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Abstract: Some chiral β-amino alcohols have been evaluated as potential ligands for the 

ruthenium-catalyzed asymmetric transfer hydrogenation (ATH) of N-phosphinyl ketimines 

in isopropyl alcohol. The ruthenium complex prepared from [RuCl2(p-cymene)]2 and 

(1S,2R)-1-amino-2-indanol has shown to be an efficient catalyst for the ATH of several  

N-(diphenylphosphinyl)imines, affording the reduction products in very good isolated 

yields and enantiomeric excesses up to 82%. The inherent rigidity of the indane ring 

system present in the ligand seems to be very important to achieve good 

enantioselectivities. 

Keywords: N-(diphenylphosphinyl)imine; asymmetric transfer hydrogenation; ruthenium 

catalyst; β-amino alcohol; isopropyl alcohol 

 

1. Introduction 

Amines are very important targets in organic chemistry since they are key substrates in organic 

synthesis, as well as in pharmaceutical and agrochemical research fields. In addition, chiral amines 

have been extensively used as resolving agents [1–4], starting materials for the preparation of 

therapeutic drugs [5] and chiral auxiliaries in asymmetric synthesis [6–8]. Due to this, synthetic 

chemists have made great efforts in order to implement efficient procedures for the preparation of 

chiral amines [9,10] among which the reduction of iminic substrates plays a capital role. In recent 

OPEN ACCESS



Appl. Sci. 2012, 2   

 

 

2

years, the asymmetric transfer hydrogenation (ATH) has emerged as a powerful, convenient and  

wide-spread methodology to perform the reduction of C=X bonds (X = O or NR) [11] and it has 

become the second most used reduction methodology for this kind of functional group, just behind 

hydrogenations with molecular hydrogen. The ATH protocol presents several advantages: it is 

operationally simple, proceeds under mild reaction conditions, generally uses low catalyst loadings and 

avoids the handling of hazardous chemicals such as metallic hydrides or hydrogen gas. The ATH of 

prochiral ketones affords enantiomerically enriched secondary alcohols with excellent results [12–19]. 

Nevertheless, the asymmetric reduction of iminic compounds by transfer hydrogenation yielding chiral 

amines still remains underdeveloped and represents a challenging objective [20,21]. 

Due to the low electrophilic character of the iminic carbon, substrates in which the nitrogen atom is 

bonded to an activating group (aryl, alkoxy, amino, sulfinyl, sulfonyl or phosphinyl) are generally used 

in reduction methodologies leading to chiral amines. The phosphinyl group is very attractive since its 

removal from the reduction products can be conveniently achieved under mild acidic conditions, 

leading to the free primary amines [22,23]. N-phosphinyl imines have found a variety of synthetic 

applications in asymmetric processes [10,24,25]. For instance, the preparation of chiral amines can be 

achieved by stereoselective reduction of N-phosphinyl ketimines through different synthetic 

approaches such as hydrogenation [26–28], hydrosilylation [29–33], Meerwein-Schmidt-Ponndorf-

Verley (MSPV) reaction [34] or the use of boron [35] and aluminium hydrides [36]. 

Although the transfer hydrogenation protocol has been already applied to the reduction of different 

iminic substrates bearing alkyl [18], benzyl [17,18], aryl [17,18], sulfonyl [13,18,37] or sulfinyl [38–41] 

groups attached to the nitrogen atom, there are only a few examples on the use of N-phosphinyl imines 

as substrates [18,42]. In the last years, we have been interested in the use of β-amino alcohols as 

ligands for ruthenium complexes used as catalysts for the ATH of imines, especially  

N-(tert-butylsulfinyl)imines [38–41]. Since, to the best of our knowledge, the use of β-amino alcohols 

as chiral ligands has not been reported so far for the ATH of N-(diphenylphosphinyl)imines, we 

became interested in trying to apply our methodology to those substrates. Thereby, herein we present 

our preliminary results on the reduction of phosphinyl imines in isopropyl alcohol with ruthenium 

complexes bearing chiral β-amino alcohols. 

2. Experimental Section 

2.1. General 

All glassware was dried in an oven at 100 °C and cooled to room temperature under argon before use. 

