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Abstract: Tactile sensors play an important role in robotics manipulation to perform 

dexterous and complex tasks. This paper presents a novel control framework to perform 

dexterous manipulation with multi-fingered robotic hands using feedback data from tactile 

and visual sensors. This control framework permits the definition of new visual controllers 

which allow the path tracking of the object motion taking into account both the dynamics 

model of the robot hand and the grasping force of the fingertips under a hybrid control 

scheme. In addition, the proposed general method employs optimal control to obtain the 

desired behaviour in the joint space of the fingers based on an indicated cost function 

which determines how the control effort is distributed over the joints of the robotic hand. 

Finally, authors show experimental verifications on a real robotic manipulation system for 

some of the controllers derived from the control framework. 
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1. Introduction 

Multi-fingered robotic hands allow both the execution of robust grasping tasks and dexterous 

manipulation. These are two of the skills that human beings have: dexterity and anthropomorphism [1]. 

These features enable multi‐fingered hands to be controlled not only for holding the object with a firm 

grasp, but also for generating trajectories of the object with the movements of the fingers. This last 
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form of motion control of the grasped object is usually known as ―in-hand manipulation‖ or ―dexterous 

manipulation‖. In these cases, the kinematic redundancy of the fingers is used to change the object 

from an initial to a final configuration, while maintaining fingertip contacts [2,3]. Therefore, fingertip 

force control plays a very important role for dexterous manipulation in order to give the object the 

desired motion. For that end, tactile sensors are usually employed to measure the force exerted by the 

fingertips in order to maintain a desired value and to compute the contact points. This paper presents a 

new control framework to perform in-hand manipulation with multi-fingered robotic hands using 

feedback data from tactile and visual sensors. 

Tactile sensors share a common property in robotics: they analyze the direct contact between the 

robot and the objects of the environment in order to adapt the robot’s reaction to the manipulated 

object. Tactile information is processed according to two different aims: object identification and 

manipulation control. On the one hand, the properties of the objects extracted from the robot’s  

tactile sensors can be used to categorize the objects into different classes. On the other hand, the 

measurements obtained from the tactile sensors can also be applied to control the interaction force [4]. 

In this paper, a hybrid scheme is proposed for manipulation control which takes into account both the 

robot hand dynamic model and the fingertips’ forces. 

Several approaches to solve the motion planning associated with dexterous manipulation problem 

have been proposed during the last decade. They have been mainly focused in three specific lines: 

graph representations [5–7], probabilistic trees [8,9] and hybrid control schemes [10,11]. Some of the 

previous planners (such as [5,6]) do not take into account the contact forces which are applied to the 

object and they are usually only based on the maintenance of the geometric contact between the 

surfaces of the fingers and the object (using surface models [12,13]), kinematic constraints and/or 

using manipulability analysis [14]. Fingertip force control is usually employed for planning in-hand 

manipulation algorithms based on hybrid control schemes [11]. The main objective of these algorithms 

is to control the grasping force to a desired value (satisfying friction conditions) besides controlling the 

position of the object along a desired trajectory given in the Cartesian space [4]. None of these 

previous works employs visual and tactile feedback to perform the manipulation task taking  

into account the robotic hand dynamics. This paper proposes a control framework that allows the 

definition of new controllers where the manipulated object motion is controlled using visual and tactile 

servoing algorithms. 

Visual servo control techniques [15] allow the guidance of a robotic system using visual 

information usually in two types of configuration: eye-in-hand (camera fixed to the robot end) and  

eye-to-hand (external camera). This type of control is frequently applied in robot positioning tasks for 

a wide range of applications [16,17]. In robotic manipulation, visual techniques are usually applied as 

only computer vision algorithms for grasping [18,19]. Classical techniques of visual servo control do 

not take into account the system dynamics because they assume that the robot is a perfect positioning 

device. This assumption is not appropriate when the robot executes fast and/or accurate movements 

such as dexterous manipulation with multi-fingered robotic hands. By means of direct or dynamic 

visual servoing, the internal control loop of servo motors is removed and the visual servo control is 

used to stabilize the robotic system [20]. This paper uses direct visual servoing in order to perform a 

visual tracking of the manipulated object and the guidance of the robotic manipulation system. 

