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ABSTRACT: A simple and robust protocol is detailed for the preparation of 

enantioenriched α-substituted(1,4-pentadien-3-yl)amine derivatives. The methodology 

involves the addition of an in-situ formed pentadienyl indium reagent to chiral tert-

butylsulfinimines, previously formed in the same pot. The addition takes place with 

excellent -regio and diastereoselectivity for a wide range of carbonyl compounds, 

including -unsubstituted aldehydes and methyl alkyl ketones. The catalytic 

hydrogenation of the sulfinamines obtained provides a convenient access to chiral α-

substituted (3-pentyl)amines. The hydroboration-oxidation of the -(1,4-pentadien-3-

yl)amine derivatives, followed by a cyclization under Mitsunobu conditions, takes place 

with an excellent diastereoselectivity governed by the chiral sulfinyl group.  
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INTRODUCTION 

Pentadienylmetals can suffer from metallotropic 1,3-or 1,5-rearrangements and upon 

reaction with electrophiles can give rise to three possible regioisomers: the α-,  γ- and ε- 

adducts. The addition to aldehydes or ketones of pentadienyl reagents of Mg,
1
 Be,

2
 Zn,

3
 

Sn,
4
, Si,

5
 and B

6
 has been examined under different conditions. The regioselectivity 

differs from one case to another but the γ-adduct is the main product in most cases. 

Many of the protocols examined are limited by the use of hazardous or moisture 

sensitive reagents, which complicates their manipulation or makes these procedures 

poorly reliable. Importantly, the alcohols obtained in the -pentadienylation of carbonyl 

compounds have proven to be valuable building blocks in the synthesis of more 

complex molecules.
7
 

The pentadienylation of imines, using tributylpentadienyltin and Lewis acids (i. e. 

InCl3) as additives was studied by the group of Nishigaichi.
8
 In their work, the authors 

found that N-phenyl imines afford the ε-adduct as the only regioisomer, presumably by 

Lewis acid activation of the imine and nucleophilic attack of the pentadienyltin species 

through an acyclic transition state. Remarkably, with less basic N-tosyl imines, the only 

regioisomer isolated was the corresponding -adduct. The formation of this compound 

was explained by considering that after transmetallation, the resulting 

pentadienylindium intermediate coordinates to the iminic nitrogen and reacts through a 

cyclic transition state (Scheme 1). 

Scheme 1. Addition of Tributylpentadienyltin Reagent to Imines Catalyzed by 

InCl3. 



 

 

The indium-mediated Barbier-type reaction is a superior protocol to the above 

mentioned procedures due to its experimental simplicity and because toxic reagents are 

avoided.
9
 In this context Araki and co-workers examined the addition of 2,4-pentadienyl 

indium derivatives, under Barbier conditions, observing the exclusive formation of γ-

adducts in the addition to carbonyl compounds.
10

 Soon after, the group of Fallis 

observed that in-situ formed 2,4-pentadienyl indium reacts smoothly with a range of 

carbonyl compounds, including α,β-unsaturated aldehydes and ketones, in DMF or 

aqueous media also with excellent γ-selectivity.
11

  

The development of new practical methodologies for the -regioselective addition of 

pentadienyl metal reagents to imines is driven by the potential of the corresponding 

adducts in the construction of more complex molecules. An elegant example was 

recently illustrated by the group of Martin during the synthesis of racemic 

Pseudotabersonine.
12

 This natural product was prepared from the adduct obtained by 

addition of a pentadienyl aluminium reagent to the corresponding aromatic imine 

(Scheme 2). Importantly, the same scaffold is present in other Aspidosperma alkaloids 

such as Aspidospermidine and Pandoline. 

Scheme 2. Pentadienylation of Imines in the Construction of Natural Product 

Scaffolds.  



 

 

At the outset of this work, we were not aware of any stereocontrolled addition of 

pentadienyl indium reagent to imine derivatives.
13

 In this context we decided to expand 

the scope of our indium-mediated aminoallylation of aldehydes
14

 with chiral tert-

butylsulfinamide
15

 by using a pentadienyl indium reagent, generated in situ. This 

approach would allow the regio- and stereoselective formation of chiral α-substituted 

(1,4-pentadien-3-yl)amines, which could act as building blocks for other interesting 

target molecules. 

 

RESULTS AND DISCUSSION 

The one-pot protocol developed in our research group for the α-aminoallylation of 

aldehydes was implemented to prepare several enantioenriched α-substituted-(1,4-

pentadien-3-yl)amines. In this case, the required pentadienyl bromide was prepared by 

reaction of commercially available penta-1,4-dien-3-ol with PBr3 in diethyl ether at 0 ºC 

for 1 h. Our methodology involves the formation of the corresponding imine by 

condensation of an aldehyde with enantiopure N-tert-butylsulfinamide in the presence 

of Ti(OEt)4 and indium powder at room temperature. After 1 h, the prepared 

pentadienyl bromide was added to the reaction mixture and the temperature was 

increased to 60 C. Under these conditions, a range of aldehydes was examined (Table 

1). 



Benzaldehyde afforded the corresponding -adduct 4a in only 14% yield as an 

inseparable mixture of 9:1 diastereoisomers.
16

 Better yields and good 

diastereoselectivities were achieved with more electron-deficient aromatic substrates 

like 3-, or 4-chlorobenzaldehyde (2b, 2c), although the bulkier 2-chlorobenzaldehyde 

afforded product 4d in poorer yield. The α-branched cyclohexanecarbaldehyde gave a 

74:26 mixture of γ/α adducts. The major γ-regioisomer 4e was isolated in good yield 

after column chromatography. Importantly, the configuration at the newly formed 

stereogenic center in 4e was confirmed to be (R) by X-ray crystal diffraction analysis 

(see supporting information), which fits with our working model that predicts addition 

of the allylic reagent onto the si-face of the (RS)-sulfinimine (Table 1). We were pleased 

to observe that -unsubstituted aldehydes (2f-2l), which are more challenging substrates 

with other allylic organometallic species due to their easy enolization, reacted well with 

this protocol. Notably, the presence of halogen atoms was tolerated in the substrates 

(2b-2d, 2g) and only γ-adducts were isolated in good yields and with excellent 

diasteroselectivity. The 1,2-addition product (4j) was isolated exclusively when 

cinnamaldehyde was examined. Furthermore when (S)-citronellal was examined with 

either enantiomer of the N-tert-butylsulfinamide, products 4k and 4l were both obtained 

in very good yields and diastereoselectivities. The configuration at the newly 

stereogenic center formed was controlled by the chiral sulfur atom without remarkable 

matched or mismatched effect. 

Table 1. Aminopentadienylation of Aldehydes  



 

Isolated yields and diastereomeric ratios (
1
H-NMR spectroscopy) 

after column chromatography are shown. 
a
The crude reaction 

mixture showed a 74:26 mixture of γ- and α-adducts. 
b
ent-4h and 

ent-4i were also synthesized using ent-1 
c
 Signals corresponding 

to diastereoisomers are not observed in the 
13

C NMR spectra. 
d
In 

this case, ent-1 was used. 

 

Encouraged by the good results reported for the indium-mediated allylation of tert-

butylsulfinyl ketimines,
17

 we decided to apply our pentadienylation methodology to 

ketones (Scheme 3). In this case the formation of the corresponding ketimines required 



an increase of the temperature to 60 °C and reaction time to 8 h, whereupon 5-bromo-

1,3-pentadiene was added. That the indium powder was still active after the imine 

formation, confirms the stability of the metal in the presence of moisture and/or ethanol 

at 60 ºC. Aliphatic methyl ketones examined under these conditions (5a-5c), afforded γ-

adducts exclusively (6a-6c) in good yields and with excellent diastereoselectivities.
18

  

Scheme 3. Aminopentadienylation of Methyl Alkyl Ketones 

 

Isolated yields and diastereomeric ratios (determined 

by 
1
H-NMR spectroscopy) after column 

chromatography are shown. 

 

In order to evaluate the efficiency of this one-pot protocol we isolated the tert-

butylsulfinyl imine of 2-heptanone (72%) and submitted this to indium-mediated 

pentadienylation in THF. Under these conditions compound 6b was isolated in only 

44% yield (32% over two steps), being recovered 2-heptanone as the major side-product 

from a competitive hydrolytic process. We thus reasoned that the presence of Ti(OEt)4 



improved the conversion of the intermediate imine by minimizing its hydrolysis. 

