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Abstract 

This paper shows how to extract future real activity information from optimally-

combined size-sorted portfolios. In particular, we analyze the capacity of the size-based 

model-free Hansen–Jagannathan volatility bound to predict future economic growth. 

We find that the volatility bound is a powerful in-sample and out-of-sample predictor of 

future industrial production growth. The asymmetric sensitivities of small and large 

companies through the business cycle are behind our findings. Alternative volatility 

bounds estimated with sorting procedures based on book-to-market, momentum, or 

dividend yield do not either show these asymmetric sensitivities or forecasting capacity 

of output growth. 
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1. Introduction 

Does financial uncertainty predict future real activity? The answer to this question is 

particularly relevant after the recent turmoil experienced by industrial economies over 

the world. This paper shows that changes in the uncertainty embedded in stock prices 

are a powerful indicator of future economic growth.1 However, it is also the case that 

the information contained in the market capitalization of trading assets is a key issue for 

optimally detecting the impact of financial uncertainty in future real activity. 

Size has always been a key research topic in both Economics and Finance. Firm 

size is present when analyzing apparently different topics like seasonality of stock 

returns, economies of scale, market power, synergy externalities, collaterals, and so on. 

In this paper we report additional evidence regarding the importance of size. Our main 

contribution is to show how to optimally extract the information contained in size-

sorted portfolios to generate powerful in-sample and out-of-sample predictions of real 

activity. Our forecasting results are therefore a consequence of combining both the 

relevance of size, and the particular estimator we propose to predict future economic 

growth. 

It has been recognized for a long time that the stock market is a leading economic 

indicator. The original papers by Fama (1981, 1990), and Schwert (1990) argue that 

stock returns at monthly, quarterly and annual frequencies are highly correlated with 

future output growth rates and this predicting ability increases with the length of the 

horizon. Similarly, Stock and Watson (2003) provide a comprehensive analysis of the 

forecasting capacity of different variables related to financial markets in forecasting 

production and inflation. They find that short and long interest rates, the term spread 

                                                 
1 Bloom (2009) argues that uncertainty shocks, approximated by stock market volatility, cause firms with 
non-convex labor and capital adjustment costs to delay hiring and investment since higher uncertainty 
increases the real option value of waiting. Aggregate growth productivity then falls after the uncertainty 
shock because the adverse effects in employment and investment slow down the reallocation from low- to 
high-productivity firms, which explains the real activity growth rate in the economy. 



 
 

3

and the stock market index improve the forecast of real gross domestic product (GDP) 

growth, although they also point out non-trivial instability problems inherent in the 

predictive relations. 

Additionally, direct measures of uncertainty from financial markets seem to have 

relevant information about macroeconomic variables in the future. Schwert (1989) 

suggests that market volatility reflects uncertainty about future cash flows and discount 

rates. However, he does not find evidence supporting his argument since during his 

sample period volatility rises after the beginning of recessions. Campbell, Lettau, 

Malkiel, and Xu (2001) find that stock volatility at a market, industry, and firm level 

helps to predict GDP growth during the post-war period. Goyal and Santa-Clara (2003) 

report a positive relation between average stock variance, that is largely idiosyncratic, 

and future market returns. However, they do not analyze the relation between this 

measure of risk and future real activity. More recently, Fornari and Mele (2011) show 

that a slowly changing measure of stock market volatility that captures the long run 

uncertainty in the financial market explains future trends of economic activity.2 

Moreover, this measure of stock market volatility, together with the term structure 

spread, anticipate all National Bureau of Economic Research recession episodes, 

including the recent financial and credit crisis. In addition, Chauvet, Senyuz, and 

Yoldas (2011) report that the long-run component of financial volatility, in the sense of 

Adrian and Rosenberg (2008) but extracted from the realized volatilities of the market, 

industry portfolios, and the 10-year zero coupon Treasury bond returns, helps in 

predicting economic activity.3 

                                                 
2 Fornari and Mele (2011) justify their findings following the theoretical framework of Mele (2007, 
2008), who shows the countercyclical and asymmetric nature of volatility in recessions and expansions. 
3 In related literature, Andreou, Ghysels, and Kourtellos (2010) employ implied volatility as a predictor of 
economic activity and Backus, Chernov, and Martin (2011) employ equity index options to quantify the 
distribution of consumption growth disasters. These authors show that options suggest smaller 
probabilities of extreme outcomes than have been estimated from macroeconomic data. It is important to 
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Finally, Nieto and Rubio (2011), using a consumption-based parametric approach 

for measuring the uncertainty embedded in financial prices, also predict real activity. 

Specifically, they use the volatility of alternative consumption-based stochastic discount 

factor specifications as a measure of uncertainty and find that this measure is able to 

forecast economic growth at both short and long horizons. 4  

This paper employs a much simpler approach to investigate the predictability of 

real activity. In particular, we propose the Hansen–Jagannathan (HJ hereafter, 1991) 

volatility bound as the predictor. Given a set of portfolio returns and the average risk-

free rate for the corresponding sample, we compute the volatility bound with a rolling 

window of five years of past data. We show that this model-free volatility bound is a 

powerful predictor of future economic growth for both in-sample and out-of-sample 

contexts. From a practical point of view, it is important to notice that this approach 

requires only financial market returns. This implies that our forecasting measure can be 

used in real time when employing an out-of-sample forecasting framework. This 

strongly contrasts with the highly parameterized approach followed by Nieto and Rubio 

(2011), in which the stochastic discount factor is the marginal rate of substitution of 

consumption. However, it should also be pointed out that both approaches rely on a 

volatility bound. In the previous paper, the estimation of the preference parameters is 

carried out by imposing the restriction that the stochastic discount factors are inside the 

HJ volatility frontier. Additionally, and given this restriction, the squared pricing errors 

of 10 size-sorted portfolios are minimized obtaining volatility bounds that are precisely 

                                                                                                                                               
point out that not only lagged market returns and volatility have been employed as leading indicators of 
economic activity. Naes, Skleltorp, and Arne-Odegaard (2011) report a strong relation between stock 
market liquidity and the business cycle. 
4 The authors also show some power in predicting stock market returns at relatively long horizons. 
Although they show some predicting capacity at short horizons, the predictability of stock market returns 
is much weaker than at long horizons. The current paper does not address the issue of predicting stock 
returns. For recent literature on predicting future stock market excess returns, see, among many others, 
Campbell and Yogo (2006), Cochrane (2008), Goyal and Welch (2008), Brennan and Taylor (2010), 
Ferreira and Santa-Clara (2011), and Cochrane (2011). 
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on the frontier. In this paper, the approach is not only much more relevant from a 

practical point of view, but it is a much simpler way of obtaining a bound that lies on 

the frontier. Of course, the particular combination of the mean and variance of the 

corresponding stochastic discount factor is always different in all cases.  

The second contribution of the current paper is to explain why size is the key issue 

when forecasting real activity using the volatility bound. Changes in economic 

conditions represented by better/tighter credit conditions generate strong asymmetric 

effects on size-sorted portfolios. In particular, the asymmetric sensitivities of returns 

and volatilities of small and large companies to credit scenarios through the business 

cycle explain our findings. It seems that these asymmetries in both time-series and on 

the cross-section of size-sorted portfolio returns are the responsible of the forecasting 

power of the resulting HJ volatility bound. Other alternative sorting procedures based 

on book-to-market, momentum, or dividend yield do not show these asymmetric 

sensitivities relative to different credit scenarios. It turns out that their lack of sensitivity 

to credit conditions significantly limits the forecasting capacity of output growth from 

combining these portfolios in the particular proportions suggested by the HJ volatility 

bound. 

Finally, it should be recognized that the HJ bound is the maximum Sharpe ratio; 

thus our measure includes not only excess market returns but also information about 

correlation or exposure to common shocks and market volatility. Hence, we also 

investigate the source of forecasting ability by analyzing the predicting ability of the 

components of the bound. We find that predictability crucially depends on the 

interaction between the numerator and denominator of the bound of size-sorted 

portfolios, and not on any particular component. Once again, this interaction effect is 

not observed for any other sorting procedure.  
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The remainder of the paper is organized as follows. Section 2 describes the data 

employed in the analysis. Section 3 presents the main in-sample and out-of-sample 

predictability results using size-sorted portfolios. Section 4 compares the predicting 

ability of the HJ measure with respect to standard state variable predictors, and 

competing measures of financial uncertainty. Section 5 discusses the forecasting 

evidence using alternative sorting procedures, and Section 6 explains the reasons 

underlying the forecasting capacity of the bound when using size-sorted portfolios, and 

not alternative sorting procedures. Section 7 concludes with summary and final remarks. 

