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LIPSCHITZ COMPACT OPERATORS

A. JIMENEZ-VARGAS, J.M. SEPULCRE, AND MOISES VILLEGAS-VALLECILLOS

ABSTRACT. We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable)
operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz
p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz
weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely
parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a
Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of
the adjoint of a (weakly) compact linear operator.

INTRODUCTION

Let X be a pointed metric space with a base point denoted by 0 and let E be a Banach space over
the field of real or complex numbers K. In the case that X is a normed space, the base point of X will
be the origin. The Lipschitz space Lip,(X, E) is the Banach space of all Lipschitz mappings f from X
to E that vanish at 0, under the Lipschitz norm given by

Lip(f) = sup{M: xy€e X, x# y}
d(z,y)
The elements of Lipy (X, E) are referred to as Lipschitz operators and the space Lip, (X, K), denoted by
X7 is called the Lipschitz dual of X. A Lipschitz mapping f: X — E which satisfies the local flatness

condition:

b @10l

t=0 0<d(z,y)<t d(x,y)
is called a little Lipschitz function, and the little Lipschitz space lipy(X, E) is the closed subspace of
Lipy(X, E) formed by all little Lipschitz functions. In the case E = K, it is usual to write lip,(X). For
a complete study on these spaces, we suggest the Weaver’s book [17].

Recently, Lipschitz versions of different types of bounded linear operators have been investigated by
various authors. Farmer and Johnson [7] introduced the notion of Lipschitz p-summing operators and
the notion of Lipschitz p-integral operators between metric spaces and proved a nonlinear version of the
Pietsch factorization theorem. The Farmer—Johnson factorization theorem was used by Chen and Zheng
in [4] to give a nonlinear version of Maurey’s extrapolation theorem and deduce a nonlinear form of
the Grothendieck’s theorem. Moreover, Chen and Zheng [5] introduced and studied strongly Lipschitz
p-nuclear operators and Lipschitz p-nuclear operators. Chavez-Dominguez introduced and investigated
Lipschitz (p, r, s)-summing operators and Lipschitz (¢, p)-mixing operators in [2] and [3], respectively.

In this paper, we introduce natural notions of Lipschitz compact operators, Lipschitz weakly compact
operators, Lipschitz finite-rank operators and Lipschitz approximable operators. The concept of a free
Banach space F(X) over a pointed metric space X such that every Lipschitz operator f € Lipy(X, F)
has an extension to a bounded linear operator Ty € L(F(X), E) was introduced by Pestov [16] (see also
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[1]). This procedure provides the linearization of Lipschitz operators and so we can apply the methods
of Banach space theory.

The plan of the paper is as follows. Section 1 contains generalities on free Banach spaces that will be
needed later. The principal tool is Theorem 1.2, a result proved independently by Pestov [16], Weaver [17]
and Kalton [13]. Another essential tool is obtained in Lemma 1.1 where the preduality problem of X#
is analyzed by applying the Dixmier-Ng theorem, and this approach permits to describe the closed unit
ball of the Lipschitz-free space of X as the closed convex balanced hull in (X#)* of the called Lipschitz
evaluation functionals.

Section 2 focuses on the notions of Lipschitz compact (weakly compact, finite-rank, approximable)
operators from X to E and the extension of the theory of compact (weakly compact, finite-rank bounded)
linear operators to the setting of Lipschitz operators. We prove that every strongly Lipschitz p-nuclear
operator from X to F is a Lipschitz compact operator and every strongly Lipschitz p-integral operator
from X to F is a Lipschitz weakly compact operator. Chen and Zheng [5] introduced a class of Lipschitz
operators called strongly Lipschitz p-integral operators which differ from the strongly Lipschitz p-integral
operators discussed here (see Definition 2.4 and Remark 2.1). We also address slightly the problem as to
when X# has the approximation property.

In Section 3, and in terms of the Lipschitz transpose map of a Lipschitz operator, we formulate a
Lipschitz version of the (Gantmacher’s) Schauder’s theorem on the (weak) compactness of the adjoint of
a (weakly) compact linear operator.