All reactions were carried out under an argon atmosphere. Ketone oximes were prepared according to a 

literature procedure [43]. Commercially available triethylamine, chlorodiphenylphosphine,  

[RuCl2(p-cymene)]2, ligand L1 and the anhydrous solvents CH2Cl2, Et2O and i-PrOH were used as 

received. Potassium tert-butoxide was heated in a Kugel-Rohr apparatus at 170–180 °C under vacuum 

for 4 h before use. Column chromatography was performed with silica gel 60 of 230–400 mesh. When 

mentioned, purification by column chromatography on deactivated silica gel means that, before adding 

the reaction crude to the column, the latter was washed with a mixture of 5% triethylamine in hexane 

until the eluent coming from the column was basic according to pH paper. Thin layer chromatography 



Appl. Sci. 2012, 2   

 

 

3

(TLC) was performed on precoated silica gel plates (Merck 60, F254, 0.25 mm); detection was done 

by UV254 light and staining with phosphomolybdic acid (solution of 1 g of phosphomolybdic acid in 

24 mL of absolute ethanol); Rf values are given under these conditions. When mentioned, an Rf value 

measured on deactivated silica gel means that the TLC plate was eluted with a mixture of 5% 

triethylamine in hexane and dried before applying the sample. Melting points (mp) are uncorrected and 

were measured on a Reichert Thermovar apparatus. NMR spectra were recorded on a Bruker AC-300 

spectrometer using, as internal references, tetramethylsilane (TMS) for 1H NMR and CDCl3 for 
13C NMR; chemical shifts are given in δ (ppm) and coupling constants (J) in Hz, unless otherwise 

stated. NMR samples were prepared using CDCl3 or C6D6 as solvent. Infrared (FT-IR) spectra were 

obtained on a Nicolet 510 P-FT spectrophotometer. Mass spectra (EI) were obtained at 70 eV on a 

Hewlett Packard HP-5890 GC/MS instrument equipped with a HP-5972 selective mass detector. 

Optical rotations were measured on a Perkin-Elmer 341 polarimeter. HPLC analyses were performed 

at 25 °C on a JASCO apparatus, equipped with a PU-2089 Plus pump, a MD-2010 Plus detector and 

an AS-2059 Plus automatic injector. 

2.2. Procedure for the Preparation of N-Phosphinylimines 1 

Triethylamine (1.35 mL, 10.5 mmol) was added to a solution of the ketone oxime (10 mmol) in 

anhydrous CH2Cl2 (25 mL) and Et2O (50 mL) under argon and the solution was cooled to −45 °C.  

A solution of chlorodiphenylphosphine (1.87 mL, 10 mmol) in CH2Cl2 (3 mL) was added dropwise 

over a period of 45 min. The reaction mixture was stirred at −45 °C for 1 hour, slowly warmed 

(without removing the Dewar) to room temperature, and then stirred overnight at room temperature. 

Insoluble salts (Et3N·HCl) were filtered off and washed with CH2Cl2/Et2O (1:1). Solvents were then 

evaporated under vacuum from the liquid layer and a yellow solid was obtained, to which CH2Cl2/Et2O 

(1:1, 40 mL) was added. The insoluble residue was filtered off and the liquid phase was concentrated 

under vacuum to give a solid that was purified by column chromatography (deactivated silica gel; 

hexane/acetone 90:10 to 30:70), giving the expected imines in 58% (for 1a), 52% (for 1b) and 56% 

(for 1c) yields. The corresponding physical and spectroscopic data follow: 

 

N-(1-Phenylethylidene)diphenylphosphinamide (1a) [29]: pale yellow solid; mp 120–122 °C; IR 

(KBr) 3064, 1637, 1192 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.97 (3H, d, J = 2.0 Hz), 7.39–7.60 (9H, 

m), 7.92–8.04 (4H, m), 8.09 (2H, d, J = 7.2 Hz); 13C NMR (75 MHz) δ 26.5 (d, J = 12.7 Hz), 127.9, 

128.2 (d, J = 12.9 Hz), 128.6, 131.1 (d, J = 3.0 Hz), 131.3 (d, J = 9.2 Hz), 132.2, 134.4 (d, 

J = 134.1 Hz), 139.1 (d, J = 24.8 Hz), 181.2 (d, J = 7.9 Hz); m/z 319 (M+, 53%), 318 (23), 277 (12), 

242 (14), 202 (11), 201 (100), 125 (28), 77 (50), 51 (21). 
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N-(1-Phenylpropylidene)diphenylphosphinamide (1b) [44]: white solid; mp 130–132 °C; IR (KBr) 

3058, 1630, 1190 cm−1; 1H NMR (300 MHz, C6D6) δ 1.06 (3H, t, J = 7.5 Hz), 3.35 (2H, q, J = 7.5 Hz), 