 

2. Data 

Most stock market data are from Kenneth French´s website. We obtain monthly data 

from January 1927 to December 2010 for the market return ( mR ), the risk-free rate 

( fR ), the small-minus-big (SMB) and high-minus-low (HML) Fama and French (1993) 

risk factors, and 10 value-weighted size-, book-to-market-, momentum-, and dividend 

yield-sorted equity portfolios. Additionally, we collect data for the daily 100 size-book-

to-market value-weighted portfolios from July 1963 to December 2010. 

The price-dividend ratio in logs (PD) is computed from the original series on 

Robert Shiller’s website. Additionally, yields for the 10-year government bond, and 

Moody’s Baa Corporate Bond series are obtained from the Federal Reserve Statistical 

Release. We then compute two state variables based on these interest rates: a term 

structure slope (Term), computed as the difference between the 10-year government 

bond and the risk free rate, and a default premium (Default) that is the difference 

between Moody´s yield on Baa Corporate Bonds and the 10-year government bond 

yields. All these series are collected from January 1959 to December 2010. 
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 Given the real activity forecasting evidence from aggregate illiquidity reported 

by Naes, Skjeltorp, and Arne-Odegaard (2011) at quarterly frequency, we also use a 

market-wide illiquidity indicator (Illiq) based on the aggregate illiquidity ratio proposed 

by Amihud (2002). This is the ratio of the absolute daily return over the dollar volume 

for a given stock, which is closely related to the notion of price impact. This measure is 

averaged monthly and across all available stocks to obtain the market-wide illiquidity 

measure for each month in the sample. As in Naes, Skjeltorp, and Arne-Odegaard 

(2011), we demean the series relative to a two-year moving average of the series.5 

Daily data on VIX is obtained from January 1990 to December 2010 from 

CBOE. This series is augmented from January 1986 to December 1989 using VXO also 

from CBOE.6 In both cases, we employ the last day of the corresponding month to 

create a final monthly option-implied volatility series from January 1986 to December 

2010. 

We collect three alternative measures of monthly macroeconomic growth. We 

obtain nominal consumption expenditures on nondurable goods and services from the 

Table 2.8.5 of the National Income and Product Accounts (NIPA) available at the 

Bureau of Economic Analysis. Population data are from NIPA’s Table 2.6 and the price 

deflator is computed using prices from NIPA’s Table 2.8.4 with the year 2000 as its 

basis. All this information is used to construct monthly seasonally adjusted real per 

capita consumption expenditures on nondurable goods and services (ΔC) from January 

1959 to December 2010. Monthly data of the industrial production index (IPI) are 

                                                 
5 We thank Yakov Amihud for kindly providing his data from January 1965 to December 1996. We 
update his measure from January 1997 to December 2008 using daily data from CSRP on all individual 
stocks with enough data within a given month. At least 15 observations of the ratio within the considered 
month are required for asset j to be included in the sample. An exception has been made for September 
2001 requiring at least 12 observations in this case. The main advantage of Amihud’s illiquidity ratio is 
that it can be easily computed using daily data during long periods. Moreover, Hasbrouck (2009) shows 
that, at least for US data, Amihud´s ratio better approximates Kyle´s lambda relative to competing 
measures of illiquidity. 
6 VIX is the volatility index for the S&P 500 index, while VXO refers to the S&P 100 index. 
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downloaded from the Federal Reserve, with series identifier G17, IP Mayor Industry 

Groups from January 1927 to December 2010. Lastly, the monthly growth rate of gross 

domestic product (GDP) is obtained from the Macroeconomic Advisers´ web page.7 

These data are available from April 1992 to December 2010. Finally, we also collect the 

quarterly cross-sectional dispersion measures for quarterly forecasts for GDP from the 

Survey of Professional Forecasters´web page which is available from the fourth quarter 

of 1968.8 

 

3. In-Sample and Out-of-Sample Predictability of Real Activity with the Volatility 

of the HJ Bound and Size-Sorted Portfolios 

3.1. The HJ Volatility Bound 

We estimate the monthly HJ volatility bound of the model-free stochastic discount 

factor with overlapping sub-periods of five years of monthly data from the 10 value-

weighted size-sorted equity portfolios using, 

                                           21

N
1

N REME1VREME1M   ,                    (1) 

where M is the stochastic discount factor satisfying the first-order pricing equations, 

 1jt1tt RME1  , 

  1ft1tt R1ME   , 

where N1  and  RE  are the N-vectors of ones and average gross returns, respectively; 

1V   is the inverse of the variance–covariance matrix of returns; and fR  is the gross 

risk-free rate. The monthly estimated volatility corresponds to the average level of the 

risk-free interest rate for each of the five-year sub-periods. Unlike the work by Nieto 

                                                 
7 http://www.macroadvisers.com/content/MA_Monthly_GDP_Index.xls. 
 
8 http://www.phil.frb.org/research-and-data/real-time-center/spf-forecast-dispersion.cfm. 
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and Rubio (2011), this procedure does not depend on any particular consumption-based 

stochastic discount factor specification, so the potential predictive relation does not 

depend on any given consumption dynamics. 

Table 1 contains the descriptive statistics of the volatility bound estimated from 

1927 to 2010. The average volatility bound is 0.504 with a volatility of 0.148, and 

positive skewness and high excess kurtosis.9 The autocorrelation of the volatility bound 

is also high and equal to 0.971 suggesting, as expected, that the bound is quite persistent 

over time. It is useful to discuss the implications of this autocorrelation for the empirical 

results we report below. As discussed in the introduction, the estimated volatility bound 

is our main predictor variable in typical forecasting regressions of future output growth 

on the volatility bound and (possibly) other competing predictors. The conventional 

inference in a predictive regression assumes that the explanatory variable is stationary. 

In that case, first-order asymptotics implies that the t-statistic for testing the forecasting 

ability of the predictor is approximately standard normal in large samples. However, the 

null distribution of the t-statistic can be dramatically different when the predictor is non-

stationary, since the distribution is discontinue at the point that autocorrelation equals 

one, and the innovations in the predictor and in the variable to be predicted are 

correlated. There is ample simulation evidence and analytical studies on the poor 

approximation of the large-sample theory to the actual finite sample showing large size 

distortions.10  

Two possible solutions have been adopted in the case of highly persistent 

predictors. One approach is based on the exact finite sample theory as in Stambaugh 

(1999), and many other following papers like Lewellen (2004), Amihud and Hurvich 

(2004), and Amihud, Hurvich, and Wang (2009). The idea behind this approach is to 

                                                 
9 The Sharpe ratio for the market as a whole turns out to be 0.113 for the same sample period. 
10 See Elliot and Stock (1994). 
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eliminate the noise produced by the correlation among innovations. Unfortunately, the 

problem in practice is that it is not possible to certainly know whether a time series has 

or not a unit root and, therefore, the true distribution of the tests is unknown.  

The second approach is based on the local-to-unity asymptotics, where the 

predictor is assumed to be autoregressive with a root near to unity.11 Specifically, the 

largest autoregressive root is modeled as Tc1  with c a fixed constant, and T the 

number of observations.12 Deviations from the unit root are measured by the parameter 

c, which is the responsible of inducing non-centrality in the limiting distribution. This 

device allows the predictor to be stationary but nearly integrated when c < 0. The larger 

the parameter c, in absolute value, the less persistent is the predictor. If this uncertainty 

about the deviations from the unit root is ignored, as in conventional tests, the 

asymptotic size exceeds the nominal level. Moreover, the correlation between the 

innovations of the predictor and the dependent variable acts as a power parameter in the 

limiting distribution. In fact, if this correlation is zero, the t-statistic is asymptotically 

normal distributed. Therefore, when the correlation is sufficiently low and/or the unit 

root deviation parameter is sufficiently high, the distortion in test size is unappreciable. 