Notation. Given Banach spaces E and F', we denote by L((E, Tg); (F, Tr)) the space of all continuous
linear operators from (F,Tg) to (F,Tr), where Tg and Tr are topologies on E and F, respectively. We
will not write 7z whenever it is the norm topology of E. Hence £(E, F) is the Banach space of all bounded
linear operators from E into F' with the canonical norm of operators. As is customary, E* stands for
L(E,K), Sg for the unit sphere of E, By for the closed unit ball of E and Jg for the canonical isometric
embedding from E into E**. As usual, w*, w and bw* denote the weak™ topology, the weak topology and
the bounded weak* topology, respectively. Finally, K(E, F), W(E, F) and F(E, F) represent the spaces
of compact linear operators, weakly compact linear operators and finite-rank bounded linear operators
from E into F', respectively.

1. FREE BANACH SPACES

This section contains some functional analytic results on free Banach spaces.

The space X# is a dual Banach space, that is, it is isometrically isomorphic to the dual of some
Banach space. The earliest reference to a predual of X# is the Arens-Eells space A(X) defined as the
completion of the vector space of molecules with respect to a natural norm. This space was called and
denoted so by Weaver in [17], but it was introduced by Arens and Eells in [1]. Without any reference
to molecules, Johnson [11] proved that the closed linear subspace of (X#)* spanned by the evaluation
functionals §,: X# — K, given by

0(f)=flx)  (feX¥)

with z € X, is a predual of X#. The terminology Lipschitz-free Banach space of X and the notation
F(X) for this predual of X# are due to Godefroy and Kalton [8].

By the Ng-Dixmier theorem [15], X7 is a dual space since By is a compact subset of X# for the
topology of pointwise convergence 7, by the Ascoli theorem. The content of the next lemma is surely
known but we include it here for future references. It is showed that the predual of X# provided by
the Ng-Dixmier theorem coincides with the Lipschitz-free Banach space of X. This justifies the previous
use in the statement of the lemma of the symbol F(X) for denoting the Ng-Dixmier’s predual of X7.
Furthermore, by applying the bipolar theorem, we give a precise description of Br(x) by means of the
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Lipschitz evaluation functionals
)
%o = dary)

defined on X#, where (z,y) runs through X = {(z,y) € X?: z #y}.
Before going to this, it is worth noting that if F is a Banach space, the polar set of a subset M C E' is

M°® ={e* € E*: |e"(e)| <1, Yee€ M},
and the prepolar set of a subset N C E* is
N, ={e€ E: |e*(e)] <1, Ve* € N}.

The bipolar of M is the set (M°),. We will denote by lin(M), lin(M) and aco(M) the linear hull, the
closed linear hull and the closed, convex, balanced hull of M in FE, respectively.

Lemma 1.1. Let X be a pointed metric space.

(i) The space F(X) of all linear functionals v on X# such that vy is 7,-continuous on Bx# is a
Banach space (in fact, a closed subspace of (X7)*).
(i) The evaluation map Qx: X# — F(X)* defined by

Qx(H() =(f)  (feX* yeF(X))

is an isometric isomorphism.
(iii) The closed unit ball of F(X) is the closed, convex, balanced hull of the set {6(1’@,): (x,y) € )?}

in (X7)*.
(iv) The space F(X) is the closed linear hull of the set {0,: x € X} in (X#)*.

Proof. (i) If v € F(X), then y(Bx#) is the continuous image of the 7,-compact set Bx#, so is compact
and hence bounded. Therefore v is continuous on X# and soy € (X#)*. This proves that F(X) C (X#)*.

We next prove that F(X) is a closed subspace of (X#)*. For it, let {7,} be a sequence in F(X)
converging in (X#)* to y € (X#)* and we must show that v € F(X). Let fo € Bx# and £ > 0 be given.
There exists m € N such that ||v,, — || < /3. Since 7, € F(X), there is a 7,-neighborhood G of fy
such that if f € GN By#, then |y, (f) — vm(fo)| < /3. For any f € G N Bxx%, we have

V() =)l < V() =1 (H)] + [y (f) = vm (fo) | + [y (fo) =~ (fo)| <&,

and this proves that + is continuous at fy with respect to the relative 7,-topology on By .