Moreover, the presence of Ti(IV) could also accelerate the pentadienylation process 

versus hydrolysis.  In Scheme 3 we proposed a hypothetical more stable [4.4.0]-bicyclic 

transition state where the indium metal is coordinated to an alkoxy ligand acting as a 

bridge with a titanium center bonded to the oxygen atom of the sulfinyl group. The 

combination of In(III) and Ti(IV) in the same transition state might account for a more 

efficient Lewis acid activation. Importantly, we have found the same degree and sense 

of diastereoselection for the one-pot methodology and the two steps procedure. More 

importantly, while the intermediate imine was isolated as an 83:17 mixture of E/Z 

isomers, compound 6b was obtained as a single isomer. Consequently, we reasoned that 

a dynamic kinetic resolution takes place where the E/Z imines can rapidly interconvert 

in the presence of Lewis acids.
19

 The major diastereoisomer is formed from the addition 

of the pentadienyl indium reagent onto the si-face of the (RS, E)-imine, as previously 

observed in the two-steps protocol.
20,

 
21

  

At this point we decided to explore some synthetic applications of the obtained 

enantioenriched pentadienyl amines. Hydrogenation of both double bonds was 

accomplished for substrates 4f and 6a using PtO2 as a catalyst. The sulfinyl group 

remained intact under these reaction conditions thereby avoiding the deprotection of the 

amine functionality.
22

 The corresponding amines 7 and 8 were obtained in excellent 

yields without any detectable epimerization (Scheme 4). To the best of our knowledge, 

chiral amines α-substituted with a 3-pentyl moiety have not been reported so far. It is 

worth noting that a direct addition of 3-pentyl organometallic reagents to imines would 

be sterically disfavored and reduction or other processes related to single electron 

transfers are more reasonable in these cases (i.e. pinacol like coupling reactions). 

Scheme 4. Catalytic Hydrogenation of Pentadienyl Amines 4f and 6a 



 

 

Given the occurrence of pyrrolidines in natural and synthetic bioactive compounds we 

consider of interest to develop a new entry to stereodefined 2,2,3-trisubstituted 

pyrrolidines. With this in mind we submitted α-substituted pentadienyl amines 6b and 

6c to a hydroboration/oxidation sequence using an excess of 9-

borabicyclo[3.3.1]nonane (9-BBN). The corresponding diols (9b and 9c, Scheme 5) 

were obtained in good yields and submitted to Mitsunobu reaction conditions to explore 

the differentiation of the diastereotopic hydroxyethyl groups upon cyclization.
23

 We 

were pleased to observe that the corresponding pyrrolidines (10b and 10c) were 

obtained with excellent diastereoselectivities, and isolated in very good yields as single 

isomers after column chromatography.
24

 To elucidate the configuration of the new 

stereocenter, compound 10c was transformed by conventional methods into the more 

rigid benzoyl derivative 11. After the assignment of all signals of the 
1
H-NMR spectra 

of compound 11 (COSY and HSQC experiments were used), relevant NOEs were 

identified that clearly indicated a trans-relationship between the methine proton and the 

methyl group. For a better understanding of this diastereoselective cyclization we 

removed the chirality of the sulfinyl group by oxidation with m-CPBA and submitted 

the obtained sulfonamide 12 to the same Mitsunobu reaction conditions. This reaction 

afforded a 1:1 diastereomeric mixture of pyrrolidines 13/14, accompanied by a 

tetrahydropyran byproduct 15 (see experimental section). Oxidation of pyrrolidine 10b 

took place smoothly to afford pyrrolidine 13 as a single isomer. This experiment 



demonstrates that the chirality of the sulfinyl group is essential for achieving a good 

diastereoselection in this Mitsunobu cyclization. 

Scheme 5. Preparation of trans-(2,2,3)-Trisubstituted Pyrrolidines Fully 

Stereocontrolled by the Chiral tert-Butylsulfinyl Group. 

 

 

This excellent diastereoselectivity is noteworthy since both alkyl groups attached to the 

quaternary center exhibit similar steric bulkiness. Accordingly, we reasoned that this 

unexpected high diastereoselection should be supported on kinetic grounds. To account 

for the key role of the chiral sulfinyl group in the diastereoselection, we postulate two 

possible transition states where the oxygen of the sulfinyl group is hydrogen-bonded to 

the remained hydroxyethyl group. The pyrrolidine ring formation takes place from the 

transition state that avoids non-bonding interactions of the tert-butyl group with the 

substituents attached to C-2 (Scheme 6). 

Scheme 6. Plausible Explanation for the Diastereoselective Mitsunobu Cyclization 



 

 

CONCLUSION 

The aminopentadienylation of carbonyl compounds with chiral tert-butylsulfinamide 

and in situ-formed pentadienylindium reagent provides a convenient access to chiral α-

substituted amines with a 1,4-pentadien-3-yl unit from ready available starting 

materials. The protocol made use of In(0) and Ti(OEt)4, which are non-toxic and do not 

require a careful exclusion of moisture and/or air. This methodology accommodates 

electron-poor aromatic aldehydes, , -unsaturated aldehydes, -branched aliphatic 

aldehydes and is particularly efficient -in terms of yields and diastereoselectivities- with 

-unsubstituted aldehydes and methylalkyl ketones. Catalytic hydrogenation of some of 

the pentadienyl amines obtained allowed the formation of enantioenriched -tertiary or 

quaternary-(3-pentyl)-amines, which are otherwise difficult to prepare. Moreover, the 

hydroboration-oxidation of selected examples of pentadienyl amines followed by a 

cyclization of the obtained amino diol under Mitsunobu reaction conditions, furnished 

the corresponding trans-2,2,3-trisubstituted pyrrolidines with excellent 

diastereoselectivity. It was demonstrated that the chirality of the sulfinyl group was 

essential for this high diastereoselection. 

 



 

EXPERIMENTAL SECTION 

General Remarks. (Rs)-N-tert-Butylsulfinyl amine 1 and its enantiomer (ent-1) were a 

gift of Medalchemy (> 99% ee by chiral HPLC on a Chiracel AS column, n-Hexane/i-

PrOH 90:10, 1 mL/min, =222 nm). TLCs were performed on silica gel 60 F254, using 

aluminum plates and visualized with phosphomolybdic acid (PMA) or ninhydrin stain. 

Flash chromatography was carried out on handpacked columns of silica gel 60 (230- 

400 mesh). Melting points are uncorrected. Optical rotations were measured using a 

polarimeter with a thermally jacketted 5 cm cell at approximately 20 ºC and 

concentrations (c) are given in g/100 mL. Infrared analyses were performed with a 

spectrophotometer equipped with an ATR component; wavenumbers are given in cm
-1

. 

GC analyses were obtained with an HP-5 column (30 m × 0.25 mm, i.d. × 0.25 μm) and 

an EI (70 EV) detector; the temperature program was as follows: hold at 60 °C for 3 

min, ramp from 60 to 270 °C at 15 °C/min, hold at 270 °C for 10 min. Mass spectra (EI) 

were obtained at 70 EV; and fragment ions in m/z with relative intensities (%) in 

parentheses. HRMS analyses were also carried out in the electron impact mode (EI) at 

70 eV using a quadrupole mass analyzer or in the electrospray ionization mode (ESI) 

using a TOF analyzer. 
1
H NMR spectra were recorded at 300 or 400 MHz, using CDCl3 

or CD3CN as the solvent and TMS as an internal Standard (0.00 ppm); the data is 

reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad 

signal, coupling constant(s) in Hz, integration). 
13

C NMR spectra were recorded with 

1
H-decoupling at 101 MHz using the solvent signal as reference (77.16 ppm for CDCl3). 

DEPT-135 experiments were performed to assign CH, CH2 and CH3. 



2,4-pentadienyl bromide (3).
25

 To a stirring solution of PBr3 (190 µL, 2 mmol) in dry 

Et2O (2.5 mL) under an Ar atmosphere, was added 1,4-pentadien-3-ol (485 µL, 5 mmol) 

dropwise over ca. 2 min at 0 ºC. The resulting solution was stirred at 0 ºC until the 

starting material disappeared (followed by GC, starting alcohol: tR = 2.2 min, product: 

tR = 4.0 min). The reaction was carefully quenched by the addition of brine (1 mL). The 

layers were separated and the organics were washed sequentially with a saturated 

solution of NaHCO3 (x3), brine, dried over MgSO4 and filtered. The volatiles were 

carefully removed at 40 ºC under atmospheric pressure. The product was obtained as a 

colorless oil (447 mg, 60%, 97wt% in Et2O): 
1
H NMR (300 MHz, CDCl3) δ 6.46 – 6.22 

(m, 2H), 5.90 (dt, J = 13.0, 7.8 Hz, 1H), 5.28 (d, J = 14.9 Hz, 1H), 5.17 (d, J = 10.2 Hz, 

1H), 4.03 (d, J = 7.6 Hz, 2H). 