6.99–7.14 (9H, m), 7.83–7.86 (2H, m), 8.23–8.25 (4H, m); 13C NMR (75 MHz, C6D6) δ 13.5, 29.0 (d, 

J = 11.9 Hz), 128.6 (d, J = 9.0 Hz), 128.7 (d, J = 4.8 Hz), 131.3 (d, J = 2.9 Hz), 132.1, 132.2 (d, 

J = 8.7 Hz), 132.4 (d, J = 9.2 Hz), 136.6 (d, J = 131.3 Hz), 138.8 (d, J = 24.3 Hz), 186.4 (d, 

J = 7.6 Hz); m/z 333 (M+, 46%), 256 (18), 201 (100), 132 (12), 77 (52). 

 

N-[1-(p-Chlorophenyl)ethylidene]diphenylphosphinamide (1c) [44]: white solid; mp 142–144 °C; 

IR (KBr) 3058, 1640, 1199 cm−1; 1H NMR (300 MHz, C6D6) δ 2.62 (3H, d, J = 1.8 Hz),  

7.02–7.20 (8H, m), 7.50 (2H, d, J = 8.8 Hz), 8.17–8.26 (4H, m); 13C NMR (75 MHz, C6D6) δ 22.0 (d,  

J = 12.5 Hz), 127.7 (d, J = 11.8 Hz), 127.8, 128.6, 130.5 (d, J = 2.9 Hz), 131.1 (d, J = 8.1 Hz), 135.3 

(d, J = 131.5 Hz), 137.4 (d, J = 26.8 Hz), 137.5, 179.0 (d, J = 7.7 Hz); m/z 355 (M++2, 11%), 

353 (M+, 39), 278 (21), 276 (59), 201 (100), 154 (12), 152 (38), 77 (43). 

2.3. Procedure for the Asymmetric Transfer Hydrogenation of Imines 1 

A mixture of [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol), ligand L (0.05 mmol) and i-PrOH (2 mL) 

was heated to 90 °C (oil bath temperature) for 20 minutes. During this heating period, the initially 

orange reaction mixture turned into a dark red colour. The reaction was then cooled to −20 °C, and a 

solution of the imine 1 (0.5 mmol) in i-PrOH (9 mL) and t-BuOK (2.5 mL of a 0.1 M solution in  

i-PrOH, 0.25 mmol) were successively added. The solution was stirred for 1 h at the same temperature, 

slowly warmed (without removing the Dewar) to room temperature (ca. 6 h) and then stirred at room 

temperature for 14 h. After completion of the reaction (monitored by TLC), the mixture was passed 

through a small column of silica gel, the column was eluted with ethyl acetate and the combined 

organic phases were concentrated under vacuum. The obtained residue was purified by column 

chromatography (silica gel, hexane/acetone 9:1), yielding the expected reduction products 2 in the 

yields indicated in Table 2. Phosphinamides 2 were analyzed by HPLC on a ChiralCel OD-H column 

using a 254 nm UV detector, 10% i-PrOH in hexane as eluent and a flow rate of 0.5 mL/min, giving 

the enantiomeric excesses (ee’s) indicated in Table 2. The retention times were: 16.5 (R) and 23.4 (S) 

for 2a (OD-H column), 13.9 (R) and 18.9 (S) for 2b (OD-H column), 12.7 (R) and 28.1 (S) for 2c 

(Chiralpak AS-H column, 20% i-PrOH in hexane as eluent and a flow rate of 1.0 mL/min). For every 
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product 2, the absolute configuration of the major enantiomer was assigned according to the HPLC 

retention times of the two enantiomers described in the literature under the same conditions [45,46]. 

The corresponding physical and spectroscopic data follow: 

 

(R)-N-(1-Phenylethyl)diphenylphosphinamide (2a) [23]: white solid; mp 166–168 °C; [α]20
D +32.0 

(c 1.1, CH2Cl2, 82% ee) {literature [23] [α]20
D +28.5 (c 1.0, CH2Cl2, 75% ee)}; IR (KBr) 3159, 3059, 

1179 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.58 (3H, d, J = 6.7 Hz), 3.14–3.21 (1H, m), 4.33–4.48 (1H, 

m), 7.25–7.50 and 7.78–7.95 (11H and 4H, respectively, 2 m); 13C NMR (75 MHz, CDCl3) δ 26.3 (d, 

J = 3.0 Hz), 51.3, 126.0, 127.2, 128.3, 128.4, 128.47, 128.56, 128.59, 131.7, 131.82, 131.86, 132.0, 

132.1, 132.5, 132.6, 145.1 (d, J = 6.2 Hz); m/z 321 (M+, 5%), 307 (19), 306 (72), 202 (22), 201 (100), 

120 (98), 77 (34). 