Campbell and Yogo (2006) derive a pretest for determining if the predictor is 

sufficiently stationary, for a given level of correlation, such that the conventional critical 

values can be applied and tabulate the results. In particular, they tabulate the values of c 

for which the size of the right-tailed t-test exceeds 7.5%, for selected values of the 

correlation between the residuals. Their tabulated values can therefore be used to 

construct a pretest to decide whether inference based on the conventional t-test is 

sufficiently reliable. Specifically, they indicate that, independently of the 

                                                 
11 See Stock (1994). 
12 Torous, Valkanov, and Yan (2004) obtain the null asymptotic distribution for the t-statistic under this 
framework. 
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autocorrelation of the predictor, the size of the test is less than 7.5% when the 

correlation between the innovations is equal or less than 0.125 in absolute value.13 

In order to know if standard inference can be applied to our predicting exercise, 

we compute the serial correlation of our proposed predictor, the HJ volatility bound, and 

the correlation between the residual from the predictive regression and an AR(1) 

process for the predictor. That is, we estimate the following ordinary least squares 

(OLS) regression model, 

                                              ttt,t M IPI  ,                                          (2) 

                                                  ttt uMM  ,                                          (3) 

where  t,tIPI  is the growth of industrial production at horizons of one, three, six, 12, 

and 24 months calculated as  ttt,t IPIIPIlnIPI    , and  Mt  is the volatility 

bound of the stochastic discount factor available at month t that is estimated with five 

years of monthly data up to month t and 10 size-sorted portfolios. We compute the 

correlation between the residuals from the two equations,    tt û,ˆCorr , which is 

displayed in the second column of Table 1 for the alternative forecasting horizons 

analyzed in the paper. Despite the apparently high level of persistence of 0.971, the 

correlations between the innovations in IPI and the HJ volatility bound are near to zero 

for all horizons between 1 and 12 months, ranging from -0.014 to 0.008 respectively. 

Even at the 24-month horizon the correlation is lower than 0.125 indicating that 

standard asymptotic distributions can be applied for testing the significance of the 

predictor.14 

                                                 
13 Campbell and Yogo (2006) also propose a new Bonferroni test of stock return predictability, within the 
local-to-unity asymptotics, which is more efficient than the previous available test due to Cavanagh, 
Elliot, and Stock (1995). 
14 In the case of the predictive regression at the longest horizon, it should be recognized that the residuals 
are much higher (serially) correlated due to the overlapping nature of the long horizon data. Conventional 
inference employs the Newey-West (1987) autocorrelation-robust standard error. This is also the 
procedure followed in our empirical approach. Torous, Valkanov, and Yan (2004) derive the limiting 
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Figure 1 show this rolling-window HJ volatility bound and the National Bureau of 

Economic Research’s recession bars for the period from 1931 to 2010. It shows how the 

bound tends to increase before macroeconomic recessions, reaching its historical peak 

well before and during the recent financial turmoil. Although the peaks of the bound 

tend to occur during the corresponding recession months, the volatility of the stochastic 

discount factor always increases before the start of a recession. Our paper formalizes the 

evidence suggested by Figure 1, and discusses the reasons behind the forecasting ability 

when employing size-sorted portfolios. 

 

3.2. In-Sample Predictability with the HJ Volatility Bound  

We now proceed to analyze the predicting capacity of the bound using the 10 size-

sorted portfolios. Panel A of Table 2 reports the results from the following in-sample 

predictive OLS autocorrelation-robust standard error regressions: 

                                                  ttt,t M IPI ,                                         (4) 

                                    tt2t,t1t,t M IPIIPI  ,                          (5) 

where the first equation is the key univariate predictive regression we analyze in the 

paper, and the second equation takes into account that serial correlation in industrial 

production growth is expected since we make multi-step ahead predictions. This 

suggests that the forecasting regressions should also include lagged values of the 

dependent variable.  

Each row of all panels of Table 2 corresponds to a particular prediction horizon 

from one to 24 months. Although we employ industrial production growth as the 

relevant measure of real activity, Panel B reports similar evidence using GDP and 

                                                                                                                                               
distribution for the robust t-statistic in a local-to-unity framework and they show that, as in the case of the 
one-period horizon, it depends on the correlation between innovations of the variable to be predicted and 
the predictor. 
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consumption growth instead of IPI growth. Given data restrictions on some of the state 

variables used later, we run these predictive regressions between January 1965 and July 

2010, although Panel C contains evidence for alternative sub-periods.15  

The top left of Panel A reports the key results of the paper. There is a negative and 

significant relationship between the HJ volatility bound and future industrial production 

growth. Both the magnitude of the coefficients (in absolute value) and the R2 value 

increase considerably with the time horizon, with R2 as high as (approximately) 20 

percent at the 24-month horizon. If we interpret  Mt  as a measure of the financial 

uncertainty embedded in stock prices, these results show that higher uncertainty has a 

negative and significant impact on future real activity.16 Therefore, our measure of 

uncertainty conveys information about future economic growth.  

The autoregressive structure of IPI growth is confirmed for horizons of one, three, 

and six months. However, the coefficients associated with the HJ volatility bound 

remain negative and statistically significant in all cases. In fact, these coefficients are 

very similar to those reported above. Therefore, although the inclusion of the lagged 

dependent variable helps predict real activity, lagging the dependent variable does not 

seem to have any effect on our previous conclusions regarding the importance of the HJ 

volatility bound as an ex ante uncertainty predictor of economic cycles. 

Our previous discussion on local-to-unity framework suggests that we may 

employ the conventional standard aysmptotics when testing the significance of the 

volatility bound as a predictor. In any case, we provide further evidence using the bias-

corrected t-statistic proposed by Amihud and Hurvich (2004), and Amihud, Hurvich, 

Wang (2009) in all previously estimated forecasting regressions. The negative and 

                                                 
15 The only exception corresponds to the forecasting results using GDP growth where the sample period 
goes from April 1992 to December 2010. It should be recalled that we use monthly data in all panels. 
16 t-statistics are reported below the estimated coefficients.  
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significant relation between the volatility bound and future real activity is maintained 

for all horizons. In particular, the adjusted t-statistic ranges from -2.20 to -3.00 for the 

one and 24 month horizons respectively in the univariate regression, and from -1.97 to   

-2.77 when we add the lagged IPI growth in the regressions.17 

Panel B of Table 2 displays the forecasting evidence using GDP and consumption 

growth as the variables to be predicted. In both cases, there is significant evidence of the 

HJ volatility bound forecasting future macroeconomic activity. The results are 

particularly striking in the case of consumption growth. The bound, as a measure of 

financial uncertainty, seems to contain information for future consumption growth. The 

volatility bound is strongly and negatively correlated with future aggregate 

consumption.  

Panel C of Table 2 contains similar evidence for three alternative sub-periods 

using IPI growth as a measure of real economic activity. The previous empirical 

evidence is maintained for the full period from January 1931 to December 2010, but it 

seems to be especially important for the sub-period between January 1965 and 

December 1987. The higher volatility of macroeconomic variables in the US market 

before the great moderation years experienced between the mid eighties and 2007 may 

explain the stronger predictive ability of the bound during the first sub-period. 

 

3.3. Out-of-Sample Predictability with the HJ Volatility Bound  

The predicting tools employed so far examine the ability of the predictors had we been 

able to use the coefficients estimated by the full-sample regressions. We now consider 

tests designed to generate more closely actual real time forecasts. We employ two 

                                                 
17 These authors suggest a regression method for hypothesis testing in predictive regressions in which the 
independent variables are persistent and their innovations are correlated with the dependent variable. The 
authors’ simulations show that their adjustment outperforms other bias correction methods, such as those 
suggested by Stambaugh (1999) and Lewellen (2004), and other bootstrapping methods. The detailed 
results are available from the authors upon request. 
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alternative statistics for testing the out-of-sample accuracy of two competing models: 

the t-test proposed by Diebold and Mariano (1995) and the F-statistic of McCracken 

(2007). In our case, the two compared models are always nested. The restricted model 

contains only one predicting variable. On the other hand, the unrestricted model 

contains such a variable and the HJ volatility bound estimated with 10 size-sorted 

portfolios. 