Therefore, in contrast with other control schemes for dexterous manipulation [10–19], the proposed 
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approach takes into account the dynamics model of the robot hand employing visual and tactile 

sensory information. 

In addition, the proposed control approach is based on an optimal control framework. This approach 

is used to visual servo control a robotic hand during a manipulation task taking into account the hand 

dynamics. From that framework, several new controllers are derived, which offers a useful unification 

methodology for direct control any robotic manipulation system using visual and tactile sensors 

feedback, an approach which has not been implemented in previous research projects. The proposed 

approach considers the optimization of the motor signals or torques sent to the robotic hand during 

visual control tasks. Moreover, the general method presented in the paper is based on the formulation 

of the tracking problem in terms of constraints, which was suggested in [21] inspired by results from 

analytical dynamics with constrained motion. 

Summarizing, the proposed optimal control framework, from which several new dynamic 

controllers can be derived, is considered as the main contribution of this paper in comparison with 

other previous approaches for dexterous manipulation [5–14]. In addition, another contribution of this 

framework is that it uses direct visual servoing to perform the visual tracking of the manipulated object 

taking into account the dynamics model of the robot hand. In this sense, the presented optimal 

framework provides a useful unification methodology for the direct control of any robotic 

manipulation system using visual and tactile sensors feedback. 

The paper is organized as follows: Section 2 describes the system architecture of the robotic 

manipulation system. Afterwards, the kinematics and dynamics formulation of the overall robotic 

system are described in Section 3. Section 4 explains the theoretical concepts about the employed 

optimal controller. In Section 5, the image trajectory to be tracked by the robotic manipulation system 

is described as a task constrain. In Section 6, the general dynamic visual servoing framework and the 

required modifications to perform a hybrid force control are presented. In Section 7, some new 

controllers are derived from the optimal control framework. Section 8 describes the experimental 

results illustrating the proposed controllers. The final section reports some important conclusions. 

2. System Architecture  

The robotic manipulation system is composed of the Allegro robotic hand (SimLab Co., Seoul, 

Korea) (see Figure 1a,b). This hand has four fingers and sixteen independent torque-controlled joints 

(four dof per each finger). This robotic hand has a lightweight and portable anthropomorphic design 

very suitable for low-cost dexterous manipulation in research. It is capable of holding up to 5 kg and it 

has support for real-time control and online simulation. In addition, a set of tactile sensors is employed 

as additional tool in the manipulation system (see Figure 1a). These sensors are installed in an extrinsic 

configuration [22] on the Allegro hand. These sensors are located at the three hand fingertips that will 

be used during the manipulation (furthermore, only the three last degrees of freedom of each finger 

will be controlled, performing a non-redundant system). The tactile sensors are pressure sensing 

arrays, type PPS RoboTouch (Pressure Profile Systems, Inc., Los Angeles, CA, USA). All these tactels 

can register pressure vales in the range 0–140 kPa with a frequency of 30 Hz and a sensitivity of  

0.7 kPa. Figure 1c shows a 3D representation of the pressure measurements registered by these sensors 

during a manipulation task. The force exerted by the fingertip is computed using the pressure 
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measurements of the tactile sensors. These measurements are multiplied by the area of each tactel,  

25 mm
2
, so the forces are obtained. The mean of these forces is considered as the force applied by the 

fingertip. Moreover, the contact points are supposed to be in the tactel of maximum pressure exerted.  

Figure 1. (a) Allegro hand with the tactile sensors installed in the fingertips’ surface.  

(b) Allegro hand grasping the object to be manipulated. (c) Different 3D representation of 

the pressure measurements registered by the arrays of tactile sensors. 

 

Figure 2. Experimental setup for dexterous manipulation (robotic hand, manipulated 

object, eye-to-hand camera and reference systems). 