(ii) Tt is easy to check that Qx: X# — F(X)* is linear, injective and continuous (in fact, [|Qx (f)|| <
Lip(f) for all f € X#). Since each v € F(X) is 7,-continuous on Byx#, the restriction QX'BX# is
continuous with respect to the relative 7,-topology and the w*-topology o(F(X)*, F(X)). Since By is
Tp-compact, it follows that Qx (Bx#) is o(F(X)*, F(X))-compact. Also, Qx(Bx#) is convex and bal-
anced. By the bipolar theorem, Qx (Bx#) = (Qx(Bx#)o)° with respect to the duality (F(X)*, F(X)).
Note that

Qx(Bx#)o = {7 € F(X): [@x()(V <1, Vf € Bx#}
={reF(X): W(NI <1, Vf € Bx#}
which is the closed unit ball of F(X), and hence (Qx(Bx#)o)° is the closed unit ball of F(X)*. Hence
Qx(Bx#) = Br(x)-. It follows that Qx: X# — F(X)* is a surjective isometry.

(iii) It is an elementary check that each evaluation functional §, with 2 € X defined on X# belongs
to F(X), and hence so is every Lipschitz evaluation functional d(, ) with (z,y) € X. Since Q@x maps
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X# onto F(X)*, we have

Qx (Bxs) = {Qx(f): f € X*, (30 (N] < 1, V(w,y) € X}
= {@x(N: F € X, 1Qx () ()| €1, V(w,y) € X}
:{Fe; P ()| S 1, ¥ y) € X}
{(5@ y) - G X}O

and therefore .
Qx(Bx#)o = ({5(x,y)5 (z,y) € X} )O-
Moreover, Qx (Bx#)o = Br(x), as noted in (ii). Hence Br(x) is equal to aco ({(5(%@: (z,y) € )?}) by

the bipolar theorem, as desired.
(iv) From (iii) we infer that F(X) is the closed linear hull in (X#)* of the set {5(%?/): (z,y) € )~(}
Then (iv) follows since the linear hulls of this set and the set {d,: @ € X} coincide. Notice that
0p = 0z — 60 = d(x,0)0(4,0) (re X, xz#0).

A different approach to the preduality problem of X# was taken with the next known result.

Theorem 1.2. [16, 17, 13] Let X be a pointed metric space. Then there exists a Banach space F(X)
and an isometric embedding e: X — F(X) satisfying the following universal property: For each Banach
space E and each map f € Lipy(X, E), there is a unique operator Ty € L(F(X),E) such that Tfoe = f
that s, the diagram

commutes, and ||T¢|| < Lip(f). This property characterizes the pair (F(X), e) uniquely up to an isometric
isomorphism. The mapping f — Ty is an isometric isomorphism from Lipy(X, E) onto L(F(X), E).

This theorem was independently proved by Pestov in [16, Theorem 1]; Weaver in [17, Theorem 2.2.4]
with (F(X),e) = (E(X), tx) where B(X) is the Arens—Eells space of X and ¢x is the isometric embedding
from X into AE(X) that maps each point = to the atom myp; and Kalton in [13, Lemma 3.2] with
(F(X),e) = (F(X),dx) where F(X) is the Lipschitz-free Banach space of X and dx is the map x + d,
from X into F(X).

2. COMPACTNESS FOR LIPSCHITZ OPERATORS

If X is a metric space and E is a Banach space, by the Lipschitz image of a mapping f: X — F we
mean the set {(f(z) — f(y))/d(x,y): z,y € X, = # y}. It is immediate that f: X — FE is a Lipschitz
mapping if its Lipschitz image is a bounded subset of E, which motivates the following definition.

Definition 2.1. Let X be a pointed metric space and E a Banach space. We say that a base-point
preserving map f: X — E is Lipschitz compact (Lipschitz weakly compact) if its Lipschitz image is
relatively compact (respectively, relatively weakly compact) in E.
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We denote by Lipyx (X, E) and Lipyy (X, E) the sets of Lipschitz compact operators and Lipschitz
weakly compact operators from X to F, respectively. Plainly,

Lipgx (X, E) C Lipgw (X, E) C Lipy (X, E).