We now briefly describe this methodology. The total sample period contains T + 

P observations, where the initial in-sample estimation period employs information from 

1 to T, and the out-of-sample forecasting period goes from T + τ  to T + P, τ being the 

forecasting horizon. At each forecasting period t = T + τ , . . . , T + P, we estimate the 

two competing nested models using information up to the previous τ periods, generate 

the prediction, and compute the forecasting error. More formally, the restricted model is 

                                 -t,1,s      ,uXY Rss
R
1

R
0s   .                           (6a) 

The prediction under the restricted model is  

                                                    t
R
1

R
0Rt XˆˆŶ ,                                                  (6b) 

and the prediction error will be 

RttRt ŶYû  .                                                         (6c) 

Similarly, the unrestricted model that includes the HJ volatility bound, the next period 

prediction and forecasting error are 

                      -t,1,    s  ,uMXY Uss
U
2s

U
1

U
0s   ,               (7a) 

                               )M(ˆXˆˆŶ t
U
2t

U
1

U
0Ut     ,                                     (7b) 

                                                     UttUt ŶYû   .                                                         (7c) 
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We next compute the vector of loss differentials, denoted d, that compares the two 

square errors at each month t and the mean squared forecasting error (MSE) for each 

model: 

                                        PT,,Tt    ,ûûd 2
Ut

2
Rtt   ,                                      (8) 

                                              





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Tt

2
Rt

1
R û1PMSE



 ,                                        (9) 

                                              





PT

Tt

2
Ut

1
U û1PMSE



 .                                      (10) 

The two statistics for testing equal forecasting accuracy have the null that the loss 

differentials are zero, on average. The Diebold–Mariano (1995) statistic is a t-test 

expressed as 

                                             
d

21

Ŝ

d
1PtMSE     ,                                      (11) 

where   
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Tt

t
1 d1Pd



  and dŜ  is a consistent estimator of the variance of the 

loss differential that admits heteroskedasticity and autocorrelation. We employ the 

Newey–West (1987) specification and, following Clark and McCracken (2011), a lag 

length of  5.1k . Hence 

                            
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  .               (12) 

The McCracken (2007) statistic is an F-test given by 

                                      
U

UR

MSE

MSEMSE
1PFMSE


  .                                  (13) 

It must be noted that the loss differentials are measured with an error that is due to 

the fact that the beta coefficients are unknown. This implies that the exact distribution 
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of both statistics is also unknown and that the asymptotic distribution can only be 

obtained under restrictive assumptions that include non-nested models.18 As previously 

pointed out, this paper compares nested models. For this case, Clark and McCracken 

(2011) suggest deriving the asymptotic distribution by a fixed regressor bootstrap, and 

they show that the test statistics based on the proposed bootstrap have good size 

properties and better finite-sample power than alternative bootstraps. This method is 

based on the wild fixed regressor bootstrap developed by Goncalves and Killian (2004) 

but adapted to the multi-step framework of out-of-sample forecasts. To implement this 

method, we use the followings steps. 

1. We estimate both the restricted and unrestricted models using the full sample period 

and we compute the residuals from the unrestricted model: 

  PT,,1t     ,MˆXˆˆYû t
U
2t

U
1

U
0tUt     . 

 2. We assume and estimate an MA (τ – 1) process to capture the implicit serial 

correlation in the residuals from a τ-step-ahead forecast, 

  PT,,1t    ,,u 1--t1-1-t1tUt     . 

3. We simulate a sequence of independent and identically distributed N(0,1) random 

variables denoted by t  and generate artificial residuals by using the estimates of the 

MA process: 

    PT,,2t    ,ˆˆ,ˆˆˆu 1--t1--t1-1-t1t1tt
*
Ut      . 

4. We simulate an artificial series of the dependent variable using the artificial 

residual and imposing the null hypothesis: 

PT,,2t   ,uXˆˆŶ *
Utt

R
1

R
0

*
t     . 

                                                 
18 See West (1996) and Clark and McCracken (2001) for a discussion.  
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5. We compute both the MSE t-statistics and MSE F-statistics using these artificial 

data as if they were the original data. 

6. Repeat steps 3–5 5,000 times and the p-value is the percentage of times the 

simulated statistic is greater than the real statistic. 

Panel D of Table 2 contains the initial out-of-sample results where we test for the 

absolute out-of-sample performance of the volatility bound, and its relative performance 

with respect to the lagged IPI growth as the competing predictor. In the first case, the 

unrestricted model is given by expression (4), while the restricted model is just a 

forecasting regression of future output growth in a constant, 

                                                 tt,tIPI                                                (14) 

In the second case, the unrestricted model is given by equation (5), and the 

restricted model is the AR(1) base case, 

                                      tt,t1t,t IPIIPI .                                (15) 

 The out-of-sample results are similar in both cases. The empirical results from the 

left box of Panel D show that the HJ volatility bound is a strong out-of-sample predictor 

of future growth. The relative mean squared error, RU MSEMSERMSE  , is less than 

one for all horizons except for the longest horizon of 24 months, and the null hypothesis 

of equal forecasting accuracy is rejected for all horizons from one to 12 months. Below 

each of the test statistics employed, we report the corresponding p-value obtained 

through the fixed regressor bootstrap explained above. These results imply that the 

inclusion of the bound improves the forecasting capacity of a constant. Similarly, when 

we include the lagged IPI growth as the competing predictor, the economic and 

statistical results are maintained, although the RMSE is slightly closer to one relative to 

the first case. The volatility bound significantly improves the out-of-sample forecasting 

ability of the lagged IPI growth as the competing predictor.  
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4. Competing In-Sample and Out-of-Sample Predictors of Real Activity 

4.1. The Competing Predictors 

We now investigate how robust our forecasting results are to competing predictor 

variables of real activity. We consider predictors related to interest rates, stock market 

returns, and illiquidity.  

The term spread, measured as the difference between the interest rates on long and 

short maturity government debt, is probably the most common financial leading 

indicator of real activity. Among many others, Estrella and Hardouvelis (1991), Estrella 

and Mishkin (1998), Stock and Watson (2003), Ang, Piazzesi, and Wei (2006), and 

Fornari and Mele (2011) show the significant predictive content of the spread for 

production growth, including its capacity to forecast a recession indicator in probit 

regressions. Additionally, there is a growing body of literature exploring the 

transmission of credit conditions into the real economy. Among recent papers, Mueller 

(2009) and Gilchrist, Yankov, and Zakrajsek (2009) show the forecasting power of the 

term structure of credit spreads for future output growth. These authors argue that there 

is a pure credit component orthogonal to macroeconomic conditions that accounts for a 

large part of the predicting capacity of credit spreads. 

Moreover, as long as stock prices equal the expected discounted value of future 

earnings and dividends, stock returns should also be useful in forecasting output growth. 

This is the insight of Fama (1981, 1990). On top of that, given the well-known evidence 

of the aggregate dividend yield being a powerful predictor of future market excess 

returns, as discussed recently by Cochrane (2011), the price–dividend ratio becomes a 

potential state variable for forecasting real activity. Finally, Naes, Skjeltorp, and Arne-

Odegaard (2011) argue that stock market liquidity tends to dry up before a crisis in the 

real economy. In fact, they show that measures of stock market liquidity contain leading 
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information about future economic growth, even after controlling for other financial 

leading indicators.19 

 

4.2. In-Sample Predictability with Competing Predictors 

We next employ all five variables discussed above and compare their in-sample 

predicting ability with that of the HJ volatility bound as estimated with 10 size-sorted 

portfolios. We run the following predictive OLS autocorrelation-robust standard error 

regressions with individual predictors and with pairs of predictors that always include 

the HJ bound: 

                                      ,XMIPI tt2t1t,t                                   (16) 

where tX  is either the market return, the log of the price-dividend ratio, the default 

spread, the term spread, or the Amihud ratio as a proxy for market-wide illiquidity.  