 

Tactile 

sensors 
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Figure 2 represents the experimental setup employed. For the visual servo control, a Gigabit 

Ethernet TM6740GEV camera (JAI-Pulnix, Shanghai, China) is used, which acquires 200 images 

every second with a resolution of 640 × 480 pixels. The camera is supposed to be previously calibrated 

and the camera intrinsic parameters are (u0, v0) = (298, 225) px, and (fu, fv) = (1,082.3, 1,073.7) px 

(position of the optical center (u0, v0) and the focal length in the x and y directions, respectively). The 

manipulated object has four marks which will be the extracted visual features. 

3. Kinematics and Dynamics Formulation 

3.1. Kinematics Equations  

We consider the robotic hand as a set of k fingers with three degrees of freedom. Each finger holds 

an object considering contact points with friction and without slippage. In order to firmly grasp and 

manipulate the object, the grasp is considered to be an active form closure. Thus, each fingertip i is 

exerting a fingertip force 3

Ci f within the friction cone at the contact point. The grasping constrain 

between the robot and the object is done by the grasp matrix   6 k 3TT

Gk

T

G1G ...  JJJ  [23] which 

relates the contact forces  TT

Ck

T

C1C ... fff  at the fingertips to the resultant force and moment τO
6  

on the object:  

CGO fJ τ   (1) 

where fC and τO are both expressed in the object coordinate frame S0 fixed to the object mass center. 

This equation derives in the kinematics relation between velocity of the object 6

O x and velocity of 

the contact point 6

Ci v : 

OGiCi xJ v   (2) 

where xO denotes the position and orientation of the object in the contact point from S0. Extending 

Equation (2) for all the contact points and considering the object velocity with respect the camera 

coordinate frame, the following expression is obtained: 

C

OGCC xJ v   (3) 

where  TT

Ck

T

C1C ... vvv  is the vector which contains all the contact points velocities.  

As Figure 2 shows, a camera is fixed at the workspace in an eye-to-hand configuration in order to 

observe a set of features located at the surface of the manipulated object. The vector 

  2nT

nynx2y2x1y1x ,,...,,,,  ffffffs defines the image coordinates of the extracted features. From the 

interaction matrix  sLs  [24] it can be obtained the following relation: 

  C

Os xsLs    (4) 

which relates the image information rate of change s  and object features velocity in the 3D space with 

respect the camera coordinate frame, C

Ox .  

The finger Jacobian denoted by 3  3

Hi

J  relates the joint velocities of the i
th

 finger ( 3

i q ) 

with the fingertip velocities ( 3

Fi v ) referenced in camera coordinate frame SC: 

iHiFi qJ v   (5) 
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This finger Jacobian can be easily obtained from the typical robot Jacobian matrix and applying the 

known mapping from robot coordinate frame and camera coordinate frame SC. Extending Equation (5) 

to all the k fingers of the robotic hand, this relation yields: 

qJ v  HF  (6) 

where  TT

Fk

T

F1F ,...., vvv  is the vector which contains all the fingertip velocities,  TT

k

T

1 ... qqq    

represents the joint velocities of the robot hand and  HKH1H ...diag JJJ 
 
is the robot hand Jacobian 

which relates joint velocities and fingertip velocities measured from camera coordinate frame SC.  

If there is no slippage between the fingertips and the object, it can be considered that vC = vF. Applying 

these equalities in Equations (3) and (6), we can obtain the main kinematic constrain in a robotic 

manipulation system: 

qJ xJ   H

C

OGC
 (7) 

which relates object velocity from SC with the finger joint velocities q . This equation must be 

accomplished in order to maintain the contact points fixed. From this kinematic constrain, we can get a 

relation between image space and joint space in a robotic manipulation system by using the interaction 

matrix described in Equation (4). This relation can be expressed with the following equation: 

qJ sLJ  


HsGC  (8) 

where 


sL is the pseudo-inverse of the interaction matrix. From this equation, it can be obtained the 

joint velocities depending on the image features rate of change: 

sJsLJJq  


TsGCH  (9) 

where TJ  is the Jacobian matrix mapping from joint space to image space in this robotic  

manipulation system. 