Note that Lipyx (X, F) and Lipyy (X, E) are linear subspaces of Lip, (X, F).

Observe that if X and F are Banach spaces and f: X — E is a linear (weakly) compact operator,
then f is a Lipschitz (weakly) compact operator since the Lipschitz image of f is justly f(Sx). So the
notion of Lipschitz (weakly) compact operators is really a generalization of (weakly) compact operators
in this context.

We next study the relation between the compactness of a Lipschitz operator f € Lip,(X, E) and the
compactness of its linearization Ty € L(F(X), E).

Proposition 2.1. Let X be a pointed metric space, E o Banach space and f € Lipg(X, E). If Ty is the
operator in L(F(X), E) corresponding to f under the identification in Theorem 1.2, then f is Lipschitz
compact if and only if Tt is compact.

Proof. Consider the map ég: (z,y) = 0(z,,) from X to (X#)*, take its image d5 (X) and observe that

13050 = { LTy e x o 24},

Since Br(x) = aco(d(X)) by Lemma 1.1, the proposition follows from the inclusions

Ty (8%(X)) C Ty (aeo(dg (X)) C aco(Ty (65 (X))
O

A remarkable factorization theorem due to Davis, Figiel, Johnson and Pelczynski [6] asserts that any
weakly compact linear operator factors through a reflexive Banach space. We next show that Lipschitz
weakly compact operators also factor through reflexive spaces.

Proposition 2.2. Let X be a pointed metric space, E a Banach space and f € Lipy(X, E). The following
are equivalent:
(i) The Lipschitz operator f is Lipschitz weakly compact.
(ii) The corresponding operator Ty in L(F(X), E) is weakly compact.
(iii) There exist a reflexive Banach space F, a bounded linear operator T € L(F,E) and a Lipschitz
operator g € Lipy(X, F) such that f =T o g.

Proof. The proof of Proposition 2.1 is valid to show the equivalence between (i) and (ii). If (ii) holds,
applying the Davis-Figiel-Johnson-Pelczynski theorem, there exists a reflexive Banach space F' and op-
erators T' € L(F,E) and S € L(F(X), F) such that Ty =T o0 S. Let g = Sodx. Clearly, g € Lipy(X, F)
and f =Tfodx =T oSodx =T og, and this proves (iii). Finally, (iii) implies (i) is trivial. O

We now show the ideal property for these new classes of Lipschitz operators.

Proposition 2.3. Let Y and X be pointed metric spaces and let E and F be Banach spaces. Let h €
Lipy(Y,X) and S € L(E, F). If f € Lipgi (X, E) (Lipow (X, E)), then Sfh € Lipyx (Y, F) (respectively,
Lipgy (Y, F)).

Proof. By [13, Lemma 3.1], there exists a unique operator h € L(F(Y), F(X)) such that héy = dxh.
Clearly, Sfh € Lipy(Y, F'). We have the equality Sfh = STyoxh = STfﬁ§y. Since STf?L € L(F(Y),F)
and, by Theorem 1.2, Ty, is the unique operator in L(F(Y'), F) satisfying that equality, it follows that
Tssn = STyh.
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Assume now that f € Lipgg (X, E). Then Ty € K(F(X), E) by Proposition 2.1. Since K(F(X), E)
is a Banach operator ideal, then Tss, € K(F(Y), F) which implies that Sfh € Lipgg (Y, F') again by
Proposition 2.1.

The another case can be proved similarly, but we prefer a new approach. If f € Lipg, (X, E), then f
factors as T'g through a reflexive Banach space G with g € Lipy(X,G) and T € £L(G, E) by Proposition
2.2, and so Sfh = STgh which implies that Sfh € Lipgy (Y, F') by the same proposition. O

By analogy with the preceding notions, we introduce the following.

Definition 2.2. Let X be a pointed metric space and FE a Banach space. A Lipschitz operator f €
Lipy(X, E) has Lipschitz finite dimensional rank if the linear hull of its Lipschitz image is a finite dimen-
sional subspace of E. In that case we define the Lipschitz rank Lrank(f) of f to be the dimension of this
subspace.