The in-sample results are reported in Panel A of Tables 3.a to 3.e where each case 

corresponds to a particular forecasting horizon from one to 24 months. Independently of 

the alternative state variable employed and forecasting horizon, the HJ volatility bound 

has always a negative and highly significant relation with future IPI growth. It is 

especially relevant the systematic increase in the R2 once we add the volatility bound in 

regression (16). Hence, our forecasting relation is systematically estimated with higher 

precision once we add the volatility bound. 

At the one-month horizon, all state variables present some evidence of 

predictability, except the stock market return. All predictors present the expected signs. 

The term spread coefficient is positive, while the rest of the state variable estimators 

have the theoretically correct negative sign. Note that increases in the default spread, 

and market-wide illiquidity signal a higher degree of uncertainty, and we also know that 

                                                 
19 The popular stock market volatility is analyzed in the section dealing with competing measures of 
financial uncertainty. 
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increases in the dividend yield forecast future positive market excess returns, which 

implies that increases in the price–dividend ratio should predict negative market returns 

and a negative impact on real activity. Once we combine on an individual basis the HJ 

volatility bound with the rest of the predictors, it turns out that the coefficient associated 

with the price–dividend ratio is estimated with much more precision. On the other hand, 

this result does not seem to hold for the term and market-wide illiquidity variables. It is 

especially relevant the combined effects of the HJ bound and the default spread; the R2 

value at just the one-month horizon is 9.38 percent. 

At the three-month horizon, all predictors seem to be individually significant and 

with the correct sign. In the combined regressions, the higher R2 statistics are obtained 

when adding the price–dividend ratio, or the default spread to the HJ volatility bound. 

The regression with the HJ bound and the price–dividend ratio presents an R2 of 15.5 

percent. 

Finally, for all other longer horizons, the results are similar, except that the term 

spread becomes much more relevant in forecasting output growth and the default spread 

loses its significant predicting ability. Hence, the combination of the HJ volatility bound 

with either the stock market return, the price–dividend ratio, or the term spread seems to 

be the appropriate strategy for predicting future production growth at long horizons. At 

the six-month horizon the highest R2 is observed when combining the HJ bound with the 

price–dividend ratio, while the combinations of the volatility bound with the term 

spread have the highest R2 statistics at the 12- and 24- month horizons. At the longest 

horizon, the HJ bound and term spread explain 28.3 percent of the variability of future 

production growth. To conclude, the default spread conveys information about future 

economic growth at relatively short horizons, while the term spread has predicting 
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capacity at longer horizons. In all cases, the HJ volatility bound calculated with 10 size-

sorted portfolios remains a strong predictor of real activity. 20 

 

4.3. Out-of-Sample Predictability with Competing Predictors 

The out-of-sample results are reported in Panel B of Tables 3.a to 3.e where each case, 

as before, corresponds to a particular forecasting horizon from one to 24 months. The 

first row for each forecasting horizon shows the relative mean squared error, RMSE. 

Recall that when the RMSE is less than one, the inclusion of the HJ volatility bound as 

an additional predictor improves the forecasting capacity with respect to any of the 

competing standard predictors. As in Table 2, below each of the test statistics employed, 

we report the corresponding p-value obtained through the fixed regressor bootstrap of 

Clark and McCracken (2011). The empirical evidence is quite conclusive. Most of the 

time, we show that the inclusion of the HJ bound significantly improves the predicting 

capacity of the model. The RMSE is practically always less than one, and the p-values 

tend to be very low. It turns out that this is the case independently of the forecasting 

horizon. The only variable that competes on a similar basis regarding its capacity to 

predict real activity is the term spread. For horizons of one, three, and six months the 

null of no difference between the forecasting errors of the two models is not rejected. 

For horizons of 12 and 24 months, the RMSE is greater than one and the null is rejected, 

indicating that the model including only the term spread has better out-of-sample 

performance. Therefore, the term spread becomes a better forecaster the longer the 

                                                 
20 The empirical results remain the same when we include the lagged IPI growth in the previous multiple 
forecasting regressions. In these multiple-predictor regressions, we also employ biased-adjusted t-statistic 
proposed by Amihud, Hurvich, and Wang (2009) using a diagonal matrix for the autoregressive estimated 
coefficients. As in the case of simple forecasting regressions, the adjusted t-statistic associated with the 
volatility bound is -2.27, -3.28, -3.24, -1.72, and -2.24 for one, three, six, 12, and 24.month horizons 
respectively when we add the stronger competitor for each particular horizon. They are the default spread, 
dividend yield, and term spread respectively depending upon the horizon analyzed in the regressions. All 
detailed results are available from the authors upon request.  
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predicting horizon. Note that this is consistent with the in-sample results contained in 

Panel A of Table 3. We conclude that the volatility bound using 10 size-sorted 

portfolios is a strong out-of-sample predictor of future real activity relative to well 

known competing predictors. The uncertainty embedded in stock prices of size-sorted 

portfolios is a powerful indicator of future economic growth. 

 

4.4. Other Measures of Uncertainty as Predictors of Real Activity 

Another relevant issue is related to the comparison between the HJ volatility bound, as a 

measure of financial uncertainty, with traditional competitors like stock market 

volatility or VIX. We now provide evidence regarding the forecasting ability relative to 

these measures and others, less conventional measures, like idiosyncratic risk, the 

volatility of the SMB Fama-French risk factor, and the cross-sectional dispersion 

measures for quarterly forecasts for GDP from the Survey of Professional Forecasters. 

We use two measures of cross-sectional dispersion. Dispersion measure D2 is the 

difference between 75th percentile and 25th percentile of the forecasts for GDP divided 

by GDP growth. Dispersion measure D3 is percent log-difference between the 75th 

percentile and the 25th percentile of the forecasts for GDP.  

As in the previous analysis with competing state variables, we now run again the 

following in-sample predictive OLS autocorrelation-robust standard error regressions: 

                                    ,XMIPI tt2t1t,t                                     (16) 

where tX  is now one of the alternative uncertainty measures mentioned above, and the 

forecasting horizons are three, six, 12 and 24 months. The shortest horizon is now 3 

months given that the cross-sectional dispersion measures are only available at the 

quarterly frequency. 
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The idiosyncratic risk refers to the average stock variance proposed by Goyal and 

Santa-Clara (2003), which is largely idiosyncratic. This measure avoids imposing a 

particular factor asset pricing model and, in our case, it is estimated either with daily or 

monthly data using the 100 size-book-to-market portfolios displayed in the Kenneth 

Frnech´s web site. Similarly, the volatility of the SMB factor is also estimated with 

either daily or monthly data. In both cases, we employ either a rolling window of one 

month of daily data, or 60 months of past monthly observations. VIX, as the key 

reference measure of financial uncertainty, refers to the volatility given by CBOE at the 

last day of the corresponding month during the sample period. 

The stock market volatility is estimated at each month as the standard deviation of 

monthly returns using a rolling window of five years of past observations, to be 

consistent with our measure of the HJ bound. As discussed in the introduction, there has 

been considerable recent attention to financial stock market volatility as a predictor of 

real activity. Fornari and Mele (2011) argue that it is important to extract the long-run 

component of stock market volatility when using this variable as a predictor of future 

growth.21 To isolate extreme financial episodes that may not be necessarily informative 

about the economy’s future scenario, the authors propose a simple moving average of 

the past 12 months of absolute returns as the appropriate forecaster of real activity:  

                                    



12

1k

k1mtmtt  R 
12

1

2
R

 ,                                   (17) 

where 2  is a scaled factor related to the use of absolute values. We also compute 

this estimator of stock market volatility to provide a potentially interesting comparison 

with the traditional standard deviation of returns. 

                                                 
21 See the similar arguments of Chauvet, Senyuz, and Yoldas (2011).  
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The results are contained in Table 4 where each panel corresponds to a given 

forecasting horizon. The results again confirm the forecasting ability of the volatility 

bound on future output growth. The slope coefficient is, in all cases, negative and 

significantly different from zero, independently of the forecasting horizon and the 

additional uncertainty measure. It is especially important to notice the systematic 

increase of the R2 when adding the volatility bound to the forecasting regression. The 

combination of the bound and VIX generate the highest R2 at 3 and 6-month horizons, 

and it also remains high at the longest horizons. Idiosyncratic volatility and the 

volatility of the SMB factor are also relevant forecasters especially when we use the 

daily-based data estimators for relatively short horizons.  