3.2. Manipulation System Dynamics  

The dynamic model of the manipulation system can be divided into the dynamics description both 

the grasped object and the multi-fingered hand with the contact forces constrain. In this subsection, 

both dynamics equations will be given. 

The motion equation for the object based on the simple case of moving it in free space without any 

external force, can be described as: 

OOOSO  τgCxM    (10) 

where 66

O

M  is the inertia matrix of the object, 6

O C is the centrifugal and Coriolis vector, 
6

O g is the gravitational force and 6

O τ is the resultant force applied by the fingers. The variable 
6

S x is the desired object acceleration.  

With regard to the multi-fingered hand, we can assume its dynamics as the set of serial three-link 

rigid mechanism which correspond to the fingers. In this case, the dynamics equation of finger i can be 

described as: 

      iCi

T

iiFiiiFiiiFi ,  τfJqgqqCqqM    
(11) 
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where 13

i

q , 13

i

q  and 13

i

q are the vectors of generalized joint coordinates, joint 

velocities and joint accelerations of the finger i. Moreover, 33

Fi

M  is the symmetric positive 

definite finger inertia matrix, 13

Fi

C
 
and 13

Fi

g both denote the vector of centripetal and Coriolis 

forces and the gravitational force of the finger i, respectively. In addition, 13

i

τ  represents the 

applied motor commands (i.e., joint torques) in the finger i and 13

Ci

f is the contact forces exerted 

by the finger i at its contact point. Combining Equation (11) for all k the fingers, we obtain the 

dynamics model of a multi-fingered robotic hand (for the sake of clarity the time and joint dependences 

are not indicated): 

 τfJgCqM  C

T

HHHH
  (12) 

where  FkF1H ....diag MMM  ,  FkF1H ....col CCC  ,  FkF1H ....col ggg  ,  k1....col τττ  , 

 CkC1C ....col fff   are the composition of the matrices and vector for the whole system. The term 
C

T

H fJ   

represents the torques derived from the kinematic constrain in a robotic manipulation system represented 

by Equation (7). 

4. Optimal Control Framework 

As stated, Equation (12) represents the dynamics of a multi-fingered robot hand in a robotic 

manipulation system. If we do not take into account the kinematic constraint between hand-object 

(Equation (7)), the dynamic model of the multi-fingered robot hand becomes the following expression: 

 τgCqM  HHH


 
(13) 

where 
13kτ represents the applied motor commands at the joints’ fingers. In order to simplify this 

equation, we can write the robot hand dynamics as follows: 

cgH FτqM   (14) 

where 
HHcg gCF  . 

The dynamic model of a serial-link robot has been used in different approaches to control a robotic 

system for tracking [25]. Following this idea, the approach proposed in [21] gave a new perspective 

about tracking based on optimal control for nonlinear mechanical systems. This approach will be  

used in this paper in order to perform a visual tracking of the grasped object in a robotic  

manipulation system. 

Basically, the control approach suggested by [21] supposes a system with m constraints given by: 

0)t,,(  q q   (15) 

This equation may contain holonomic and/or non-holonomic constraints, and represents the task for 

the robotic system to be described in form of m constraints description. Differentiating these constraints 

with respect to time (assuming that φ is sufficiently smooth), the following equation can be obtained: 

   t,,t,, q qb q q q A    (16) 

where   3kmt,, q q A   and  t,, q qb   
1m are both matrix and vector obtained by differentiating 

the set of relations which satisfy the constrains represented by Equation (15). The goal of the optimal 

controller is to minimize the control torques of the mechanical system while performing a specific task 

taking into account the following function cost: 
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τWτΩ )t()t( T  (17) 

where )t(W  is a time-dependent weight matrix. According to [21], the function control that minimizes 

)t(Ω  of the mechanical system based on Equation (14) while performing the task described in  

Equation (16) is given by: 

   cg

1

H

2/11

H

1/2
FAMbWAM Wτ


   (18) 

where MH is the inertia matrix of the robotic system, in this case of the multi-fingered robot hand, and 

the symbol + denotes the pseudo-inverse for a general matrix. As it can be seen in Equation (18), the 

matrix W is an important depending variable in the control law and determines how the control effort 

is distributed over the joints.  