This concept is closely related to the following. Let us recall that if X is a set and F is a linear space,
then a map f: X — F is said to have finite dimensional rank if the linear hull of its image is a finite
dimensional subspace of E in whose case the rank of f, denoted by rank(f), is defined as the dimension

of lin(f(X)).

Proposition 2.4. Let X be a pointed metric space, E a Banach space and f € Lipy(X, E). The following
are equivalent:
(i) The map [ has finite dimensional Lipschitz rank.
(ii) The map f has finite dimensional rank.
(iii) The linearization Ty € L(F(X), E) has finite rank.
In that case, lin(f(X)) = T¢(F(X)) and Lrank(f) = rank(f) = rank(T}).

Proof. In Lemma 1.1 (iv), we have proved that lin {é(xyy): (z,y) € X'} =lin{d,: = € X} and therefore

hn{w.(,y)e){}—l {f(z): x € X}

for any function f € Lipy(X, F). The equivalence between (i) and (ii) and that Lrank(f) = rank(f)
follow from this observation. We now prove that (ii) is equivalent to (iii). If f has finite dimensional
rank, then lin(f(X)) is finite dimensional and therefore closed in E. Invoking Lemma 1.1 and Theorem
1.2, we have
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We denote by Lipyp(X, E) the set of all Lipschitz finite-rank operators from X to E. Note that
Lipgp (X, E) is a linear subspace of Lipyx (X, E). It seems natural to introduce the following class of
Lipschitz operators.

Definition 2.3. Let X be a pointed metric space and let E be a Banach space. A Lipschitz operator
f € Lipy(X, E) is said to be approximable if it is the limit in the Lipschitz norm Lip of a sequence of
Lipschitz finite-rank operators from X to E.

It is clear that every Lipschitz approximable operator from X to E is Lipschitz compact by applying
Theorem 1.2 and Propositions 2.1 and 2.4.

We recall that a Banach space E is said to have the approximation property if given a compact set
K C E and € > 0, there is an operator T € F(E, E) such that |7z — z|| < ¢ for every z € K. The
approximation property was introduced by Grothendieck [10], who proved that a dual Banach space E*
has the approximation property if and only if given a Banach space F, an operator S € K(E, F) and
e > 0, there is an operator T' € F(E, F) such that ||T' — S| < e. Concerning the approximation property
in Lipschitz function spaces, we can cite the papers by Johnson [12] and Godefroy and Ozawa [9].

Combining the aforementioned result of Grothendieck with Theorem 1.2 and Propositions 2.1 and 2.4,
we next deduce that a necessary and sufficient condition for X# to have the approximation property is
that, for each Banach space E, every Lipschitz compact operator from X to F is Lipschitz approximable.

Corollary 2.5. Let X be a pointed metric space. Then X# has the approzimation property if and
only if for each Banach space E, ¢ > 0 and f € Lipyx (X, E), there exists g € Lipyp(X, F) such that

Lip(f —g) <e.
From Theorem 1.2 and Propositions 2.1, 2.2 and 2.4 we infer the following identifications.

Corollary 2.6. Let X be a pointed metric space and E a Banach space. Then the map f — Ty is an
isometric isomorphism between the following spaces:
(i) From Lipyg (X, E) onto K(F(X), E).
(ii) From Lipgy (X, E) onto W(F(X), E).
(iii) From Lipyp(X, E) onto F(F(X), E).

There is a plentiful supply of Lipschitz compact operators and Lipschitz weakly compact operators as
we see next.

Let us recall (see [5, Theorem 2.2]) that given a pointed metric space X and a Banach space F, a
Lipschitz operator f € Lipy(X, F) is said to be strongly Lipschitz p-nuclear (1 < p < o) if there exist
operators A € L(¢,,E) and b € Lipy(X,¢) and a diagonal operator My € L({,¥,) induced by a
sequence A € £, such that the following diagram commutes:

The triple (A, b, A) is called a strongly Lipschitz p-nuclear factorization of f.
Proposition 2.7. Let X be a pointed metric space, E a Banach space and 1 < p < oo. Ewvery strongly
Lipschitz p-nuclear operator from X to E is Lipschitz compact.