At the three-month horizon, the volatility of the stock market computed as the 

usual standard deviation does not present significant forecasting capacity by itself. In 

the combined regressions, the coefficient associated with volatility of the stock market 

becomes negative and estimated with more precision than in the individual regressions. 

This evidence suggests that the volatility bound is capturing something else than market 

volatility. As we will discuss later this is indeed the case. The volatility of the bound is 

the maximum Sharpe ratio. The predicting ability of the bound heavily depends on the 

interaction between the numerator and denominator rather than on the individual 

components of the bound. On the other hand, the market volatility estimated as in 

equation (17) obtains relatively better results than the traditional rolling window 

estimator at the shortest horizon. However, and contrary to the standard deviation, its 

marginal forecasting ability improvement when combined with the volatility bound is 

lower than the one observed with the regular measure. 

Finally, we also perform the out-of-sample analysis using the Fornari-Melle 

measure of market volatility as the competing predictor of the volatility bound in the 
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restricted regression. The RMSE for all horizons is always lower than one, ranging from 

0.9589 at the 3 month horizon to 0.9742 at the longest horizon. In all cases, the test 

statistics show that the inclusion of the HJ volatility bound always significantly 

improves the predicting capacity of the stock market volatility. 

We therefore conclude that the HJ volatility bound improves the in-sample 

forecasting ability of competing uncertainty measures, and the out-of-sample capacity 

of the slowly changing measure of stock market volatility. 

 

5. Alternative Portfolio Formation Criteria 

We now employ three additional alternative measures of the HJ volatility bound by 

using the returns of 10 book-to-market-, momentum-, and dividend yield-sorted 

portfolios and a rolling window of five years of past monthly returns. Panel A of Table 

5 contains the descriptive statistics of the bound for these three sorting procedures. As 

for the size-sorted portfolios, all of them present positive skewness and excess kurtosis. 

The momentum sorting has especially high moments with a particularly high positive 

skewness relative to the rest of the portfolios. The correlations among the bounds are 

positive but low except for the correlation coefficient between the volatility bound 

estimated with dividend yield and book-to-market portfolios. These low correlations 

suggest important differences between the alternative estimated bounds. Note that the 

interaction between the numerator and denominator of the bound, volatility dispersion 

and the complex dynamic correlation behavior among the 10 portfolios in each of the 

four sets employed can generate a potentially different time series pattern in the HJ 

bounds.  

We perform the forecasting regressions of equation (2) using the HJ bound 

estimated with the 10 portfolios of each set. Panel B of Table 5 reports the results. 
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Independently of the forecasting horizon, none of the estimates of the HJ volatility 

bound constructed from these portfolio sets present significant predicting results. It may 

be the case that the dynamics induced by the different characteristics of the sorting 

procedures may generate a different forecasting ability of real activity. For example, it 

is interesting to observe that the annualized volatility dispersion between the extreme 

portfolios turns out to be the highest for the size-sorted portfolios. In particular, the 

smallest portfolio have an 18.6 percent higher annualized volatility than the portfolio of 

the largest stocks, while the dispersion is only 12.7 percent, 11.4 percent, and 0.9 

percent for the book-to-market-, momentum-, and dividend yield-sorted portfolios. In 

any case, it seems that sorting procedures, and the corresponding time-varying 

diversification effects and sensitivities of returns and risks to the business cycle are 

relevant issues for forecasting production growth with volatility bounds.22 

The question is: why sorting seems to be so important for predicting real activity? 

As pointed out before, the HJ volatility bound is the maximum Sharpe ratio. It is 

therefore the case that the volatility bound changes over time because the maximum 

Sharpe ratio varies over time. Our evidence may be driven by the expected return part of 

the Sharpe ratio, by the inverse of the volatility, by the interaction of the two, or by any 

of the two components of the volatility of the tangent portfolio. We investigates the 

alternative components of the maximum Sharpe ratio, SRT, as potential sources of 

predictability by running forecasting regressions of future output growth on the 

percentage of each of the components on the absolute value of the maximum Sharpe 

                                                 
22 Pastor and Veronesi (2009) show that the volatility of the stochastic discount factor depends on the 
dynamic associated with technological adoptions. In particular, they show that, once the new technology 
has arrived, the volatility of the stochastic discount factor tends to be flat as long as the probability of 
adoption is low, and it increases very rapidly as the probability increases. As with these portfolio sets, the 
volatility bound estimated from alternative industry-sorted portfolios does not present any significant 
predicting ability of future output growth.  
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ratio. Therefore, we run forecasting regressions with four alternative independent 

variables: 
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where the two last components correspond to the first and second elements of the 

variance of the tangent portfolio given by,    
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The results strongly indicate that the main driver of predictability is the interaction 

between the numerator and the denominator of the volatility bound rather than any of its 

components. The only marginally significant forecasting capacity appears to be related 

to the components of the variance of the tangent portfolio. In particular, and only for the 

shortest horizons, both T
Var
T SR  and T

Cov
T SR  present some evidence of 

predicting ability with the right sign.23 And, more importantly, this is the case only for 

the set of size-sorted portfolios. The components of the bounds for alternative sorting 

procedures do not present any evidence of forecasting future economic growth. It is 

therefore the interaction between the numerator and denominator of the bound for size-

sorted portfolio the main driver of the forecasting evidence reported above. 

 

6. Why Size is so important for Predicting Real Activity? 

There is a consolidated literature that predicts that changing credit market conditions 

affect very differently small and large firms.24 Under asymmetric information, creditors 

                                                 
23 As before, the detailed results are available from the authors upon request. 
24 See the fundamental arguments based on imperfect capital market theory provided by Kiyotaki and 
Moore (1997), and the empirical evidence reported by Pérez-Quirós and Timmermann (2000). 
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require more collateral when lending funds to small firms than to large firms. This 

suggests that small firms will be more negatively affected by tighter credit conditions 

than large firms. Our hypothesis, in our final analysis, is that changes in economic 

conditions, represented by either better or tighter credit conditions will generate strong 

asymmetric effects on size-sorted portfolios, which will not be found in other sorting 

portfolio sets. In particular, small and large firms may react very differently depending 

upon the arrival of positive or negative credit condition news, and this asymmetric 

reaction should be impounded into excess expected return and risk of optimally selected 

size-sorted portfolios. Indeed, this asymmetric sensitivity to credit conditions within 

size firms should be the information contained in the HJ volatility bound that helps 

predicting real activity. Again, and this is the key issue, there are no reasons to find 

these asymmetries to credit conditions in the alternative sorted portfolios characterized 

by book-to-market, momentum or dividend yield.  

We next document systematic differences in the dynamic behavior over the 

business cycle in small and large firms that are not found in other sorted portfolios. To 

be consistent with imperfect capital market theories, it is important to employ credit 

conditions to identify the business cycle variations, and then to investigate how these 

different credit scenarios affect our four portfolio sorts. In doing so, we simply allow 

the conditional distribution of returns to vary with the state of the business cycle, and 

then we study how the sensitivities of expected returns and risk to credit conditions 

depend on size, value-growth, momentum, and dividend-yield. 

We employ a Markow switching model along the lines of Pérez-Quirós and 

Timmermann (2000). In particular, for each portfolio i within each set, the parameters 

of the excess return and volatility equations are functions of a single latent state variable 

S, that can represent two states, tS 1  or tS 2 :              
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where tX  is either the known default premium at time t or the risk-free rate. 25  

We assume that the transition probabilities are constant,                        

                                                i i
Sp , S 1,2                                               (21) 

where   denotes the cumulative density function of a standard normal variable, and the 

parameters to be estimated for each portfolio i are 

                                             i i i i i
S 0,S 1,S 0,S 1,S, , , , , S=1,2     .                                  (22) 

To estimate the parameters we maximize the log-likelihood function,          
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where the density t 1   is obtained by summing the probability weighted state densities, 

g(.), across the two possible states, 

                       g P1 g P ln i
1t2

i
1t1

i
1t1

i
1t1

i
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i
1StP   is the conditional probability of being in state S = 1, 2 at time t + 1 given the 

information at time t. Finally, from the total probability theorem and the Bayes’ rule, the 

conditional state probability of being in the state 1 can be written as  
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25 In the GARCH literature is very common to add the risk-free rate as a control variable. 
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The empirical results are reported in Table 6. For each portfolio i, the top and the 

middle blocks of the table show the mean and the variance estimated parameters with 

the corresponding t-values for testing individual significance in parenthesis. At the 

bottom of the table, we report the tests for symmetric coefficients between states for 

both the mean and variance equations. We employ the likelihood ratio test, and the 

corresponding p-values are reported below the restricted log-likelihood values. 