 

(R)-N-(1-Phenylpropyl)diphenylphosphinamide (2b) [23]: white solid; mp 153–155 °C; [α]20
D 

+26.0 (c 1.0, MeOH, 82% ee) {literature [23] [α]20
D +31.3 (c 1.35, MeOH, 81% ee)}; IR (KBr) 3145, 

3060, 1198 cm−1; 1H NMR (300 MHz, CDCl3) δ 0.77 (3H, t, J = 7.5 Hz), 1.75–2.10 (2H, m),  

3.12–3.35 (1H, m), 4.02–4.20 (1H, m), 7.10–7.55 and 7.70–7.95 (11H and 4H, respectively, 2 m); 
13C NMR (75 MHz, CDCl3) δ 10.5, 32.5 (d, J = 3.1 Hz), 57.1, 126.5, 127.1, 128.2, 128.3, 128.4, 128.5, 

131.9, 132.5, 132.6, 143.5 (d, J = 5.4 Hz); m/z 335 (M+, 3%), 307 (21), 306 (100), 201 (53), 134 (16), 

77 (22). 

  

(R)-N-[1-(p-Chlorophenyl)ethyl]diphenylphosphinamide (2c) [42]: white solid; mp 161–163 °C; 

[α]20
D +60.5 (c 1.0, MeOH, 80% ee) {literature for ent-2c [28] [α]20

D −73.4 (c 1.14, MeOH, 94% ee)}; 

IR (KBr) 3152, 3062, 1189 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.54 (3H, d, J = 6.9 Hz),  

3.15–3.34 (1H, m), 4.29–4.45 (1H, m), 7.19–7.30, 7.38–7.51, 7.78–7.93 (4H, 6H and 4H, respectively, 

3 m); 13C NMR (100 MHz, CDCl3) δ 25.7 (d, J = 3.8 Hz), 50.3, 127.4, 128.2, 128.3, 128.4, 128.6, 

131.4, 132.8, 133.5, 143.5 (d, J = 6.1 Hz); m/z 357 (M++2, <1%), 355 (M+, 3), 340 (24), 306 (100), 

202 (16), 201 (70), 154 (100), 77 (26). 
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3. Results and Discussion 

In recent years, one of our main research lines has focused on the asymmetric synthesis of chiral 

amines by enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinyl)imines using  

β-amino alcohols as ligands [47–49]. Since those ligands have shown to give excellent results in the 

ruthenium-catalyzed asymmetric transfer hydrogenation of ketones [12–19] and N-sulfinylimines [38–41] 

in isopropyl alcohol, we decided to investigate if they could also be applied to the reduction of  

N-phosphinyl ketimines by the same methodology. One of the most noteworthy chiral β-amino alcohols 

in the ATH of both ketones and N-sulfinyl imines is cis-1-amino-2-indanol [50]. Due to this, we chose 

(1S,2R)-1-amino-2-indanol L1 as a test ligand for the ruthenium-catalyzed transfer hydrogenation of 

the N-phosphinyl imine derived from acetophenone 1a (Table 1). The ruthenium catalyst was prepared 

by refluxing a mixture of the ruthenium dimer [RuCl2(p-cymene)]2 and L1 in isopropyl alcohol. 

Table 1. Ruthenium-catalyzed asymmetric transfer hydrogenation of N-(diphenylphosphinyl)- 

-ketimine 1a in isopropyl alcohol. Optimization of the reaction conditions a. 

N
P

O

1a

Ph
Ph

[RuCl2(p-cymene)]2 (cat.)