General procedure for the synthesis of sulfinamides 4. To a dry flask was added (RS)-

N-tert-butylsulfinamide (1, 61 mg, 0.5 mmol) followed by indium powder (71 mg, 0.63 

mmol). The reaction vessel was evacuated and put under an Ar atmosphere. Then a 

solution of the corresponding aldehyde (0.55 mmol) in dry THF (1 mL) and Ti(OEt)4 

(225 µL, 1 mmol) were added successively and the reaction mixture was stirred under 

an Ar for 1 h at 23 ºC. After this time, 2,4-pentadienyl bromide (110 mg, 0.75 mmol) 

was added to the mixture and it was heated to 60 ºC for 3 h. The mixture was allowed to 

reach room temperature and was carefully added over a stirring mixture of 4:1 

EtOAc/brine (50 mL). The resulting white suspension was filtered through a short pad 

of Celite, washed with EtOAc and the organics were concentrated under reduced 

pressure. The resulting suspension was diluted in 4:1 EtOAc/hexane (50 mL), filtered 

again through Celite and the organics were concentrated under reduced pressure. 

(RS,S)-N-tert-Butylsulfinyl-1-phenyl-2-vinylbut-3-en-1-amine (4a). The crude 

product was prepared from PhCHO following the general procedure and purified by 



column chromatography (7:3 hexane/EtOAc). The expected product was obtained as a 

yellow oil (19 mg, 14%, 90:10 dr according to 
1
H NMR): [α]D

20
 – 121.5 (c 1.3, CHCl3); 

Rf 0.12 (8:2 hexane/EtOAc); IR  3280, 3079, 2958, 1634, 1455, 1056, 917 cm
-1

; for 

the major diastereoisomer: 
1
H NMR (300 MHz, CDCl3) δ 7.38 – 7.28 (m, 5H), 5.81 

(ddd, J = 17.0, 10.2, 9.0 Hz, 1H), 5.57 (ddd, J = 17.3, 10.5, 7.1 Hz, 1H), 5.33 – 5.20 (m, 

2H), 5.03 – 4.88 (m, 2H), 4.28 (dd, J = 8.7, 1.5 Hz, 1H), 3.92 (br s, 1H), 3.07 (dd, J = 

16.2, 8.4 Hz, 1H), 1.18 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 139.7 (C), 137.7 (CH), 

136.4 (CH), 128.9 (CH), 128.3 (CH), 127.9 (CH), 119.0 (CH2), 117.5 (CH2), 60.2 (CH), 

56.0 (CH), 55.8 (C), 22.8 (CH3); CG tR = 14.6 min.; LRMS (EI) m/z (%) 154 (13), 153 

(100), 137 (7), 136 (25), 129 (8), 105 (21), 104 (25), 77 (11); HRMS (EI) calcd for 

C16H23NOS – C4H8 221.0874, found 221.0888. 

(RS,1S)-N-tert-Butylsulfinyl-1-(4-chlorophenyl)-2-vinylbut-3-en-1-amine (4b).  It 

was prepared from p-Chlorobenzaldehyde following the general procedure and purified 

by column chromatography (7:3 hexane/EtOAc). The expected product was obtained as 

a yellow oil (102 mg, 66%, single diastereoisomer according to 
1
H NMR): [α]D

20
 - 

150.7 (c 0.69, CHCl3); Rf 0.20 (7:3 hexane/EtOAc); IR  3277, 3080, 2979, 2959, 1737, 

1635, 1597, 1490, 1062, 1013, 919, 828 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.33 – 

7.27 (m, 2H), 7.24 – 7.18 (m, 2H), 5.78 (ddd, J = 17.0, 10.2, 9.0 Hz, 1H), 5.54 (ddd, J = 

17.4, 10.4, 7.2 Hz, 1H), 5.30 (dd, J = 10.3, 1.6 Hz, 1H), 5.24 (ddd, J = 17.1, 1.6, 0.7 Hz, 

1H), 5.00 (dt, J = 10.4, 1.3 Hz, 1H), 4.93 (dt, J = 17.2, 1.3 Hz, 1H), 4.26 (dd, J = 8.6, 

1.3 Hz, 1H), 3.91 (s, 1H), 3.02 (dd, J = 16.4, 8.6 Hz, 1H), 1.17 (s, 9H); 
13

C NMR (101 

MHz, CDCl3) δ 138.3 (C), 137.4 (CH), 136.1 (CH), 133.7 (C), 130.2 (CH), 128.6 (CH), 

119.3 (CH2), 117.9 (CH2), 59.5 (CH), 56.1 (CH), 55.9 (C), 22.7 (CH3); CG tR = 16.0 

min.; LRMS (EI) m/z (%) 189 (33), 187 (100), 170 (5), 157 (3), 142 (5), 141 (14), 140 



(10), 139 (33), 138 (21), 128 (4), 67 (5); HRMS (ESI) calcd for C16H23NOSCl (M+H) 

312.1189, found 312.1185. 

(RS,1S)-N-tert-Butylsulfinyl-1-(3-chlorophenyl)-2-vinylbut-3-en-1-amine (4c). It was 

prepared from m-Chlorobenzaldehyde following the general procedure and purified by 

column chromatography (7:3 hexane/EtOAc). The expected product was obtained as a 

colorless oil (129 mg, 83%, 90:10 dr according to 
1
H NMR): [α]D

20
 – 105.8 (c 0.72, 

CHCl3); Rf 0.30 (7:3 Hexane/EtOAc); IR  3276, 3217, 2978, 2960, 1634, 1597, 1574, 

1474, 1316, 1056, 920, 752 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.29 – 7.27 (m, 1H), 

7.27 – 7.24 (m, 2H), 7.19 – 7.14 (m, 1H), 5.78 (ddd, J = 17.1, 10.2, 9.0 Hz, 1H), 5.56 

(ddd, J = 17.4, 10.4, 7.2 Hz, 1H), 5.30 (dd, J = 10.2, 1.4 Hz, 1H), 5.25 (dd, J = 17.1, 0.7 

Hz, 1H), 5.04 – 4.99 (m, 1H), 4.95 (dt, J = 17.2, 1.3 Hz, 1H), 4.26 (dd, J = 8.6, 1.2 Hz, 

1H), 3.91 (s, 1H), 3.03 (q, J = 8.4 Hz, 1H), 1.19 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 

142.0 (C), 137.3 (CH), 136.0 (CH), 134.3 (C), 129.5 (CH), 128.7 (CH), 128.1 (CH), 

127.2 (CH), 119.4 (CH2), 118.0 (CH2), 59.7 (CH), 56.0 (CH), 55.9 (C), 22.7 (CH3); CG 

tR = 15.8 min.; LRMS (EI) m/z (%) 189 (38), 188 (10), 187 (100), 170 (12), 157 (4), 142 

(6), 141 (13), 140 (10), 139 (28), 138 (20), 128 (5), 67 (5); HRMS (ESI) calcd for 

C16H23NOSCl 312.1189, found 312.1186. 

(RS,1S)-N-tert-Butylsulfinyl-1-(2-chlorophenyl)-2-vinylbut-3-en-1-amine (4d). It 

was prepared from o-Chlorobenzaldehyde following the general procedure and purified 

by column chromatography (7:3 hexane/EtOAc). The expected product was obtained as 

a colorless oil (33 mg, 21%, single diastereoisomer according to
 1

H NMR): [α]D
20

 – 

113.8 (c 0.60, CHCl3); Rf 0.29 (7:3 hexane/EtOAc); IR  3281, 3079, 2978, 2959, 1634, 

1573, 1473, 1363, 1062, 919, 730 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.38 – 7.32 (m, 

2H), 7.25 (td, J = 7.5, 1.5 Hz, 1H), 7.22 – 7.17 (m, 1H), 5.84 (ddd, J = 17.1, 10.2, 8.7 

Hz, 1H), 5.74 (ddd, J = 17.4, 10.4, 7.3 Hz, 1H), 5.28 (dd, J = 10.2, 1.4 Hz, 1H), 5.21 (d, 



J = 17.1 Hz, 1H), 5.02 (d, J = 10.4 Hz, 1H), 4.97 (dt, J = 17.1, 1.4 Hz, 1H), 4.94 (s, 1H), 

3.86 (s, 1H), 3.18 (dd, J = 15.1, 7.4 Hz, 1H), 1.17 (s, 9H); 
13

C NMR (101 MHz, CDCl3) 

δ 137.8 (C), 136.9 (CH), 136.1 (CH), 134.4 (C), 129.8 (CH), 129.7 (CH), 128.7 (CH), 

126.7 (CH), 119.3 (CH2), 117.7 (CH2), 56.1 (CH), 55.9 (C), 55.1 (CH), 22.7 (CH3); CG 

tR = 15.5 min.; LRMS (EI) m/z (%) 189 (30), 187 (100), 170 (7), 142 (6), 141 (13), 140 

(10), 139 (30), 138 (21), 128 (6), 67 (5); HRMS (ESI) calcd for C16H23NOSCl 

312.1189, found 312.1187. 