Although the optimal control is based on the robotic hand dynamic model of Equation (14), it can 

be applied to the robotic manipulation system model presented in Equation (12). This fact can be  

done considering the kinematic constrain between the robotic hand and the object (term 
C

T

H fJ   of 

Equation (12)) as a desired value in a hybrid control force of the robotic manipulation system  

(see Section 6).  

5. Constrained Task Description in the Robotic Manipulation System 

The main objective of the robotic manipulation system proposed is to control the grasping force to a 

desired value such that the friction condition is satisfied besides controlling the position of the object 

along a desired trajectory in the image space. Therefore, the task description as constraint is given by 

the following equation in the image space: 

      0dPdDd  ssKssKss   (19) 

where ds , ds  and ds  are the desired image space accelerations, velocities and positions, respectively. 

KP and KD are proportional and derivative gain matrices, respectively. This equation can be expressed 

with regard to image error in the following way: 

rsPsDd seKeKs    (20) 

where se  and se  are the image error and the time derivative of the error respectively. The variable rs  

denotes the reference image accelerations of our image space based controller. This reference control 

is related with joint accelerations by differentiating to the time Equation (9) after solving  

image velocities:  

qJs  
 Tr

 
(21) 

qJqJs  
 TTr

 (22) 

where 

TJ  is the pseudo-inverse of the Jacobian TJ . Equation (21) describes the relation between the 

reference control in the image space and the joint variables of the robot hand. We assume that TJ  is 

continuously differentiable with respect to joint coordinates q and that it has full rank. Using this last 

expression and replacing it into Equation (20), it is obtained the following expression: 

qJqJeKeKs  
 TTsPsDd

 (23) 
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From this equation, it can be possible to express the image tracking or task in the form of the 

constraints description of Equation (16) with:  

qJeKeKsb

J  A

 







TsPsDd

T
 (24) 

With this definition of A and b, the optimal control will minimize the torques of robot hand while 

performing a tracking in the image space. With regard to the manipulated object, the motion equation is 

determined by Equation (10). Using the relation described by Equation (1), the object motion yields: 

CGOOSO fJ gCxM    (25) 

where 
Sx is the object acceleration imposed by the reference controller. By differentiating with respect 

to the time Equation (4), we can relate the object acceleration and the reference control rs : 

ssssr xLxLs    (26) 

Solving the motion acceleration of the object from Equation (26) and replacing it in Equation (25), 

the following expression which relates the reference image acceleration and the desired behaviour of 

the object taken into account the contact forces is obtained: 

  CGOOssrsO fJgC xLsLM 
   (27) 

6. Dynamic Visual Control Framework 

This section describes a new optimal control framework for a robotic manipulation system using 

direct visual servoing. This control framework is based on the task description in the image space 

explained in the section above. 

6.1. Visual Controller  

As stated, the control function that minimizes the motor signals of a robot hand while performing 

the task described in Equation (14) is given by Equation (18). Replacing the variables concerned on the 

task description, A and b from Equation (24), the control law is set by: 

   cg

1

HTTsPsDd

2/11

HT

2/1
FMJqJeKeKsWMJ Wτ


    (28) 

As it can be seen, the control law (28) depends implicitly on the weighting matrix W and different 

values of this matrix can simplify the product   2/11

HT WMJ and consequently, the control law. 

Different control laws will be presented in the next section with different values of W. 