Base (cat.), i-PrOH, T

HN
P

O

2a

Ph
Ph

NH2

OH
(cat.)L1

 

Entry 
Ru-dimer 
(mol%) 

L1 
(mol%) 

Base 
T (°C) t (h) 

Product 2a 
Base mol% Yield b (%) ee c (%) 

1 5 20 KOH 50 25 5 56 66 
2 5 10 KOH 50 25 3 76 72 
3 5 5 KOH 50 25 6 55 64 
4 5 10 KOH 75 25 3 84 66 
5 5 10 KOH 25 25 6 78 66 
6 5 10 LiOH 50 25 5 63 70 
7 5 10 NaOH 50 25 3 55 68 
8 3 6 KOH 30 25 18 53 74 
9 5 10 KOH 50 50 2 74 60 

10 5 10 KOH 50 0 29 48 78 
11 d 5 10 KOH 50 0 to 25 19 70 78 
12 d 5 10 KOH 50 −20 to 25 22 80 80 
13 d 5 10 t-BuOK 50 −20 to 25 20 87 82 
14 d 5 10 t-BuOK 50 −40 to 25 20 85 78 

a The solution of the imine 1a (0.5 mmol) in i-PrOH (9 mL) was added to a solution of the ruthenium catalyst 

[prepared by refluxing a mixture of [RuCl2(p-cymene)]2 and amino alcohol L1 in i-PrOH (2 mL)] at the 

temperature indicated. Then, the base (as a 0.1 M solution in i-PrOH) was added and the reaction mixture 

was stirred for the time indicated. b Isolated yield after purification by column chromatography (silica gel, 

hexane/acetone: 9/1) based on the starting imine 1a. c Determined by HPLC using a ChiralCel OD-H column. 

The R-enantiomer was the major one in all cases. d The reaction mixture was stirred at the initial temperature 

for 1 h and then it was allowed to gradually reach room temperature. 
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Since a proportion Ru-dimer:aminoalcohol:base = 1:4:10 is common for the ATH of ketones, we 

chose that proportion as the starting point of our study, using 5 mol% of the Ru-dimer. Under those 

conditions, the Ru complex bearing L1 was able to reduce the imine 1a in isopropyl alcohol in the 

presence of potassium hydroxide, affording product 2a in a moderate yield and with 66% ee after 

stirring for 5 h at room temperature (Table 1, entry 1). This promising result encouraged us to try to 

optimize the reaction conditions. First, the amount of L1 was reduced keeping the loadings of  

Ru-dimer and base constant and we found that both yield and ee improved when the ratio Ru-dimer:L1 

was 1:2 (compare entries 1–3 in Table 1). Hence, we decided to keep that ratio in the following tests. 

Next, the loading of base was evaluated and a decrease in the enantioselectivity, in comparison with 

the results of entry 2, was observed when the amount of potassium hydroxide was either increased to 

75 mol% (Table 1, entry 4) or decreased to 25 mol% (Table 1, entry 5). Since the optimum ratio  

Ru-dimer:L1:base seemed to be 1:2:10, it was maintained in further experiments. A different metallic 

cation in the base did not cause any noticeable effect on the enantioselectivity: lithium and sodium 

hydroxides gave almost the same ee’s as potassium hydroxide, the yield being higher with the latter 

(compare entries 2, 6 and 7 in Table 1). We tried to reduce the amount of the Ru-dimer to 3 mol%, but 

this considerably slowed down the transfer hydrogenation process and resulted in a lower yield of 2a, 

although the enantioselectivity did not vary (compare entries 2 and 8 in Table 1). 

The effect of the temperature was also studied. The ee decreased to 60% when the reaction was 

performed at 50 °C (Table 1, entry 9). A decrease of the temperature to 0 °C drastically lengthened the 

reaction time and, furthermore, the yield decreased to 48% (Table 1, entry 10). However, the 

enantioselection of the process slightly improved to 78% ee. In order to try to improve the yield, the 

reaction was repeated and an upward temperature gradient was applied: after stirring for 1 h at 0 °C, 

the reaction was allowed to gradually reach room temperature. We were delighted to see that, under 

these conditions, a 70% yield was obtained with no detriment to the enantioselectivity (Table 1,  

entry 11). A slight improvement of both yield and enantioselectivity were observed when the initial 

temperature was −20 °C instead of 0 °C (Table 1, entry 12). Since in our previous studies concerning 

the ATH of N-(tert-butylsulfinyl)imines [38–41] we found that potassium tert-butoxide was a more 

convenient base than potassium hydroxide, we decided to evaluate the former in the ATH of 

phosphinylimine 1a and we obtained a further improvement, giving 87% yield and 82% ee (Table 1, 

entry 13). A decrease of the initial temperature to −40 °C slightly reduced both the yield and the 

enantiomeric excess (Table 1, entry 14). After having performed this screening, we chose the 

conditions shown in entry 13 as the optimal ones. 

