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Abstract. The aim of the present paper is to study the periodic orbits of
a perturbed self excited rigid body with a fixed point. For studying these
periodic orbits we shall use averaging theory of first order.

1. Introduction and statement of the main results

The equations of the motion of a rigid body with moments of inertia A,B,C
(A ≤ B ≤ C) under a external torqueM = (M1,M2,M3) are

(1)

dπ1
dt

=

(
B − C
BC

)
π2π3 +M1,

dπ2
dt

=

(
C −A
AC

)
π1π3 +M2,

dπ3
dt

=

(
A−B
AB

)
π1π2 +M3,

where Π = (π1, π2, π3) is the total angular momentum of the rigid body andMi

are smooth functions depending on the variables π1, π2, π3. This rigid body is
usually called at the literature self–excited rigid body, see for more information
on this mechanical system Leimanis [9] or Deprit et alt. [2] In the following,
we assume that we work with a rigid body quasi–axisymmetric under small
torques, i.e. B = A + ε, and the functions Mi = εfi(π1, π2, π3) with ε a
small real parameter. Under these assumptions, very usual in many practical
applications, the equations of motion (1) are reduced to

(2)

dπ1
dt

= −
(
C −A− ε
(A+ ε)C

)
π2π3 + εf1(π1, π2, π3),

dπ2
dt

=

(
C −A
AC

)
π1π3 + εf2(π1, π2, π3),

dπ3
dt

= −
(

ε

A(A+ ε)

)
π1π2 + εf3(π1, π2, π3),
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The objective of this work is, by means of the Averaging Theory (see The-
orem 4 of the Appendix) to provide a system of nonlinear equations whose
simple zeros provide periodic solutions of (2). This idea has been used in
previous works as an integrability criterium and for obtaining approximation
solutions to real problems, see for instance [3, 4, 5, 6]. In order to present our
results we need some preliminary definitions and notation.

We define the following functions in the open domain Ω = {(R,Z) ∈ R2 /
0 < R < +∞, 0 < Z < +∞} given by, F1(R,Z) as
(3)

1

πZ

2π∫
0

(
cos θ f1

(
R cos θ

2α
,
R sin θ

2α
,Z

)
+ sin θ f2

(
R cos θ

2α
,
R sin θ

2α
,Z

))
dθ

and F2(R,Z) =
2α

πZ

2π∫
0

f3

(
R cos θ

2α
,
R sin θ

2α
,Z

)
dθ,

with α =
C −A
CA

. A zero (R∗
0, Z

∗
0 ) of the nonlinear system

(4) F1(R,Z) = 0, F2(R,Z) = 0,

such that

det

(
∂(F1,F2)

∂(R,Z)

∣∣∣∣
(R,Z)=(R∗

0 ,Z
∗
0 )

)
6= 0,

is called a simple zero of system (4).
Our main results on the periodic solutions of the self-excited rigid body (2)

are the following.

Theorem 1. Then for ε 6= 0 sufficiently small and for every simple zero
(R∗

0, Z
∗
0 ) 6= (0, 0) of the nonlinear system (4), then the self-excited rigid body

(2) has a periodic solution (π1(t, ε), π2(t, ε), π3(t, ε)) tending when ε → 0 to(
R∗

0

2α
, 0, Z∗

0

)
.

Theorem 1 is proved in section 2. Its proof is based in the averaging theory
for computing periodic solutions, see the appendix.

We provide two applications of Theorem 1 in the following two corollar-
ies, which will be proved in section 3, and example of perturbed maps where
Theorem 1 not provides information, see section?? for details.

Corollary 2. If f1(π1, π2, π3) = −π23π1, f2(π1, π2, π3) =
2

3

(
π33π2

2
+ π3π2

)
and f3(π1, π2, π3) = π23 − 2π43π

2
1 then the differential equation (2) for ε 6= 0

sufficiently small has two periodic solutions (π1(t, ε), π2(t, ε), π3(t, ε)) tending
when ε→ 0 to the following initial conditions

(1, 0, 1) and (X∗
0 , Y

∗
0 ) =

(
1

2
, 0, 2

)
,
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respectively.

Corollary 3. If f1(π1, π2, π3) = −α(π1 + π2), f2(π1, π2, π3) = α3π32 and
f3(π1, π2, π3) = 1 − α2π21π3 then the differential equation (2) for ε 6= 0 suffi-
ciently small has one periodic solution (π1(t, ε), π2(t, ε), π3(t, ε)) tending when

ε→ 0 to the following initial condition

(
2
√

3

3α
, 0,

3

2

)
.