 Each panel corresponds to a particular portfolio set. Panel A contains the results 

using 10 size-sorted portfolios, while Panels B to D displays the results for book-to-

market, momentum, and dividend yield respectively. The reported results employ the 

default spread in both the mean and the variance equations. We repeat the same 

estimation process using the default spread in the mean equation, by itself or with other 

predictors, and the risk-free rate in the variance equation. In all cases the results are 

qualitative the same.26

 

A common result is that the null hypothesis of symmetry in the volatility equation 

is strongly rejected for all portfolios in the four panels. This is not the case for the mean 

equation. The rejection of the null occurs for seven out of the 10 portfolios in panels B 

and C, and for 6 portfolios in panel D. On the other hand, for size-sorted portfolios, 

symmetry in mean returns is rejected for nine out of the 10 portfolios. Especially 

relevant is the case of the portfolio of small stocks. This is the only portfolio in the four 

portfolio sets for which both the mean and the volatility react significantly and with the 

opposite sign depending upon the arrival of positive or negative news. The mean return 

increases and the volatility decreases when there is a positive default shock in state 1, 

while mean return decreases and volatility increases when the credit conditions get 

worse in state 2. Hence, small firms´ risk and expected returns are most strongly 

                                                 
26 Results are available upon request. 



 
 

32

affected by both a negative and a positive default shocks. On the other hand, the large 

firms´ expected returns and risk present much weaker and different state dependencies 

with respect to credit conditions. This introduces a large asymmetric cross-sectional 

response to changes in the business cycle within the size-sorted portfolios. More 

importantly, the asymmetric response among the 10 size deciles to changing business 

cycle is strikingly different from the response within alternative sorted portfolios. The 

estimated sensitivities to credit changing conditions in both the mean and variance 

equations contained in Panels B through D are different, much weaker and less 

significant in all other sorting procedures than under the 10 size-sorted portfolios. 

Therefore, we find that small firms (relative to large firms) contain the highest degree of 

asymmetry in their conditional return distribution across different credit scenarios. 

These particularly strong asymmetric responses are impounded in the optimal 

combination of size-sorted portfolios, so that the interaction between excess returns and 

risk reflected in the HJ volatility bound contain significant information about the future 

state of the economy. This can explain the strong predicting capacity that the size-based 

volatility bound has about future real activity.  

 

7. Conclusions 

The uncertainty embedded in equity portfolio returns helps predict future economic 

growth. This paper contributes to literature by showing that changes in the uncertainty 

embedded in stock returns measured by the model-free HJ volatility bound is a strong 

predictor of future real activity. However, data employed in the estimation of the 

volatility bound seem to be a key issue in properly incorporating the information that is 

actually relevant for predicting future economic growth. Sorting stocks on the basis of 

size generates a very powerful leading predictor. Alternative equity portfolio sorting 
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formations lead to very different conclusions regarding the forecasting ability of the 

bound.  

We show that the HJ volatility bound, when employing data on 10 size-sorted 

portfolios, generates significant predictions of real activity both in sample and out of 

sample. This is the case independently of the forecasting horizon, the time period, or the 

proxy use for measuring economic growth. Also the inclusion of the HJ bound 

constructed with size-sorted portfolios significantly improves the in sample and out-of-

sample forecasting ability of such well-known predictors as the stock market volatility, 

and the default spread, and competes on similar basis with the term spread.  

Given that the HJ volatility bound is the maximum Sharpe ratio, we also 

investigate the source of forecasting through the analysis of the individual components 

of the bound. We conclude that the main driver of predictability is the dynamic 

interaction between the numerator and denominator of the volatility bound of the size-

sorted portfolios. The second contribution of the paper is to show that the information 

content in the asymmetric response of the size-sorted portfolios relative to the business 

cycle, represented by changing credit conditions, is the ultimate explanation for the 

systematic and strong predictability reported in this paper. The mean and variance 

responses of book-to-market, momentum or dividend-yield returns to changing credit 

conditions are weaker and less asymmetric than the responses of the size-sorted 

portfolios. Size is, once again, an enormous source of information for both Economics 

and Finance. 
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Table 1 
Descriptive statistics of the Hansen-Jagannathan volatility bound 

Descriptive statistics Correlation between innovations 

Mean 0.504 1 month -0.014 
Median 0.496 3 months 0.060 
Std. Dev. 0.148 6 months 0.040 
Skewness 0.234 12 months 0.008 
Kurtosis 3.378 24 months 0.110 
Autocorrelation 0.971   
On the left side, this table reports the descriptive statistics about the 
Hansen-Jagannathan volatility bound estimated with overlapping sub-
periods of five years of monthly data from size-sorted portfolios. Sample 
period goes from January 1927 to December 2010. On the right side of the 
table, we present the correlation between the residuals from the predictive 
regression and an AR(1) process for the predictor for each forecasting 
horizon. That is, ˆ ˆCorr( ,u )  from the model  

 
   
t ,t 1 t t 1

t 1 t t 1

IPI M

M M u

  

  
 

 

   

  
 , 

where IPI and  M  denote the industrial production index growth and 

the Hansen-Jagannathan volatility bound respectively. 
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Table 2 
Forecasting power of the Hansen-Jagannathan volatility bound 

PANEL A: In sample forecasting ability 

       ttt,t MIPI   , 1 , 2t t t t t tIPI IPI M               

      Adj. R2   1  2  Adj. R2 

1 
0.007 -0.009 3.24 0.005 0.326 -0.006 13.37 
(4.26) (-3.02)  (3.49) (4.39) (-2.74)  

3 
0.021 -0.030 6.95 0.013 0.424 -0.019 23.99 
(4.89) (-3.42)  (3.85) (5.57) (-3.11)  

6 
0.042 -0.060 9.41 0.032 0.282 -0.047 16.72 
(5.34) (-3.66)  (3.92) (2.88) (-3.11)  

12 
0.080 -0.111 12.36 0.077 -0.003 -0.107 11.80 
(5.91) (-3.95)  (5.41) (-0.03) (-2.48)  

24 
0.149 -0.207 19.56 0.157 -0.299 -0.193 25.92 
(7.16) (-4.74)  (7.99) (-2.98) (-4.45)  

PANEL B: Other proxies for economic growth 

  ,t t t tGDP M          ,t t t tc M         

      Adj. R2     Adj. R2 

1 
0.005 -0.005 0.86 0.004 -0.004 3.42 
(3.53) (-1.85)  (7.87) (-4.67)  

3 
0.015 -0.013 5.10 0.012 -0.014 12.51 
(3.71) (-1.88)  (8.52) (-5.01)  

6 
0.027 -0.024 7.43 0.023 -0.025 16.84 
(4.03) (-1.90)  (8.98) (-5.10)  

12 
0.058 -0.054 13.64 0.045 -0.049 21.63 
(5.33) (-2.64)  (10.38) (-5.70)  

24 
0.132 -0.134 32.26 0.088 -0.091 27.08 
(7.62) (-4.22)  (12.81) (-6.38)  

PANEL C: Different sample periods 

       ttt,t MIPI

 1965:1987 1988:2010 1931:2010 
      Adj. R2     Adj. R2     Adj. R2 

1 
0.009 -0.014 3.22 0.007 -0.009 3.11 0.010 -0.015 1.11 
(4.40) (-3.06)  (2.90) (-2.02)  (2.64) (-2.05)  

3 
0.029 -0.050 8.08 0.020 -0.026 6.85 0.028 -0.039 1.47 
(5.46) (-3.65)  (2.99) (-2.06)  (2.75) (-2.06)  