(RS,1R)-N-tert-Butylsulfinyl-1-cyclohexyl-2-vinylbut-3-en-1-amine (4e). The crude 

product prepared from cyclohexanecarbaldehyde was obtained as a mixture of - and - 

allylic products (26:74 according 
1
H NMR) following the general procedure. The 

desired - product was purified by column chromatography (9:1 hexane/ EtOAc) giving 

a colorless wax (78 mg, 55%, single diastereoisomer according to
 1

H NMR): [α]D
20

 – 

72.8 (c 0.73, CHCl3); Rf 0.20 (8:2 hexane/EtOAc); IR  3292, 3232, 3075, 2978, 2924, 

2852, 1638, 1449, 1363, 1059, 995, 912, 752 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.94 

– 5.81 (m, 2H), 5.21 – 5.07 (m, 4H), 3.32 (d, J = 5.3 Hz, 1H), 3.15 – 3.05 (m, 2H), 1.79 

– 1.48 (m, 6H), 1.23 (s, 9H), 1.21 – 0.97 (m, 5H). 
13

C NMR (101 MHz, CDCl3) δ 138.6 

(CH), 138.1 (CH), 117.4 (CH2), 117.3 (CH2), 62.7 (CH), 56.5 (C), 52.0 (CH), 40.7 

(CH), 31.5 (CH2), 27.8 (CH2), 26.7 (CH2), 26.6 (CH2), 26.3 (CH2), 23.1 (CH3); CG tR = 

14.7 min.; LRMS (EI) m/z (%) 227 (7), 160 (24), 159 (100), 144 (59), 96 (31), 95 (53), 

94 (11), 81 (32), 79 (11), 77 (28), 68 (13), 67 (22), 55 (18); HRMS (EI) calcd for 

C16H29NOS – C4H8 227.1344, found 227.1339. 

(RS,4R)-N-tert-Butylsulfinyl-3-vinyltridec-1-en-4-amine (4f). The crude product (93:7 

dr according 
1
H NMR) prepared from decanal following the general procedure was 

purified by column chromatography (9:1 hexane/EtOAc). The expected product was 

obtained as a yellow oil (150 mg, 90%, 98:2 dr according to 
1
H NMR): [α]D

20
 – 50.3 (c 



1.01, CHCl3); Rf 0.23 (8:2 hexane/EtOAc); IR  3290, 3209, 3077, 2954, 2924, 2854, 

1635, 1466, 1362, 1065, 999, 914, 721 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.86 – 5.80 

(m, 1H), 5.80 – 5.74 (m, 1H), 5.27 – 5.07 (m, 4H), 3.42 (d, J = 7.0 Hz, 1H), 3.32 – 3.23 

(m, 1H), 3.16 (dd, J = 13.5, 7.3 Hz, 1H), 1.56 – 1.50 (m, 1H), 1.32 – 1.23 (m, 15H), 

1.21 (s, 9H), 0.88 (t, J = 6.9 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 137.8 (CH), 136.4 

(CH), 119.1 (CH2), 117.2 (CH2), 58.8 (CH), 56.2 (C), 53.3 (CH), 32.0 (CH2), 31.5 

(CH2), 29.7 (CH2), 29.7 (CH2), 29.5 (CH2), 29.4 (CH2), 25.6 (CH2), 22.9 (CH3), 22.8 

(CH2), 14.3 (CH3); CG tR = 16.3 min.; LRMS (EI) m/z (%) 271 (7), 270 (1), 222 (11), 

204 (16), 203 (100), 156 (7), 95 (14), 84 (30), 70 (48), 55 (20); HRMS (EI) calcd for 

C19H37NOS – C4H8 271.1970, found 271.1973. 

(RS,4R)-N-tert-Butylsulfinyl-8-bromo-3-vinyloct-1-en-4-amine (4g). The crude 

product (94:6 dr according to 
1
H NMR) prepared from 5-bromopentanal

26
 following the 

general procedure was purified by column chromatography (8:2 Hexane/EtOAc). The 

expected product was obtained as a yellow oil (122 mg, 73%, single diastereoisomer 

according to
 1

H NMR): [α]D
20

 – 52.4 (c 1.13, CHCl3); Rf 0.27 (7:3 Hexane/EtOAc); 
1
H 

NMR (300 MHz, CDCl3) δ 5.87 – 5.69 (m, 2H), 5.36 – 5.05 (m, 4H), 3.45 (dd, J = 6.8, 

5.1 Hz, 1H), 3.40 (t, J = 6.6 Hz, 2H), 3.32 – 3.22 (m, 1H), 3.16 (dd, J = 14.2, 6.9 Hz, 

1H), 1.96 – 1.76 (m, 2H), 1.68 – 1.54 (m, 2H), 1.49 – 1.29 (m, 2H), 1.22 (s, 9H); 
13

C 

NMR (101 MHz, CDCl3) δ 137.6 (CH), 136.1 (CH), 119.4 (CH2), 117.5 (CH2), 58.4 

(CH), 56.2 (C), 53.2 (CH), 33.8 (CH2), 32.6 (CH2), 30.6 (CH2), 24.2 (CH2), 22.9 (CH3); 

CG tR = 15.4 min.; LRMS (EI) m/z (%) 281 (4), 279 (4), 214 (9), 213 (100), 212 (10), 

211 (97), 200 (7), 144 (10), 104 (8), 95 (11), 85 (5), 84 (38), 83 (4), 81 (22), 79 (9), 77 

(17), 69 (14), 68 (24), 67 (45), 56 (12), 55 (18), 53 (12); HRMS (EI) calcd for 

C14H26BrNOS – C4H8 279.0292, found 279.0290. 



(RS,2R)-N-tert-Butylsulfinyl-1-phenyl-3-vinylpent-4-en-2-amine (4h). The crude 

product (97:3 dr according 
1
H NMR) was prepared from phenylethanal, following the 

general procedure, and purified by column chromatography (8:2 Hexane/EtOAc). The 

expected product was obtained as a yellow oil (102 mg, 70%, 98:2 dr according to 
1
H 

NMR): [α]D
20

 – 21.1 (c 0.73, CHCl3); Rf 0.29 (7:3 Hexane/EtOAc); IR  3291, 3074, 

2981, 1495, 1455, 1216, 1057, 921, 747 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.31 – 

7.13 (m, 5H), 5.99 – 5.79 (m, 2H), 5.36 – 5.12 (m, 4H), 3.59 (ddd, J = 13.6, 8.2, 4.7 Hz, 

1H), 3.44 (d, J = 7.2 Hz, 1H), 3.22 (dd, J = 12.2, 7.3 Hz, 1H), 2.91 (dd, J = 14.0, 4.9 

Hz, 1H), 2.60 (dd, J = 13.9, 9.0 Hz, 1H), 1.04 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 

138.9 (C), 136.9 (CH), 136.2 (CH), 129.5 (CH), 128.2 (CH), 126.2 (CH), 119.5 (CH2), 

117.8 (CH2), 60.8 (CH), 56.0 (C), 52.4 (CH), 38.2 (CH2), 22.5 (CH3); CG tR = 16.4 

min.; LRMS (EI) m/z (%) 235 (5), 167 (5), 146 (5), 145 (8), 144 (100), 128 (6), 104 

(24), 92 (7), 91 (35), 81 (19), 68 (4); HRMS (EI) calcd for C17H25NOS – C4H8 

235.1031, found 235.1032. 

(SS,2S)-N-tert-Butylsulfinyl-1-phenyl-3-vinylpent-4-en-2-amine (ent-4h). It was 

prepared from (SS)-N-tert-butylsulfinamide (ent-1) following the same general 

procedure obtaining a yellow oil (100 mg, 69%). Physical and spectroscopy data were 

found to be the same than for 4h, except for the optical rotation: [α]D
20

 + 20.4 (c 1.2, 

CHCl3). 

(RS,3R)-N-tert-Butylsulfinyl-1-phenyl-4-vinylhex-5-en-3-amine (4i). Compound 4i 

was prepared from 3-phenylpropanal following the general procedure. After purification 

by column chromatography (8:2 Hexane/EtOAc), the expected product was obtained as 

a yellow oil (130 mg, 85%, 97:3 dr according to 
1
H NMR): [α]D

20
 – 61.5 (c 0.85, 

CHCl3); Rf 0.17 (8:2 Hexane/EtOAc); IR  3286, 3079, 2977, 2950, 1635, 1602, 1455, 

1057, 917 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.27 – 7.14 (m, 



3H), 5.88 – 5.71 (m, 2H), 5.34 – 5.23 (m, 2H), 5.23 – 5.11 (m, 2H), 3.56 (d, J = 7.1 Hz, 

1H), 3.35 (tdd, J = 7.2, 5.3, 3.6 Hz, 1H), 3.24 (dd, J = 13.9, 6.9 Hz, 1H), 2.82 – 2.73 (m, 

1H), 2.61 (ddd, J = 13.7, 10.4, 6.3 Hz, 1H), 1.99 – 1.89 (m, 1H), 1.72 – 1.60 (m, 1H), 

1.28 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 142.0 (C), 137.7 (CH), 136.0 (CH), 128.6 

(CH), 128.5 (CH), 126.1 (CH), 119.6 (CH2), 117.4 (CH2), 58.3 (CH), 56.3 (C), 53.3 

(CH), 33.6 (CH2), 32.0 (CH2), 23.0 (CH3).; CG tR = 16.3 min.; LRMS (EI) m/z (%) 249 

(M
+
–C4H8, 8), 181 (18), 145 (8), 133 (11), 132 (10), 118 (12), 117 (81), 96 (24), 92 

(10), 91 (100), 81 (5), 77 (8), 67 (9), 65 (10); HRMS (EI) calcd for C18H27NOS – C4H8 

249.1187, found 249.1176. 