Proof. Let f: X — FE be a strongly Lipschitz p-nuclear operator and take a strongly Lipschitz p-nuclear
factorization
b M A
f=AMb: X =4y =4, > E.
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We can find sequences a € ¢y and 7 € £, such that A\, = «,7, for every n € N. Consider the diagonal
operators M : loo — co and M;: co — £,. Then we have the factorization

F=AMMb: X B0 Yo %0, A E.

Note that M, € K(£,co) and therefore M, € Lip, (Yo, co) by a remark following Definition 2.1. Then
f € Lipyx (X, E) by Proposition 2.3. O

In analogy with the definition of strongly Lipschitz p-nuclear operator, we introduce the following.
Definition 2.4. Let X be a pointed metric space, E a Banach space and 1 < p < oo. A Lipschitz
operator [ € Lipy(X, E) is called a strongly Lipschitz p-integral operator if there exists a finite measure
space (2,3, 1), a bounded linear operator A € L(L, (1), E**) and a Lipschitz operator b € Lip (X, Loo (1))
giving rise to the commutative diagram:

JE
x—t g JE . gu
b A
Icp
LOO(,“) Lp(/’)

where Iog p: Loo(pt) — Lp(p) is the formal inclusion operator. The triple (A, b, p) is called a strongly
Lipschitz p-integral factorization of f.

Remark 2.1. Chen and Zheng [5] introduced a class of Lipschitz operators called strongly Lipschitz p-
integral operators which differ from the strongly Lipschitz p-integral operators discussed here. A Lipschitz
mapping between Banach spaces f: X — E is strongly Lipschitz p-integral in the terminology of Chen and
Zheng if f has a factorization Al pb but requiring, justly backward as in Definition 2.4, that A: L,(u) —
E** is a Lipschitz mapping and b: X — Lso(p) is a bounded linear operator.

Proposition 2.8. Let X be a pointed metric space, E a Banach space and 1 < p < co. FEwvery strongly
Lipschitz p-integral operator from X to E is Lipschitz weakly compact.

Proof. Let f: X — E be a Lipschitz p-integral operator and select a strongly Lipschitz p-integral factor-
ization
b Ioo,p A x5k
Jpf = Al pb: X = Loo(p) =" Lp(p) = E*".

If p > 1, then L,(p) is reflexive, hence Jgf is Lipschitz weakly compact by Proposition 2.2, and so is
also f by Proposition 2.3 (or Proposition 2.2). For the case p = 1, take any ¢ > 1 and factor the operator
I Loo(pt) — Ly (u) through the space L, () in the form

Im)‘? Iq;
Ioog = Ig1lx,q: Loo(ﬂ) — Lq(ﬂ) & Ll(ﬂ),

where I, ; and I 4 are the canonical injections. Then we arrive at the same conclusion. O

3. SCHAUDER TYPE THEOREMS FOR LIPSCHITZ OPERATORS

For each f € Lipy(X, E), the Lipschitz adjoint map f#: E# — X% given by f#(g) = go f for all
g € E*, is a continuous linear operator and ||f#|| = Lip(f). The restriction of f# to E* defines a
continuous linear operator into X# called the Lipschitz transpose map of f and denoted here by ff. By
means of this map, we may identify the space Lip,(X, F) with the closed subspace of L(E*, X#) formed
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by all continuous linear operators from (E*,w*) to (X# w*). Recall that we can consider the weak*
topology on X#_ that is, the topology

{Q%'(U): U is open in (F(X)*,w*)},
the isometric isomorphism Qx: X# — F(X)* being as in Lemma 1.1.

Theorem 3.1. Let X be a pointed metric space and E a Banach space. Then the map f +— f! is an
isometric isomorphism from Lipy(X, E) onto L((E*,w*); (X%, w*)).