The influence of the arene ligand in the ruthenium catalyst was also studied and we found that the 

use of [RuCl2(benzene)]2 instead of [RuCl2(p-cymene)]2 almost completely prevented any asymmetric 

induction, the ee of the product 2a being only 8%. 

Once we had determined the optimum reaction conditions, we decided to test some other chiral  

β-amino alcohols with the aim of evaluating the influence of the ligand structure on the success of the 

ATH process. Amino alcohols (1R,2S)-norephedrine L2, (1R,2S)-2-amino-1,2-diphenylethanol L3 and 

prolinols L4 and L5 were tested as potential ligands, and the results are summarized in Table 2. The 

ruthenium complex bearing norephedrine L2 was able to reduce imine 1a, though the results 

concerning both yield and enantioselectivity were rather poor (Table 2, entry 2). When the ATH 

reaction was carried out using ligand L3, the reduction product was obtained in only 39% yield and 
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with a moderate ee. Therefore, ligands L2 and L3 have shown to be clearly inferior to L1 (compare 

entries 1 to 3 in Table 2). This drop in enantioselectivity could be due to the fact that (1S,2R)-1-amino-

2-indanol L1 has a more rigid structure than ligands L2 or L3. Therefore, it seems that the rigidity of 

the β-amino alcohol seems to be very convenient for achieving good enantioselectivities in this ATH 

process. Finally, in agreement with our observations in the ATH of sulfinylimines [38-41], a ligand 

with a free primary amino group led to higher enantioselectivities than other ligands bearing secondary 

amino groups: when the ligands with a prolinol backbone L4 and L5 were tested, either no reduction 

product or only traces of it could be detected after working-up the reaction (Table 2, entries 4 and 5). 

Table 2. Test of different amino alcohols as chiral ligands for the ruthenium-catalyzed 

transfer hydrogenation of N-phosphinylimines 1 a. 

 

Entry 
 Imine  

Ligand t (h) 
Product 2 

No. R1 R2 No. Yield b (%) ee c (%) 

1 1a H Me L1 20 2a 87 82 
2 1a H Me L2 20 2a 49 48 
3 1a H Me L3 20 2a 39 53 
4 1a H Me L4 22 2a — d — 
5 1a H Me L5 25 2a — e — 
6 1b H Et L1 20 2b 90 82 
7 1c Cl Me L1 20 2c 85 80 

a The solution of the imine 1 (0.5 mmol) in i-PrOH (9 mL) was added to a solution of the ruthenium catalyst 

[prepared by refluxing a mixture of [RuCl2(p-cymene)]2 (0.025 mmol) and amino alcohol L (0.05 mmol) in  

i-PrOH (2 mL)] at −20 °C. Then, t-BuOK (0.25 mmol, as a 0.1 M solution in i-PrOH) was added and the 

reaction mixture was stirred at the same temperature for 1 h and then it was allowed to gradually reach room 

temperature. b Isolated yield after purification by column chromatography (silica gel, hexane/acetone: 9/1) 

based on the starting imine 1. c Determined by HPLC using a ChiralCel OD-H column or a Chiralpak AS-H 

column. The R-enantiomer was the major one in all cases. d Only traces of the product were detected in the 

crude reaction mixture. e No reduction product was detected in the crude reaction mixture. 

After having established that L1 was the ligand of choice, we tested two more imines as substrates. 

The asymmetric transfer hydrogenation of imines 1b and 1c, derived from propiophenone and  

4-chloroacetophenone respectively, under the conditions of entry 13 in Table 1 gave the expected 

phosphinamides 2b and 2c in high yields and with ee’s of 82 and 80%, respectively (Table 2, entries 6 

and 7). 
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4. Conclusions 

In conclusion, we have developed a new efficient procedure for the reduction of prochiral  

N-(diphenylphosphinyl)ketimines through a ruthenium-catalyzed asymmetric transfer hydrogenation 

process in isopropyl alcohol using a β-amino alcohol as a chiral ligand. The rigid structure present in 

(1S,2R)-1-amino-2-indanol seems to be very convenient in order to achieve good enantiomeric 

excesses. The arene ligand on the ruthenium complex also has an influence on the stereochemical 

outcome of the reaction. Since the phosphinyl group can easily be removed under mild acidic 

conditions, this procedure represents an efficient method to synthesize optically enriched chiral 

primary amines. Further efforts to improve the enantioselectivity and to extend the substrate scope of 

this new ATH process are currently underway in our laboratory. 
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