(SS,3S)-N-tert-Butylsulfinyl-1-phenyl-4-vinylhex-5-en-3-amine (ent-4i). It was 

prepared from (SS)-N-tert-butylsulfinamide (ent-1) following the same general 

procedure, obtaining a colorless oil (122 mg, 80%, 97:3 dr according to 
1
H NMR). 

Physical and spectroscopy data were found to be the same than for 4i, except for the 

optical rotation: [α]D
20

 + 56.4 (c 1.7, CHCl3). 

(RS,1E,3R)-N-tert-Butylsulfinyl-1-phenyl-4-vinylhexa-1,5-dien-3-amine (4j). 

Compound 4j was prepared from cinnamaldehyde following the general procedure. 

After purification by column chromatography (9:1 Hexane/EtOAc), the expected 

product was obtained as a white solid (109 mg, 72%, 97:3 dr according to 
1
H NMR): 

mp 47.9 – 50.0 ºC; [α]D
20

 + 133.5 (c 1.01, CHCl3); Rf 0.30 (7:3 Hexane/EtOAc); IR  

3281, 3079, 2977, 1635, 1363, 1059, 966, 918, 752 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

7.42 – 7.28 (m, 4H), 7.27 – 7.22 (m, 1H), 6.61 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.9, 

8.0 Hz, 1H), 5.95 – 5.75 (m, 2H), 5.32 – 5.12 (m, 4H), 3.99 (td, J = 7.2, 2.6 Hz, 1H), 

3.67 (d, J = 2.7 Hz, 1H), 3.05 (q, J = 7.3 Hz, 1H), 1.23 (s, 9H); 
13

C NMR (101 MHz, 

CDCl3) δ 137.2 (CH), 136.7 (C), 136.5 (CH), 133.9 (CH), 128.7 (CH), 128.0 (CH), 

127.9 (CH), 126.7 (CH), 118.5 (CH2), 118.3 (CH2), 59.1 (CH), 55.8 (C), 54.3 (CH), 



22.8 (CH3); CG tR = 16.7 min.; LRMS (EI) m/z (%) 228 (5), 181 (6), 180 (11), 179 (97), 

162 (5), 141 (5), 131 (13), 130 (100), 129 (8), 117 (12), 116 (88), 115 (39), 103 (11), 91 

(14), 78 (5), 77 (17), 67 (6); HRMS (EI) calcd for C18H25NOS – C4H8 247.1031, found 

247.1040. 

(RS,4R,6S)-N-tert-Butylsulfinyl-6,10-dimethyl-3-vinylundeca-1,9-dien-4-amine (4k). 

The product was prepared from (S)-citronellal, following the general procedure, and 

purified by column chromatography (8:2 Hexane/EtOAc). The expected product was 

obtained as a yellow oil (139 mg, 86%, >97:3 dr according to 
13

C NMR): [α]D
20

 – 31.5 

(c 0.93, CHCl3); Rf 0.32 (7:3 Hexane/EtOAc); IR  3288, 3080, 2958, 2928, 1635, 

1457, 1363, 1059, 1001, 917, 798  cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.90 – 5.70 (m, 

2H), 5.31 – 5.20 (m, 2H), 5.15 (dt, J = 4.5, 1.6 Hz, 1H), 5.11 (dt, J = 11.0, 1.6 Hz, 1H), 

5.08 – 5.02 (m, 1H), 3.44 – 3.31 (m, 2H), 3.26 (t, J = 6.9 Hz, 1H), 1.96 (q, J = 7.3 Hz, 

2H), 1.66 (d, J = 1.0 Hz, 3H), 1.59 (s, 3H), 1.57 – 1.52 (m, 1H), 1.35 – 1.23 (m, 4H), 

1.21 (s, 9H), 0.85 (d, J = 6.6 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 137.8 (CH), 135.7 

(CH), 131.2 (C), 124.7 (CH), 119.8 (CH2), 116.7 (CH2), 57.9 (CH), 56.2 (C), 53.9 (CH), 

38.9 (CH2), 37.8 (CH2), 28.5 (CH), 25.7 (CH3), 25.4 (CH2), 22.7 (CH3), 18.7 (CH3), 

17.7 (CH3); CG tR = 15.5 min.; LRMS (EI) m/z (%) 220 (33), 201 (12), 193 (23), 178 

(45), 168 (5), 152 (76), 137 (49), 121 (38), 109 (100), 96 (44), 81 (97), 69 (89), 55 (35); 

HRMS (EI) calcd for C19H35NOS – C4H8 269.1813, found 269.1808. 

(SS,4S,6S)-N-tert-Butylsulfinyl-6,10-dimethyl-3-vinylundeca-1,9-dien-4-amine (4l). 

The product was prepared from (S)-citronellal and ent-1, following the general 

procedure, and purified by column chromatography (8:2 Hexane/EtOAc). The expected 

product was obtained as a yellow oil (137 mg, 84%, >97:3 dr according to 
13

C NMR): 

[α]D
20

 + 30.5 (c 1.02, CHCl3); Rf 0.28 (7:3 Hexane/EtOAc); IR  3290, 3077, 2958, 

2924, 1635, 1456, 1362, 1059, 1001, 916, 794 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.87 



– 5.74 (m, 2H), 5.32 – 5.21 (m, 2H), 5.18 – 5.05 (m, 3H), 3.43 – 3.34 (m, 2H), 3.24 (t, J 

= 8.2 Hz, 1H), 2.00 (td, J = 15.0, 6.8 Hz, 1H), 1.94 – 1.83 (m, 1H), 1.68 (d, J = 1.0 Hz, 

3H), 1.60 (s,3H), 1.45 – 1.35 (m, 3H), 1.21 (s, 9H), 1.19 – 1.13 (m, 1H), 1.13 – 1.01 (m, 

1H), 0.89 (d, J = 6.7 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 137.4 (CH), 136.0 (CH), 

131.2 (C), 124.7 (CH), 119.6 (CH2), 117.0 (CH2), 57.6 (CH), 56.1 (C), 53.3 (CH), 39.3 

(CH2), 35.6 (CH2), 28.7 (CH), 25.7 (CH3), 25.1 (CH2), 22.7 (CH3), 20.4 (CH3), 17.7 

(CH3); CG tR = 15.6 min.; LRMS (EI) m/z (%)220 (33), 201 (12), 193 (25), 178 (47), 

168 (5), 152 (77), 137 (47), 121 (35), 109 (100), 96 (44), 81 (92), 69 (86), 55 (35); 

HRMS (EI) calcd for C19H35NOS – C4H8 269.1813, found 269.1819. 

General procedure for the synthesis of sulfinamides 6. To a dry flask were added (RS)-

N-tert-butylsulfinamide (1, 61 mg, 0.5 mmol) followed by indium powder (71 mg, 0.63 

mmol). The reaction vessel was evacuated and put under an Ar atmosphere. Then a 

solution of the corresponding ketone (0.55 mmol) in dry THF (1 mL) and Ti(OEt)4 (281 

µL, 1.25 mmol) were added successively and the reaction mixture was stirred under an 

Ar atmosphere for 12 h at 65 ºC. At this time 2,4-pentadienyl bromide (154 mg, 1.05 

mmol) was added to the mixture and it was heated to 65 ºC for 7 h. The mixture was 

allowed to reach room temperature and was carefully added over a stirring mixture of 

4:1 EtOAc/brine (20 mL). The resulted white suspension was filtered through a short 

pad of Celite, washed with EtOAc and the organics were concentrated under reduced 

pressure. The resulted suspension was diluted in 4:1 EtOAc/Hexane (20 mL), filtered 

again through Celite and the organics were concentrated under reduced pressure. 