Proof. Let f € Lipy(X, E). We have

Qx(f'(e"))(6z) = fH(e")(x)
e*(f(z))
e (T(6z))
Ty)*(e*)(6z)

, we infer that Qx f* = (Ty)* and, consequently,

= (
for any e* € E* and # € X. Since F(X) = lin(dx (X))
f'= Q%' (Ty)*. Let us write
Lipg(X,E) — L(FX),E) — L(E*w); (FX)"w*)) — LI(Ew); (X#,w"))
f = Ty = (Ty)* - QX' (Ty)*

where each mapping is an isometric isomorphism. This proves the theorem. O

Our next aim is to get a Lipschitz version of the Gantmacher’s theorem on the weak compactness
of the adjoint of a weakly compact linear operator. First, we state a general result for Banach spaces.
One may refer to Megginson’s book [14] for definitions and properties of the weak™ topology, the weak
topology and the bounded weak* topology.

Lemma 3.2. Let E, F be Banach spaces. Then:
() W(E", F*) 0 LI(E™,w); (F*,w")) = LI(E*, w”); (F*,w)).
(i) K(E*, F*)NL(E*,w*); (F*,w*)) = L((E*, bw*); F*).

Proof. (i) Let T € L((E*,w*); (F*,w)). Obviously, T € L((E*,w*); (F*,w*)) and therefore T' = S* for
some S € L(F,E). Since S* € L((E*,w*); (F*,w)), it turns out that S € W(F, E) by Gantmacher—
Nakamura’s theorem [14, 3.5.14]. Then Gantmacher’s theorem [14, 3.5.13] says us that T = S* €
W(E*,F*) and so T € W(E*, F*) N L((E*,w*); (F*,w*)).

Conversely, let T € W(E*, F*) N L((E*,w*); (F*,w*)). Then T = S* for some S € L(F, E). Invoklng
again the two aforementioned theorems, we obtain that S € W(F, E) and T = S* € L((E*,w*); (F*,w)).

(ii) Let T € L((E*,bw"); F*). Then Jp(u) o T € L((E*,bw");K) for all u € F and, by [14, 2.7.8],
Jp(u)oT € L((E*,w*);K) for all u € F, that is, T € L((E*,w*); (F,w*)). Hence T'= S* for some
S € L(F,E). Then S* € L((E*,bw*); F*) which implies that S € IC(F, E) by [14, 3.4.16]. It follows
that T = S* € K(E*, F*) by Schauder’s theorem, and so T' € K(E*, F*) N L((E*, w*); (F*,w*)). For
the reverse inclusion, take T € IC(E*, F*) N L((E*,w*); (F*,w*)). Then there is a S € L(F, F) such
that S* = T. By Schauder’s theorem, S € K(E, F), and, by [14, 3.4.16], we conclude that T' = S* €
L((E*, bw*); F*). O

In particular, Lemma 3.2 yields the following result. Note that the spaces of weakly compact and
compact linear operators between Banach spaces are Banach operator ideals and that the isometric
isomorphism Qx : X# — F(X)* is continuous with respect to the weak* topologies, weak topologies and
norm topologies.

Lemma 3.3. Let X be a pointed metric space and E a Banach space. Then:
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(i) W(E*, X#) N LI(E*,w*); (X#,w*)) = L((E*,w*); (X*,w)).
(i) K(E*, X#) N LI(E* w); (X#,w*)) = L((B*, bw*); X#).

We now are ready to state the announced result.
Proposition 3.4. Let X be a pointed metric space, E a Banach space and f € Lipy(X, E). The following

are equivalent:
(i) f is weakly compact Lipschitz.
(i) f* is weakly compact from E* to X#.
(iii) f* is continuous from (E*,w*) to (X7, w).
Proof. (i) < (ii) follows from
f € Lipgy (X, E) & Ty € W(F(X), E)
& (Ty)" e W(E, F(X)7)
< Qy (Ty)" € W(E*, X7)
& fle W(E*, X7)
by applying Proposition 2.2, the Gantmacher’s theorem, the fact that the space of weakly compact linear
operators is a Banach operator ideal and the equality f! = Q}l (Ty)* as noted in the proof of Theorem

3.1.
(#4) < (4i7) turns out inmediately from the equality (i) in Lemma 3.3. O

We now formulate a Lipschitz version of the Schauder’s theorem on the compactness of the adjoint of
a compact linear operator.