In order to demonstrate the stability of the control law, the closed loop is computed from  

Equations (14) and (28) as: 

   cg

1

HTTsPsDd

2/11

HT

2/1

cg FMJqJeKeKsWMJ WFqM


    (29) 

This Equation can be simplified by pre-multiplying its left and right side by the term 

  2/12/11

HT WWMJ
 : 

qJeKeKsqJ  
 TsPsDdT

 (30) 
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Using Equations (20) and (22), from Equation (30) it can be concluded that: 

sPsDs eKeKe    (31) 

Therefore, when 

TJ is full rank, an asymptotic tracking is achieved. This way, the convergence of 

the visual servo control law is demonstrated.  

6.2. Force Fingertip Control 

The manipulation of an object by a multi-fingered robot hand with fixed contact points alters the 

robot’s dynamics with a generalized contact force fc acting on the end effector of the fingers (see 

Equation (12)). In this framework, dynamic control of a robotic manipulation system is considered as a 

hybrid control produced from the interaction between a robot mechanism (robotic hand) and the 

environment (objet to be manipulated). This way, in this paper an approach for intending both to 

control the desired position of the object using visual features and the desired contact force exerted by 

the fingertips is presented.  

In order to incorporate a control which in practice keeps constant the contact forces without 

affecting the task achievement or image tracking, a modification of the control law defined in  

Equation (28) is performed. As it is shown in this equation, the task space is defined by the expression 

  2/11

HT

2/1
WMJW . Therefore, the term expressed as     1

2/12/11

HT

2/11

HT

2/1 ][ τWWMJWMJWI 


  

can be used to project the motor command τ1 onto the null space of the dynamic visual servo task. The 

fulfillment of the task is not affected by the choice of the control law τ1. Setting τ1 = CH + gH + τ0, the 

Coriolis, centrifugal and gravitational forces can be compensated. Using this modification, the control 

law yields as follows: 

   
     0

2/12/11

HT

2/11

HT

2/1

HHTsPsDd

2/11

HT

2/1

τWWMJWMJIW

gCqJeKeKsWMJ Wτ









 

 

(32) 

where the joint control law τ0 works in the null space of the task defined by   2/11

HT WMJ . In this 

paper, the term τ0 represents an additional component of the final controller which is used for contact 

force stabilization. For this reason, this term is defined as follows: 

d
T
H0 fJ τ   (33) 

where fd are the desired exerted contact forces of the fingertips which act in the null-space. Therefore, 

both the constraint imposed by the image tracking and the contact force can be set independently and 

accomplished with the control law presented in Equation (32). 

7. Derived Visual Servo Controllers 

One of the main contributions of the proposed framework is the possibility to generate different 

controllers to perform robotic manipulation tasks taking into account the robot dynamics and using 

visual-tactile information. Up to now, the control law has been written depending on the weighting 

matrix W. As stated, the choice of W plays an important role in the controller because it determines 

how the torques are distributed over the joints. In the next subsections, new control laws are obtained 

from the choice of different values of W. 
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7.1. Using W= MH
−2

 

Considering 2

H

MW  as weighting matrix, the control law from Equation (32) yields: 

   

     d

T

H

1

HH

1

HTH

1

HTH

cg

1

HTTsPsDdH

1

HTH

fJMMMJMMJIM

FMJqJeKeKsMMJM τ







 

 
(34) 

Simplifying this equation, the final control law gives the following expression:  

    d

T

H

1

HTTHHHTsPsDdTH fJMJJIMgCqJeKeKsJM τ 
   (35) 

As it can be seen in the Equation (35), this choice of the W matrix has allowed the decoupling of 

kinematics and dynamics of the robot hand in the control law. This is because the null-space term is 

based on TJ , a matrix with only kinematic contain.  