2. Proof of the Theorem 1

Proof of the Theorem 1. Introducing the change of variables

π1 =
1

2α
R cos θ, π2 =

1

2α
R sin θ, π3 = Z,

in the system (2) by means of the following relations

dR

dt
=
π1
dπ1
dt

+ π2
dπ2
dt

R
,
dθ

dt
=
π1
dπ2
dt
− π2

dπ1
dt

R2
,
dZ

dt
=
dπ3
dt

,

we obtain, to first order in the small parameter ε, the following system of
differential equations

(5)

dR

dt
= εF1(R, θ, Z) +O(ε2),

dθ

dt
=

Z

4α
+O(ε),

dZ

dt
= εF2(R, θ, Z) +O(ε2),

with

F1(R, θ, Z) =
∆

4α2C2
,

F2(R, θ, Z) = f3

(
R cos θ

2α
,
R sin θ

2α
,Z

)
− R2(1 + αC)2 sin 2θ

8α2C
.

where ∆ is equal to 2αC2 cos θ f1

(
R cos θ

2α
,
R sin θ

2α
,Z

)
+ 2αC2 sin θ

f2

(
R cos θ

2α
,
R sin θ

2α
,Z

)
+RZ(1 + αC)2 cos θ.

Using the equation
dθ

dt
=

Z

4α
+ O(ε) the system (5) is reduced to a planar

system, 2π−periodic in the variable θ in the following form

(6)

dR

dθ
= ε

4αF1(R, θ, Z)

Z
+O(ε2),

dZ

dθ
= ε

4αF2(R, θ, Z)

Z
+O(ε2),
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in the set Ω1 = {(R, θ, Z) ∈ R3 / 0 < R < +∞, θ ∈ S1, 0 < Z < +∞}. System
(6) is in normal form for using, see the Appendix. Computing the averaged
system we obtain

dR

dθ
= εF1(R,Z) +O(ε2),

dZ

dθ
= εF2(R,Z) +O(ε2),

in the open set Ω = {(R,Z) ∈ R2 / 0 < R < +∞, 0 < Z < +∞} with
F1(R,Z) and F2(R,Z) given by (3). Hence Theorem 1 is proved. �

3. Proof of the corollary 2 and 3

Proof of the corollary 2. Under the assumptions of Corollary 2 the nonlinear
system (4) becomes

F1(R,Z) =
R(2− 3Z + Z2)

6α
,

F2(R,Z) =
Z

2

(
8α− 2R2Z2

α

)
.

This system has the two real solutions

(R∗
0, Z

∗
0 ) = (2α, 1) and (R∗

0, Z
∗
0 ) = (α, 2) .

Moreover

det

(
∂(F1,F2)

∂(R,Z)

∣∣∣∣
(R,Z)=(2α,1)

)
= −4

3

and

det

(
∂(F1,F2)

∂(R,Z)

∣∣∣∣
(R,Z)=(α,2)

)
=

8

3

check that these solutions are simple. So, by Theorem 1 we only have two
periodic solutions of (2). This completes the proof of the corollary. �

Proof of the corollary 3. Under the assumptions of Corollary 3 the nonlinear
system (4) becomes

F1(R,Z) =
R(3R2 − 16)

Z
,

F2(R,Z) =
α(8−R2Z)

2Z
.

This system has the only solution

(R∗
0, Z

∗
0 ) =

(
4
√

3

3
,
3

2

)
.

Moreover

det

(
∂(F1,F2)

∂(R,Z)

∣∣∣∣
(R,Z)=(R∗

0 ,Z
∗
0 )

)
= −32α

27
6= 0
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check that these solutions are simple. So, by Theorem 1 we only have one
periodic solutions of (2). This completes the proof of the corollary. �

4. Appendix

Now we shall present the basic results from averaging theory that we need
for proving the results of this paper.

The next theorem provides a first order approximation for the periodic so-
lutions of a periodic differential system, for the proof see [1] and [10].

Consider the differential equation

(7) ẋ = εF1(t, x) + ε2R(t, x, ε), x(0) = x0

with x ∈ D ⊂ Rn, t ≥ 0. Moreover we assume that both F1(t, x) and F2(t, x)
are T periodic in t. Separately we consider in D the averaged differential
equation

(8) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1

T

∫ T

0
F1(t, y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn
out to correspond with T–periodic solutions of equation (8).

Theorem 4. Consider the two initial value problems (7) and (8). Suppose:
(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x

2, F2 and its Jacobian
∂F2/∂x are defined, continuous and bounded by an independent con-
stant ε in [0, ∞)×D and ε ∈ (0, ε0].

(ii) F1 and F2 are T–periodic in t (T independent of ε).
(iii) y(t) belongs to Ω on the interval of time [0, 1/ε].

Then the following statements hold.
(a) For t ∈ [1, ε] we have that x(t)− y(t) = O(ε), as ε→ 0.
(b) If p is a singular point of the averaged equation (8) and

det

(
∂(f1 + εf2)

∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T–periodic solution ϕ(t, ε) of equation (7) which
is close to p such that ϕ(0, ε)→ p as ε→ 0.
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