Proposition 3.5. Let X be a pointed metric space, E a Banach space and f € Lipy(X, E). The following
three statements are equivalent:
(i) f is compact Lipschitz.
(ii) f* is compact from E* to X¥.
(iii) f* is continuous from (E*,bw*) to X7.
Proof. (i) < (i1): From Proposition 2.1, the Schauder’s theorem and the fact that the space of compact
linear operators between Banach spaces is a Banach operator ideal, we deduce that

feLipyg (X, FE) < Ty € K(F(X),E)
& (Ty)" € K(E", F(X)")
& 1= Q3 (Ty)" e K(B*, X#)
(#1) < (iit) follows clearly from the equality (ii) in Lemma 3.3. O
From the results obtained above we deduce the ensuing identifications.

Corollary 3.6. Let X be a pointed metric space and E a Banach space. Then the map f — f! is an
isometric isomorphism between the following spaces:

(i) From Lipgy (X, E) onto L((E*,w*); (X%, w)).

(i) From Lipgg (X, E) onto L((E*,bw*); X#).

Proof. In order to prove (i), we only have to check that the map f + f! is surjective according to Theorem
3.1 and Proposition 3.4. Let T € L((E*,w*); (X#,w)). Then QxT € L((E*,w*); (F(X)*,w)) and this
set is contained in L((E*, w*); (F(X)*,w*)). It follows that QxT = S* for some S € L(F(X), E). Hence
S* e L((E*,w*); (F(X)*,w)) and, by the Gantmacher-Nakamura’s theorem, S € W(F(X), E). Now,
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S =T for some f € Lipy(X, E) by Theorem 1.2, and also f € Lipyy, (X, E) by Proposition 3.4. Finally,
(ii) follows analogously from Theorem 3.1, Proposition 3.5 and Theorem 1.2 by taking into account

the equality (ii) in Lemma 3.3.
O

In the case that X is compact, the same map identifies lip,(X, E') with the space of continuous linear
operators from (E*, bw*) to lipy(X).

Proposition 3.7. Let X be a pointed compact metric space and E a Banach space. Then the map f +— f!
is an isometric isomorphism from lipy(X, E) onto L((E*,bw*);lipy(X)).

Proof. Let f € Lipy(X, E). For any z,y € X with x # y, we have

@) = fWll _ o, €U @) = F@)
d(x,y) e*EBgx d(z,y)
_ sy @) = ()W)
e*€Bpx d(l‘,y) '

We may deduce that if f € lipy(X, E), then for each e* € Bg- the function f(e*) is in lipy(X) and
Lip(ft(e*)) < Lip(f). Hence f*(Bg-~) is a bounded subset of lip,(X). Moreover,
hm sy L@ LW _
d(,y) =0 * € d(,y)

Then the set f'(Bg-) is relatively compact in lipy(X) by [11, Theorem 3.2], that is, f* € K(E*,lipy(X)).
Consequently, f!is in K(E*, X#) N L((E*,w*); (X#,w*)) that coincides with £((E*,bw*); X#) by the
equality (ii) in Lemma 3.3. Since f!(E*) C lipy(X), then f* € L((E*,bw*);lipy(X)). Hence the map
= f'is well defined from lipy (X, E) to L((E*,bw*);lipy(X)). By Theorem 3.1, it is a linear isometry.
To check the surjectivity, let T' € L((E*, bw*);lipy(X)). We can see T' as a continuous linear operator
from (E*,bw*) to X#. By Corollary 3.6, T = f* for some f € Lipyx (X, F). Since T € K(E*, X#) and
T(E*) C lipg(X), we have T € K(E*,lipy(X)). Then, by applying again [11, Theorem 3.2] we obtain

i t( % _ft( %
@ = _ s @ - )W)
dy)—0  d(z,y) d(2,y) =0 e* € B e d(z,y)
o ap TEO@-TEWI
d(z,y) =0 e* € B d(z,y)
and so f € lipy(X, E). This completes the proof. O
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