7.2. Using W= MH
-1

 

An important value for the control law due to its physical interpretation is 1

H

MW since it is 

consistent with the principle of d’Alembert [25]. Using this value for W, the control law expressed in 

the Equation (32) results as follows: 

   
     d

T

H

2/1

H

1/2

T

1/2

HT

2/1

H

HHTsPsDd

1/2

HT

2/1

H

fJMMJMJIM

gCqJeKeKsMJM τ







 
 (36) 

Applying the pseudo inverse as Q
+
 = Q

T
(Q˙Q

T
)
−1

 and simplifying this equation, the control law yields: 

   

  d

T

H

1

H

1T

T

1

HT

T

T

1

HH

HHTsPsDd

1T

T

1

HT

T

T

fJMJMJJMIM

gCqJeKeKsJMJJ τ



















 
 (37) 

7.3. Using W= DMH
−2

 

In this subsection, a new value of 2

H

 DMW , where D is a diagonal positive matrix, will be 

employed. This matrix allows distributing the torques to the joints of the robot hand, therefore, large 

weights in this matrix causes small torques. Using this value for W, the controller from Equation (37) 

results as follows: 

      

          d

T

H

2/12

H

2/12

H

1

HT

2/12

H

1

HT

2/12

H

HHTsPsDd

2/1

H

1

T

2/12

H

fJDMDMMJDMMJIDM

gCqJeKeKsDMMJDM τ
2

H















 

 (38) 

Simplifying the equation as before, the control law yields:  

   

  d

T

H

1

HT

1
T

T

1

T

T

T

1

H

HHTsPsDd

1
T

T

1

T

T

T

1

H

fJDMJJMJJDIDM

gCqJeKeKsJDJJDM τ
















 

 (39) 
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8. Experimental Results 

In the previous section, three visual controllers have been obtained using the proposed control 

framework. In this section, different results are described in order to evaluate the obtained controllers 

during manipulation tasks using the system architecture presented in Section 2. To do this, four visual 

features are extracted from the grasped object by using the eye-to-hand camera system. It is assumed 

that all the visual features are visible during the manipulation experiment. As stated, only three fingers 

of the robot hand and its three last degrees of freedom are employed in the manipulation task. 

8.1. Behavior in the Joint and Image Spaces 

In this section, the three controllers derived in Section 7 are evaluated in the joint and image space. 

The presented experiments consist of a manipulation task where the extracted image features must 

track the desired image trajectory represented in Figure 3a. This trajectory has been previously defined 

like a time-dependent function. In this case, the external eye-to-hand camera is located at a distance of 

50 cm observing the trajectory described by the four points located at the object. Figure 3b,c,d 

represents the obtained image trajectory when W = M
−2

, W = DM
−2

 and W = M
−1

, respectively. As 

this last figure shows, the tracking is correctly developed in the image space and the image error 

remains low (Table 1).  

Figure 3. Image trajectories obtained during the first set of experiments. (a) Desired image 

trajectory. (b) W = M
−2

. (c) W = DM
−2

. (d) W = M
−1

. 

 

In order to evaluate the behavior in the joint space during these manipulation experiments, the 

obtained torques are represented in Figure 4. For each joint of each finger, the torques when W = M
−2

, 

W = DM
−2

 and W = M
−1

 are indicated. When W = DM
−2

, the value of D allows us to indicate which 

joints will support high loads. In this experiment, the weight value corresponding to the first joint is 

twice the weight corresponding to the second and third joints. Comparing the torques of the first joints 

(first column in Figure 4) and the torques of the second joints (second column in Figure 4), it can be 

observed that when W = DM
−2

 (in red) lower torques in the first joints are obtained. Therefore, this 

diagonal matrix can be employed to distribute the torques and to diminish the effort in the desired 

joints. When W = M
−1

 a correct image tracking is also observed (see Figure 2), however a more 

oscillating behaviour is obtained in the joint space.  
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Figure 4. Torques obtained during the first set of experiments. (a) First finger. (b) Second 

finger. (c) Third finger. For each figure the torques obtained by the controllers indicated in 

the legend of Figure 3 are represented. 