(RS,3R)-N-tert-Butylsulfinyl-3-methyl-4-vinylhex-5-en-3-amine (6a). From 2-

butanone, the expected product was obtained following the general procedure as a 

colorless crystal (75 mg, 62%, 97:3 dr according 
1
H NMR) after column 

chromatography (9:1 Hexane/EtOAc): mp 35.2 – 36.8 °C; [α]D
20

 – 66.6 (c 0.72, CHCl3); 



Rf 0.37 (7:3 Hexane/EtOAc); IR  3292, 3075, 2976, 2940, 1632, 1457, 1380, 1176, 

1059, 1001, 919, 732 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.98 – 5.75  (m, 2H), 5.24 – 

5.10 (m, 4H), 3.49 (s, 1H), 2.98 (t, J = 8.6 Hz, 1H), 1.66 (dq, J = 14.7, 7.4 Hz, 1H), 1.56 

(dq, J = 14.5, 7.3 Hz, 1H), 1.29 (s, 3H), 1.21 (s, 9H), 0.87 (t, J = 7.4 Hz, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 136.8 (CH), 136.2 (CH), 118.8 (CH2), 118.1 (CH2), 59.2 (C), 57.5 

(CH), 56.2 (C), 30.6 (CH2), 24.1 (CH3), 23.0 (CH3), 7.5 (CH3); GC tR = 12.2 min.; 

LRMS (EI) m/z (%) 176 (16), 122 (5), 121 (6), 120 (100), 102 (21), 81 (10), 71 (5), 67 

(10), 57 (17); HRMS (ESI) calcd for C13H26NOS (M
+
+1) 244.1735, found 244.1728. 

(RS,4R)-N-tert-Butylsulfinyl-4-methyl-3-vinylnon-1-en-4-amine (6b). From 2-

heptanone (75 µL, 0.53 mmol), the expected product was obtained following the general 

procedure as a colorless oil (93 mg, 65%, single diastereoisomer according to 
1
H NMR) 

after column chromatography (9:1 Hexane/EtOAc): [α]D
20

 – 63.8 (c 0.98, CHCl3); Rf 

0.33 (7:3 Hexane/EtOAc); IR  3297, 3075, 2954, 2935, 1632, 1456, 1380, 1178, 1064, 

1002, 914, 731 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 5.93 – 5.78 (m, 2H), 5.27 – 5.17 

(m, 2H), 5.16 – 5.10 (m, 2H), 3.50 (s, 1H), 2.97 (t, J = 8.5 Hz, 1H), 1.67 – 1.43 (m, 2H), 

1.40 – 1.30 (m, 2H), 1.30 (s, 3H), 1.28 – 1.20 (m, 4H), 1.20 (s, 9H), 0.88 (t, J = 6.7 Hz, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 136.8 (CH), 136.1 (CH), 118.7 (CH2), 118.1 

(CH2), 59.0 (C), 57.7 (CH), 56.1 (C), 38.0 (CH2), 32.2 (CH2), 24.5 (CH3), 22.9 (CH3), 

22.6 (CH2), 22.5 (CH2), 14.1 (CH3); GC tR = 13.9 min.; LRMS (EI) m/z (%) 229 (4), 

163 (6), 162 (13), 161 (100), 159 (5), 158 (49), 144 (5), 118 (9), 110 (6), 105 (23), 97 

(15), 95 (10), 91 (7), 67 (12), 57 (12), 55 (12); HRMS (ESI) calcd for C16H32NOS 

(M
+
+1) 286.2205, found 286.2201. 

(RS, 3R)-N-tert-Butylsulfinyl-3-methyl-1-phenyl-4-vinylhex-5-en-3-amine (6c). From 

4-phenyl-2-butanone, the expected product was obtained following the general 

procedure as a colorless oil (115 mg, 72%, single diastereoisomer according to 
1
H 



NMR) after column chromatography (9:1 Hexane/EtOAc): [α]D
20

 – 74.2 (c 0.73, 

CHCl3); Rf 0.34 (7:3 Hexane/EtOAc); IR  3076, 3025, 2977, 2953, 2867, 1632, 1603, 

1455, 1381, 1063, 1063, 1002, 747 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.32 – 7.12 (m, 

5H), 5.99 – 5.79 (m, 2H), 5.34 – 5.11 (m, 4H), 3.62 (br s, 1H), 3.07 (t, J = 8.6 Hz, 1H), 

2.73 – 2.54 (m, 2H), 1.93 (ddd, J = 14.2, 10.9, 6.4 Hz, 1H), 1.80 (ddd, J = 14.2, 11.2, 

7.0 Hz, 1H), 1.39 (s, 3H), 1.24 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 142.4 (C), 136.6 

(CH), 135.9 (CH), 128.6 (CH), 128.5 (CH), 126.1 (CH), 119.3 (CH2), 118.4 (CH2), 58.9 

(C), 58.0 (CH), 56.4 (C), 40.5 (CH2), 29.5 (CH2), 24.5 (CH3), 23.1 (CH3); GC tR = 16.6 

min.; LRMS (EI) m/z (%) 263 (8), 196 (7), 195 (56), 178 (5), 159 (14), 158 (38), 147 

(47), 146 (21), 132 (15), 131 (25), 110 (29), 95 (6), 92 (9), 9 (100), 83 (18), 87 (11), 65 

(11); HRMS (ESI) calcd for C19H30NOS (M
+
+1) 320.2048, found 320.2039. 

(RS,4R)-N-tert-Butylsulfinyl-3-ethyltridecan-4-amine (7). To a solution of compound 

4f (65 mg, 0.20 mmol) in EtOAc (6 mL) was added PtO2 (6 mg, 10 mol %) and put 

under a hydrogen atmosphere. The mixture was vigorously stirred at room temperature 

for 15 h. The catalyst was removed by filtration through a pad of Celite, eluting with 

more EtOAc. The solvent was removed under reduced pressure and the residue was 

purified by column chromatography (9:1 Hexane:EtOAc), to obtain the expected 

product as a colorless oil (62 mg, 93%): [α]D
20

 – 38.6 (c 0.79, CHCl3); Rf 0.54 (7:3 

Hexane/EtOAc); IR  3243, 2957, 2923, 2871, 2854, 1462, 1362, 1056, 753 cm
-1

; 
1
H 

NMR (300 MHz, CDCl3) δ 3.20 (dt, J = 7.4, 4.4 Hz, 1H), 3.02 (d, J = 7.6 Hz, 1H), 1.43 

– 1.30 (m, 5H), 1.30 – 1.17 (m, 16H), 1.14 (s, 9H), 0.87 (t, J = 7.3 Hz, 6H), 0.81 (t, J = 

6.8 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 58.4 (CH), 56.0 (C), 46.2 (CH), 32.4 

(CH2), 32.0 (CH2), 29.7 (CH2), 29.7 (CH2), 29.6 (CH2), 29.4 (CH2), 26.6 (CH2), 22.9 

(CH3), 22.8 (CH2), 22.5 (CH2), 22.1 (CH2), 14.2 (CH3), 12.4 (CH3), 12.3 (CH3); GC tR = 

13.4 min.; LRMS (EI) m/z (%) 203 (16), 186 (17), 157 (12), 156 (100), 154 (6), 100 



(12), 97 (7), 91 (33), 84 (11), 83 (19), 71 (11), 70 (14), 69 (12), 56 (15), 55 (19); HRMS 

(ESI) calcd for C19H42NOS (M
+
+1) 332.2987, found 332.2993. 

(RS,3R)-N-tert-Butylsulfinyl-4-ethyl-3-methylhexan-3-amine (8). Compound 8 was 

obtained from compound 6a (49 mg, 0.2 mmol), following the same procedure used to 

obtain 7, as a colorless oil (45 mg, 92%): [α]D
20

 – 55.7 (c 0.79, CHCl3); Rf 0.34 (7:3 

Hexane/EtOAc); IR  3237, 2961, 2875, 1464, 1379, 1362, 1178, 1052, 937, 920 cm
-1

; 

1
H NMR (300 MHz, CDCl3) δ 3.16 (br s, 1H), 1.67 – 1.51 (m, 4H), 1.35 – 1.26 (m, 1H), 

1.22 (s, 3H), 1.20 (s, 9H), 1.19 – 1.08 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H), 0.97 (t, J = 7.3 

Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 61.7 (C), 55.9 (C), 

50.4 (CH), 31.4 (CH2), 23.9 (CH3), 23.1 (CH2), 23.0 (CH2), 22.9 (CH3), 14.6 (CH3), 

14.0 (CH3), 8.2 (CH3); GC tR = 12.6 min.; LRMS (EI) m/z (%) 191 (36), 176 (19), 162 

(8), 127 (98), 126 (28), 120 (64), 119 (9), 102 (16), 97 (10), 85 (68), 72 (13), 71 (100), 

57 (74), 55 (10); HRMS (ESI) calcd for C13H30NOS (M
+
+1) 248.2048, found 248.2037. 

(RS,4R)-N-tert-Butylsulfinyl-1-hydroxyl-3-(2'-hydroxyethyl)-4-methylnonan-4-

amine (9b). The homoallylamine 6b (171 mg, 0.6 mmol) was dissolved in dry THF (0.2 

mL) under an Ar atmosphere and cooled to 0 ºC. A solution of 9-BBN (0.5 M in THF, 

7.2 mL, 3.6 mmol), was added dropwise over ca. 10 min. The stirring mixture was 

heated for 15 h at 60 ºC. After cooling to 0 ºC, a solution of NaOH (1.6 mL, 2M) was 

carefully added and, after 5 min, H2O2 solution (30% wt/v, 1 mL) was added. The 

mixture was stirred for 15 h at 60 ºC and then cooled to room temperature. The organic 

phase was collected and the aqueous phase was extracted with EtOAc (x3). The 

organics were dried over MgSO4, filtered and concentrated to obtain the crude diol. 

