before applying Toro. Right: after Toro has been applied.

Figure 10: Result of mapping using the ICP-like method and the Kinect camera. Left:

before applying Toro. Right: after Toro has been applied.
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Figure 11: Result of mapping using the RANSAC method and the SR4000 camera. Left:
before applying Toro. Right: after Toro has been applied. In this case, the SLAM result
is worse than the others, as the bottom-right part of the environment has an error (it is a

straight wall).

The RANSAC method takes an average of 45 ms, while the ICP-like one takes
30 ms with the Kinect camera. With the SR4000, both algorithms take an average
of 10 ms. This is because the SR4000 camera has lower resolution, and the SIFT
algorithm provides fewer features. For the same reason, the SIFT algorithm takes
less time to process SR4000 images. For SR4000 images, SIFT is calculated in
less than 100 ms, whereas for the Kinect camera, it takes more than 1.4 s. This is
a huge processing time difference. Thus, the GNG algorithm can be applied to the
SR4000 to reduce the associated noise (which is greater than that of the Kinect).

In Figure 13, we show the results of a study on the translational and angular
error of both cameras and algorithms. We have calculated these errors for different

angles, from 8 — —48° at intervals of 8°. The top image shows the translational
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Figure 12: Result of mapping using the ICP-like method and the SR4000 camera. Left:

before applying Toro. Right: after Toro has been applied.

error. This is below 3 cm until an angle of 40°. The SR4000 camera is not able
to find enough correspondences from this angle, so it is impossible to obtain its
error. This is due to the higher number of features detected by the Kinect camera,
as well as its wider field of view. The angular error (bottom image) is less than
0.5°. For the reason mentioned above, the SR4000 camera is not able to find
sufficient correspondences. The Kinect camera with the RANSAC algorithm has
the lowest error, both translational and angular, even for 48° of rotation.

As a qualitative observation, we can conclude that both cameras give similar
results. The SR4000 camera with the RANSAC method has an error, after SLAM,
which is bigger than that given by the other combinations, as can be seen in Fig-
ure 11. This comes from the fact that, in two consecutive frames of that sequence,
the registration error was too high to be minimized by the TORO method. If the

error between two consecutive frames is high enough, SLAM techniques may be
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Figure 13: Translational (top) and angular (bottom) errors of both cameras and algorithms.

unable to find the correct solution. SLAM techniques minimize (propagating) the
error of individual registrations. In the RANSAC solution, the registration in one

frame had a very high error, and this was the source of error in the TORO method.
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6. Conclusions and Future Work

In this paper, we have presented a study of two 3D cameras, and compared
them using two new and complete SLAM methods. We also presented a new
method for error reduction, based on GNG, which can be applied when the subja-
cent camera error is high. Both cameras provide 3D information together with 2D
images. We combined this information, extracting 2D SIFT features and attaching
them in 3D, both with the GNG information and directly using the 3D data pro-
vided by the camera. GNG enables a reduction of the input data, while preserving
its structure. This gives us two advantages. First, we have to process fewer points,
speeding up the next step of feature extraction. Second, the number of outliers is
reduced. Outliers are one of the main sources of error in this kind of application.

With these features, we have presented two egomotion methods, one based on
RANSAC and the other on ICP. We compared both cameras in a real scenario,
calculating the egomotion of a sequence of movements performed by the robot.
The results show the validity of both cameras as a SLAM tool. We measured the
errors produced at different angular transformations. In these experiments, the
best camera was the Kinect, and the best algorithm was RANSAC.

Unlike the classical ICP method, our methods were able to find correct solu-
tions. In fact, ICP was unable to find even a close solution, so the TORO method
was also unable to find the correct solution. Our methods not only found solutions,
but also provided combinations which can be speeded up. GNG allows 3D error
minimization, and also provides an easy parallelization, presenting a significant
advantage over other methods.

In future work, we plan to extract and test other visual features (SURF, MSER,

etc.) to determine which are optimal for each camera. We also plan to accelerate
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the calculation time for the GNG algorithm, using GPU or other methods.
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