 

The desired contact forces for the fingertips are regulated to 12 N during the experiment. Figure 5 

represents the mean total contact force during the experiment. Furthermore, Figure 6 indicates the 

distribution of the pressure measurements registered by the arrays of tactile sensors of the three fingers 

in an intermediate iteration during the manipulation task. The force contact error also remains low and 

the mean error when W = M
−2

, W = DM
−2

 and W = M
−1

 are 0.87 N, 1.01 N and 0.91 N respectively. 

Figure 5. Mean total contact force during the first set of experiments. (a) W = M
−2

.  

(b) W = DM
−2

. (c) W = M
−1

. 

 
  

(a) 

(b) 

(c) 
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Figure 6. Distribution of the pressure measurements registered by the arrays of tactile 

sensors of the three fingers in an intermediate iteration during the manipulation task  

(first task). 

   

Table 1. Mean image and force contact error during the first set of experiments. 

W Image Error (Px) Force Contact Error (N) 

M
−2 2.487 0.87 

DM
−2 2.621 1.01 

M
−1 4.010 0.91 

8.2. Behavior in the 3D Space 

In order to show the 3D behavior of the proposed controllers, this section presents a manipulation 

task where the grasped object must perform a rotation while the robot is doing a displacement. The 

image trajectories described by the four extracted marks using the three controllers are represented in 

Figure 7. As it was noted in the previous section, the three controllers guide correctly the object in the 

image space and the best behavior is obtained when W = M
−2

. The 3D trajectories described by the 

manipulated object are shown in Figure 8. This last figure only represents the face of the manipulated 

object observed by the eye-to-hand camera. The desired 3D trajectory is indicated by white rectangles 

and the desired 3D positions of the extracted features are indicated in blue. The robot is performing a 

desplacement in the Y axis direction while the manipulation does a rotation of the object. As in the 

previous cases, the 3D trajectories obtained when W = M
−2

, W = DM
−2

 and W = M
−1

 are indicated in 

green, red and orange respectively. As it is shown in Figure 8, a correct 3D behaviour is observed and 

the manipulation is correctly developed by using the proposed visual controllers. In this case, lower 

errors are obtained setting W = M
−2

.  

Finally, Figures 9 and 10 represent the evolution of the mean contact force and the distribuition of 

the pressure over the tactile sensors respectivley. As it can be seen, the desired contact force in this 

case is regulated to 12.5 N. Although the proposed visual controllers have shown a correct behavior to 

guide a robotic hand during manipulation tasks, the proposed framework can be employed to define 

new ones by modifying the value of the matrix W. 
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Figure 7. Image trajectories obtained during the second set of experiments. (a) Desired 

image trajectory. (b) W = M
−2

. (c) W = DM
−2

. (d) W = M
−1

. 

 

Figure 8. 3D trajectories of the manipulated object obtained during the second set  

of experiments. 

 

Figure 9. Mean total contact force during the second set of experiments. (a) W = M
−2

.  

(b) W = DM
−2

. (c) W = M
−1

. 
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Figure 10. Distribution of the pressure measurements registered by the arrays of tactile 

sensors of the three fingers in an intermediate iteration during the manipulation task 

(second task). 

   

9. Conclusions 

This paper presents a novel optimal control framework which allows defining new dynamic visual 

controllers in order to carry out the dexterous manipulation of a robotic manipulation system. Making 

use of both the dynamics of the robotic hand and the definition of the image trajectory as task 

description of the object motion, different image-based dynamic visual servoing systems are defined to 

dexterous manipulation with multi-fingered robotic hands. Force fingertip control has been proposed 

as an additional control command which acts in the null-space of the task which manages the object 

tracking. This way, the desired contact force can be set independently and accomplished with any of 

the control laws derived from optimal control framework. For that end, a set of tactile sensors has been 

used in the real experiments in order to verify the proposed control law. 

The approach has been successfully verified with the implementation of some derived controllers 

on a real robotic manipulation system. As shown, the behavior in task space is very similar and the 

image error remains low using different values of the weighting matrix. The fingertip interaction force 

is also regulated and low error is obtained during the manipulation tasks. 
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