After column chromatography (98:2 EtOAc/MeOH) the pure product 9b was obtained 

as a colorless oil (115 mg, 60%, single diastereoisomer according to 
1
H NMR): [α]D

20
 – 

30.5 (c 0.95, CHCl3); Rf 0.16 (98:2 EtOAc/MeOH); IR  3301, 2953, 2933, 2870, 1457, 



1363, 1098, 1012, 935, 753 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 3.82 – 3.71 (m, 3H), 

3.71 – 3.53 (m, 2H), 3.42 (br s, 1H), 3.12 (br s, 1H), 2.00 – 1.82 (m, 4H), 1.54 – 1.31 

(m, 6H), 1.28 (s, 3H), 1.27 – 1.23 (m, 3H), 1.21 (s, 9H), 0.89 (t, J = 6.9 Hz, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 62.3 (CH2), 61.3 (C), 61.0 (CH2), 56.1 (C), 41.5 (CH), 38.5 

(CH2), 34.0 (CH2), 33.4 (CH2), 32.4 (CH2), 23.3 (CH3), 22.9 (CH3), 22.8 (CH2), 22.6 

(CH2), 14.0 (CH3); GC tR = 15.8 min.; LRMS (EI) m/z (%) 163 (5), 161 (83), 160 (11), 

134 (10), 129 (44), 128 (69), 115 (11), 114 (100), 112 (10), 111 (21), 110 (14), 105 

(30), 91 (20), 85 (11), 84 (14), 83 (21), 82 (15), 81 (21), 71 (18), 70 (20), 69 (28), 67 

(24), 57 (32), 55 (60); HRMS (ESI) calcd for C16H36NO3S (M
+
+1) 322.2416, found 

322.2418. 

(RS,3R)-N-tert-Butylsulfinyl-1-hydroxyl-3-(2'-hydroxyethyl)-4-methyl-6-phenylhex-

4-amine (9c). From 6c (191 mg, 0.6 mmol), the expected product was obtained 

following the same procedure used for 9b, as a colorless wax (136 mg, 64%, single 

diastereoisomer according to 
1
H NMR): [α]D

20
 – 39.9 (c 0.80, CHCl3); Rf 0.15 (98:2 

EtOAc/MeOH); IR  3271, 2949, 1454, 1363, 1031, 730 cm
-1

; 
1
H NMR (300 MHz, 

CDCl3) δ 7.33 – 7.27 (m, 1H), 7.27 – 7.22 (m, 1H), 7.22 – 7.09 (m, 3H), 4.09 (s, 1H), 

4.02 – 3.81 (m, 1H), 3.81 – 3.72 (m, 2H), 3.69 – 3.49 (m, 2H), 2.74 – 2.54 (m, 2H), 2.03 

– 1.84 (m, 3H), 1.81 – 1.72 (m, 2H), 1.49 – 1.39 (m, 2H), 1.38 (s, 3H), 1.23 (s, 9H); 
13

C 

NMR (101 MHz, CDCl3) δ 142.3 (C), 128.6 (CH), 128.4 (CH), 126.1 (CH), 62.1 (CH2), 

61.3 (C), 61.0 (CH2), 56.3 (C), 41.4 (CH), 41.1 (CH2), 34.0 (CH2), 33.6 (CH2), 29.9 

(CH2), 23.4 (CH3), 23.0 (CH3); GC tR = 17.22 min.; LRMS (EI) m/z (%) 323 (12), 289 

(10), 275 (20), 249 (13), 207 (8), 202 (14), 201 (82), 176 (11), 159 (41), 157 (11), 153 

(17), 148 (12), 146 (15), 131 (34), 129 (100), 105 (32), 103 (11), 101 (54), 91 (72), 77 

(14); HRMS (ESI) calcd for C19H34NO3S (M
+
+1) 356.2259, found 356.2270. 



(RS,2R,3R)-N-tert-Butylsulfinyl-2-methyl-2-pentyl-3-(2'-hydroxyethyl)pyrrolidine 

(10b). The corresponding diol 9b (160 mg, 0.5 mmol) was dissolved in dry THF (1.7 

mL) under an Ar atmosphere and cooled to 0 ºC. PPh3 (157 mg, 0.6 mmol) was added to 

the reaction mixture followed by a DIAD solution in THF (1 mL, 0.6 M). The reaction 

was stirred for 15 h at 25 ºC. All volatiles were removed  under reduced pressure before 

purification by column chromatography (99:1, EtOAc/MeOH) to obtain the 

corresponding pure products 10b as a colorless oil (101 mg, 67%, 96:4 dr crude, single 

stereoisomer after purification according 
1
H NMR): [α]D

20
 – 62.5  (c 1.05, CHCl3); Rf 

0.29 (98:2 EtOAc/MeOH); IR  3385, 2954, 2932, 2871, 1458, 1377, 1361, 1035, 1017, 

955 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 3.78 (m, 2H), 3.65 (dd, J = 16.0, 8.2 Hz, 1H), 

2.78 (dd, J = 16.6, 9.7 Hz, 1H), 2.10 – 1.95 (m, 2H), 1.91 – 1.45 (m, 6H), 1.44 – 1.25 

(m, 6H), 1.22 (s, 9H), 1.17 (s, 3H), 0.89 (t, J = 6.7 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 69.3 (C), 61.9 (CH2), 57.4 (C), 41.2 (CH), 39.9 (CH2), 39.8 (CH2), 32.8 

(CH2), 32.6 (CH2), 29.5 (CH2), 24.7 (CH3), 23.3 (CH2), 22.8 (CH2), 21.7 (CH3), 14.2 

(CH3); GC tR = 14.83 min.; LRMS (EI) m/z (%) 184 (11), 166 (10), 129 (9), 128 (100), 

126 (11), 111 (16), 110 (14), 97 (10), 96 (14), 84 (11), 82 (13), 71 (12), 55 (15); HRMS 

(ESI) calcd for C16H34NO2S (M
+
+1) 304.2310, found 304.2302. 

(RS,2R,3R)-N-tert-Butylsulfinyl-3-(2-hydroxyethyl)-2-methyl-2-(2-

phenylethyl)pyrrolidine (10c). From compound 9c (106 mg, 0.3 mmol), the expected 

product was obtained following the same procedure to obtain compound 10b, as a 

colorless oil (75 mg, 75%, 96:4 dr crude, single diastereoisomer after purification 

according to 
1
H NMR): [α]D

20
 – 40.4  (c 1.10, CHCl3); Rf 0.21 (98:2 EtOAc/MeOH); IR 

 3370, 3025, 2960, 1602, 1455, 1362, 1031, 750 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

7.37 – 7.24 (m, 2H), 7.24 – 7.12 (m, 3H), 3.82 (t, J = 9.5 Hz, 1H), 3.79 – 3.68 (m, 1H), 

3.62 (dd, J = 15.8, 8.5 Hz, 1H), 2.83 (dd, J = 17.1, 9.7 Hz, 1H), 2.67 (t, J = 8.5 Hz, 2H), 



2.14 (s, 1H), 2.08 – 1.94 (m, 2H), 1.91 – 1.78 (m, 2H), 1.78 – 1.58 (m, 1H), 1.58 – 1.48 

(m, 1H), 1.47 – 1.35 (m, 1H), 1.26 (s, 9H), 1.22 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

142.4 (C), 128.6 (CH), 128.4 (CH), 126.0 (CH), 69.3 (C), 61.6 (CH2), 57.8 (C), 41.2 

(CH), 41.2 (CH2), 40.0 (CH2), 32.7 (CH2), 29.9 (CH2), 29.4 (CH2), 24.9 (CH3), 21.8 

(CH3); GC tR = 17.3 min.; LRMS (EI) m/z (%) 230 (9), 207 (17), 202 (25), 200 (21), 

186 (24), 172 (12), 159 (36), 158 (32), 131 (24), 127 (43), 126 (41), 118 (16), 117 (25), 

108 (11), 105 (10), 92 (11), 91 (100), 33 (65), 32 (71),l 77 (11), 68 (17), 56 (17), 55 

(24); HRMS (ESI) calcd for C19H32NO2S (M
+
+1) 338.2154, found 338.2142. 

(2R,3R)-N-benzoyl-3-(2-hydroxyethyl)-2-methyl-2-(2-phenylethyl)pyrrolidine (11). 

Pyrrolidine 10c (20 mg, 0.05 mmol) was dissolved in dry MeOH (0.5 mL) at 0 ºC and a 

4 M solution of HCl in dioxane (50 µL) was added dropwise over 1 min. After stirring 

for 1 h, the solvent was removed under reduced pressure and the hydrochloride was 

dissolved in CH2Cl2 (1 mL) and cooled to 0 ºC. A solution of NaOH (2 M, 1 mL) was 

added followed by benzoylchloride (7 µL, 0.06 mmol) and the reaction mixture was 

stirred at 25 ºC for 15 h. The product was extracted with CH2Cl2 and washed 

sequentially with NaOH (2 M) and brine. The organics were dried over MgSO4, filtered 

and concentrated under reduced pressure. After column chromatography (7:3 

Hexane/EtOAc), the expected product 11 was obtained as a colorless oil (15 mg, 90%, 

single diastereoisomer according to 
1
H NMR after purification): [α]D

20
 – 61.5  (c 1.00, 

CHCl3); Rf 0.31 (1:1 Hexane/EtOAc); IR  3406, 3025, 2930, 1612, 1415, 1265 cm
-1

; 

1
H NMR (300 MHz, CDCl3) δ 7.45 – 7.35 (m, 5H), 7.31 – 7.27 (m, 1H), 7.26 – 7.21 (m, 

3H), 7.20 – 7.12 (m, 1H), 3.79 (dt, J = 15.6, 6.1 Hz, 1H), 3.68 (dt, J = 10.1, 7.5 Hz, 1H), 

3.46 – 3.29 (m, 2H), 2.97 – 2.81 (m, 1H), 2.72 – 2.60 (m, 2H), 2.37 (dddd, J = 13.9, 

11.1, 5.8, 3.1 Hz, 1H), 2.01 – 1.90 (m, 1H), 1.85 – 1.42 (m, 5H), 1.38 (s, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 169.8 (C), 142.6 (C), 139.0 (C), 129.4 (CH2), 128.7 (CH2), 128.5 



(CH2), 128.5 (CH2), 126.4 (CH2), 125.9 (CH2), 66.8 (C), 61.8 (CH2), 50.9 (CH2), 41.7 

(CH), 37.8 (CH2), 32.0 (CH2), 30.5 (CH2), 28.6 (CH2), 19.6 (CH3); GC tR = 22.5 min.; 

LRMS (EI) m/z (%) 244 (01),  231 (23), 230 (39), 207 (28), 188 (14), 187 (12), 106 (9), 

105 (100), 91 (9), 77 (25); HRMS (ESI) calcd for C22H28NO2 (M
+
+1) 338.2120, found 

338.2129. 

(4R)-N-tert-Butylsulfonyl-1-hydroxyl-3-(2'-hydroxyethyl)-4-methylnonan-4-amine 

(12). The sulfinyl compound 9b (112 mg, 0.35 mmol) was dissolved in dry CH2Cl2 

(0.05 M) and placed under an Ar atmosphere. The solution was cooled at 0 ºC and m-

CPBA (73 mg, 0.42 mmol) was added. The reaction was stirred 1 h at 0 ºC, observing 

full conversion by TLC. Quenched by adding a saturated aqueous solution of NaHSO3 

and saturated aqueous solution of NaHCO3, the layers were separated and the aqueous 

phase was extracted with CH2Cl2. Combined organic extracts were dried over MgSO4, 

filtered and concentrated under reduced pressure. After column chromatography (1:1 

Hexane/EtOAc) the expected product was obtained as a colorless oil (112 mg, 95%, 

single diastereoisomer according to 
1
H NMR): [α]D

20
 – 5 (c 0.60, CHCl3); Rf 0.14 (1:1 

Hexane/EtOAc); IR  3443, 2953, 2872, 1468, 1287, 1117, 1049, 735 cm
-1

; 
1
H NMR 

(300 MHz, CDCl3) δ 4.37 (s, 1H), 3.84 – 3.60 (m, 4H), 2.01 – 1.74 (m, 4H), 1.63 – 1.39 

(m, 4H), 1.38 (s, 9H), 1.34 (s, 3H), 1.31 – 1.16 (m, 5H), 0.87 (t, J = 6.8 Hz, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 64.3 (C), 62.1 (CH2), 61.3 (CH2), 60.1 (C), 39.7 (CH), 38.9 

(CH2), 33.2 (CH2), 32.5 (CH2), 32.3 (CH2), 24.6 (CH3), 23.1 (CH2), 22.8 (CH2), 21.5 

(CH3), 14.3 (CH3); GC tR = 17.6 min.; LRMS (EI) m/z (%) 338 (M
+
+1, 1), 322 (13), 

241 (7), 234 (29), 202 (35), 115 (9), 114 (100), 57 (28); HRMS (ESI) calcd for 

C16H36NO4S (M
+
+1) 338.2361, found 338.2357. 

(2R,3R)-N-tert-Butylsulfonyl-2-methyl-2-pentyl-3-(2'-hydroxyethyl)pyrrolidine 

(13). Compound 13 was obtained from compound 10b (90 mg, 0.13 mmol) following 



the same procedure used to obtain compound 12. A single diastereoisomer was obtained 

as a colorless wax (40 mg, 95%, 96:4 dr crude, single diastereoisomer according to 
1
H 

NMR after purification): [α]D
20

 – 5  (c 070, CHCl3); Rf 0.16 (7:3 Hexane/EtOAc); IR  

3489, 2956, 2930, 2871, 1465, 1298, 1116, 752 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

3.83 – 3.73 (m, 1H), 3.72 – 3.65 (m, 1H), 3.64 – 3.54 (m, 1H), 3.24 (td, J = 9.9, 6.5 Hz, 

1H), 2.99 (br s, 1H), 2.25 – 2.10 (m, 1H), 2.10 – 1.89 (m, 2H), 1.78 – 1.61 (m, 2H), 1.61 

– 1.50 (m, 1H), 1.50 – 1.42 (m, 1H), 1.40 (s, 9H), 1.37 – 1.34 (m, 1H), 1.32 (s, 3H), 

1.31 – 1.15 (m, 5H), 0.88 (t, J = 6.7 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 72.1 (C), 

61.9 (C), 67.8 (CH2), 49.8 (CH2), 42.5 (CH), 39.5 (CH2), 33.0 (CH2), 32.4 (CH2), 28.9 

(CH2), 25.6 (CH3), 24.33 (CH2), 22.8 (CH2), 22.6 (CH3), 14.2 (CH3); GC tR = 18.0 min.; 

LRMS (EI) m/z (%) 248 (13), 184 (7), 129 (8), 128 (100), 111 (6), 57 (22); HRMS 

(ESI) calcd for C16H34NO3S (M
+
+1) 320.2259, found 320.2270. 

(2R,3S)- and (2R,3R)-N-tert-Butylsulfonyl-2-methyl-2-pentyl-3-(2'-

hydroxyethyl)pyrrolidine (13 and 14). A 1:1 mixture of compounds 13 and 14 was 

obtained from compound 12 (100 mg, 0.15 mmol) following the same procedure 

described for 10b, as a colorless oil (47 mg, 50% yield). 
1
H NMR (300 MHz, CDCl3) δ 

3.85 – 3.72 (m, 2H), 3.71 – 3.53 (m, 4H), 3.44 (dd, J = 16.4, 8.1 Hz, 1H, 14), 3.24 (dd, J 

= 16.3, 9.8 Hz, 1H, 13), 2.25 – 2.10 (m, 1H), 2.10 – 1.94 (m, 4H), 1.93 – 1.46 (m, 10H), 

1.45 (s, 3H, 14), 1.40 (s, 18H), 1.32 (s, 3H, 13), 1.32 – 1.01 (m, 11H), 0.88 (t, J = 6.5 

Hz, 6H). 

(4R)-N-tert-Butylsulfonyl-1-(4'-oxacyclohexyl) heptan-2-amine (15). Compound 15 

(20%) was obtained as byproduct in the reaction to obtain compounds 13 and 14. Rf 

0.50 (7:3 Hexane/EtOAc); IR  3289, 2952, 2928, 1457, 1299, 1121, 952 cm
-1

; 
1
H 

NMR (300 MHz, CDCl3) δ 4.11 – 3.98 (m, 2H), 3.48 – 3.29 (m, 3H), 1.88 (tt, J = 12.1, 

3.2 Hz, 1H), 1.78 – 1.44 (m, 7H), 1.40 (s, 9H), 1.35 (s, 3H), 1.33 – 1.16 (m, 7H), 0.90 



(t, J = 6.8 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 68.4 (C), 63.5 (CH2), 60.3 (CH2), 

53.6 (C), 44.9 (CH), 38.4 (CH2), 32.3 (CH2), 27.8 (CH2), 27.3 (CH2), 24.7 (CH3), 23.2 

(CH2), 22.8 (CH2), 21.2 (CH3), 14.2 (CH3); GC tR = 16.6 min.; LRMS (EI) m/z (%) 248 

(15), 234 (30), 178 (7), 128 (43), 114 (100), 57 (39); HRMS (ESI) calcd for 

C16H34NO3S (M
+
+1) 320.2259, found 320.2263. 
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