6 
0.062 -0.112 14.31 0.037 -0.046 6.72 0.053 -0.069 2.03 
(6.40) (-4.36)  (2.96) (-1.95)  (3.15) (-2.26)  

12 
0.122 -0.223 22.87 0.065 -0.078 6.77 0.110 -0.145 4.13 
(7.53) (-5.51)  (3.13) (-1.94)  (4.45) (-3.27)  

24 
0.200 -0.352 30.00 0.148 -0.188 16.29 0.227 -0.310 10.61 
(8.95) (-6.74)  (4.34) (-2.88)  (6.40) (-4.82)  

PANEL D: Out of sample forecasting ability 

 
Unrestricted:  ,t t t tIPI M         

Restricted: ,t t tIPI        

Unrestricted: 
 , 1 , 2t t t t t tIPI IPI M               

Restricted: , 1 ,t t t t tIPI IPI            

  RMSE MSE-t MSE-F RMSE MSE-t MSE-F 

1 
0.9708 1.557 14.667 0.9907 0.827 4.383 

 (0.0004) (0.0002)  (0.012) (0.016) 

3 
0.9431 1.280 29.346 0.9762 0.620 11.296 

 (0.0006) (0.0008)  (0.002) (0.004) 

6 
0.9299 1.007 34.418 0.9565 0.536 20.933 

 (0.001) (0.001)  (0.001) (0.002) 

12 
0.9437 0.492 28.453 0.9869 0.095 6.026 

 (0.0004) (0.0008)  (0.003) (0.003) 

24 
1.0051 -0.025 -2.343 1.0081 -0.037 -3.532 

 (0.001) (0.001)  (0.005) (0.005) 
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In Panel A, this table reports the results from monthly forecasting regressions of the industrial 
production growth, ΔIPI, on the Hansen-Jagannathan (HJ) volatility bound, σ(M), estimated with 
overlapping sub-periods of 60 months of returns from size-sorted portfolios. Forecasting horizons, τ = 
1, 3, 6, 12, and 24 months, are indicated in the first column. Numbers in parentheses are t-values based 
on OLS autocorrelation-robust standard errors. Sample period goes from January 1965 to July 2010. 
In Panel B, the forecasting ability of the HJ volatility bound is confirmed when using two alternative 
proxies for macroeconomic growth: the gross domestic product growth, ΔGDP, on the left side, and 
non-durable consumption growth, Δc, on the right side, respectively. 
In Panel C, the forecasting ability of the HJ volatility bound is confirmed when using alternative 
sample periods: two sub-periods, from January 1965 to December 1987 and from January 1988 to July 
2010, and also an extended period, from January 1931 to July 2010, that uses all IPI available data. 
Finally, Panel D shows the out-of-sample forecast accuracy of the HJ volatility bound, compared with 
a constant specification, on the left side, and with an AR(1) specification, on the right side, 
respectively. RMSE is the relative mean square forecasting error that compares the mean square 
forecasting error of the restricted model and the mean square error of the unrestricted model. MSE-t 
and MSE-F are two statistics for testing the equal forecasting ability of the two models, restricted and 
unrestricted. P-values, in parentheses, are obtained by an efficient bootstrap method for simulating 
asymptotic critical values. Sample period goes from January 1965 to July 2010.  
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Table 3.a 
Forecasting power of the Hansen-Jagannathan bound against alternative standard predictors 

Forecasting horizon: 1 month 
PANEL A: In sample forecasting ability 

 , 1 2 ,  1t t t t tIPI M X              

X   1  2  Adj.R2 

Market Return 

0.002  0.004 0.00 
(4.11)  (0.45)  
0.007 -0.009 0.003 3.09 
(4.37) (-3.06) (0.35)  

Price/Dividend 

0.005  -0.960 1.37 
(3.29)  (-1.64)  
0.014 -0.015 -1.903 8.08 
(5.20) (-4.43) (-3.02)  

Default Premium 

0.007  -3.344 7.28 
(6.02)  (-3.97)  
0.012 -0.008 -3.100 9.38 
(8.86) (-3.18) (-3.96)  

Term Spread 

0.001  1.050 2.55 
(1.28)  (2.92)  
0.005 -0.008 0.788 4.49 
(2.24) (-2.05) (1.83)  

Market Illiquidity 

0.002  -0.0005 0.27 
(4.15)  (-1.77)  
0.006 -0.008 -0.0005 2.84 
(4.12) (-2.89) (-1.46)  

PABEL B: Out-of-sample forecasting ability 
Unrestricted model:  , 1 t 2X ,  1t t t tIPI M              

Restricted model: , 1 tX ,  1t t tIPI            

 
Market Return Price/Dividend 

Default 
Premium 

Term Spread 
Market 

Illiquidity 
RMSE 0.9709 0.9389 0.9886 0.9869 0.9389 
MSE-t 1.5537 1.9240 0.4114 1.0460 1.2061 
(p-value) (0) (0) (0) (0.099) (0.003) 
MSE-F 14.6251 31.7330 5.6467 6.4758 30.4443 
(p-value) (0) (0) (0) (0.075) (0.007) 
Panel A: Monthly forecasting regressions of the industrial production growth,ΔIPI, on the Hansen-
Jagannathan(HJ) volatility bound, σ(M), estimated with overlapping sub-periods of 60 months of returns 
from 10 size-sorted portfolios and/or an additional standard predictor, indicated in column 1. The default 
premium is calculated as the spread between the rates of Baa corporate bonds and 10-year government 
bonds. The term spread is measured as the difference between the 10-year government bond and the one-
month T-bill rate. The market-wide illiquidity measure is calculated from Amihud’s (2002) ratio. 
Numbers in parentheses are t-values based on OLS autocorrelation-robust standard errors. Sample period 
goes from January 1965 to July 2010.  
Panel B: The out-of-sample forecast accuracy of the HJ volatility bound is analyzed, comparing the 
unrestricted model that contains the HJ bound and the additional standard predictor, with the restricted 
model, that only includes the HJ bound as the predictor. RMSE is the relative mean square forecasting 
error that compares the mean square forecasting error of the restricted model and the mean square error of 
the unrestricted model. MSE-t and MSE-F are two statistics for testing the equal forecasting ability of the 
two models, restricted and unrestricted. P-values, in parentheses, are obtained by an efficient bootstrap 
method for simulating asymptotic critical values. Sample period goes from January 1965 to July 2010. 
Each table from 3.a to 3.e refers to a different forecasting horizon. 
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Table 3.b 
Forecasting power of the Hansen-Jagannathan bound against alternative standard predictors 

Forecasting horizon: 3 months 
PANEL A: In sample forecasting ability 

 , 1 2 ,  3t t t t tIPI M X              

X   1  2  Adj.R2 

Market Return 

0.006  0.059 2.46 
(3.82)  (2.62)  
0.021 -0.030 0.056 9.16 
(5.01) (-3.58) (2.84)  

Price/Dividend 

0.013  -2.659 2.21 
(3.21)  (-1.57)  
0.043 -0.046 -5.605 15.53 
(5.37) (-4.72) (-3.04)  

Default Premium 

0.018  -7.410 7.16 
(4.60)  (-2.81)  
0.030 -0.027 -6.566 12.45 
(5.78) (-3.73) (-2.77)  

Term Spread 

0.002  3.599 6.25 
(1.06)  (3.66)  
0.015 -0.024 2.769 10.31 
(2.43) (-2.26) (2.34)  

Market Illiquidity 

0.006  -0.001 0.38 
(4.18)  (-2.88)  
0.020 -0.029 -0.001 6.66 
(4.80) (-3.35) (-2.53)  

PABEL B: Out-of-sample forecasting ability 
Unrestricted model:  , 1 t 2X ,  3t t t tIPI M              

Restricted model: , 1 tX ,  3t t tIPI            

 
Market Return Price/Dividend 

Default 
Premium 

Term Spread 
Market 

Illiquidity 
RMSE 0.9431 0.8967 0.9789 0.9770 0.9243 
MSE-t 1.2967 1.3724 0.3810 0.8389 1.2601 
(p-value) (0) (0) (0) (0.234) (0) 
MSE-F 29.3053 55.9710 10.4856 11.4637 38.1428 
(p-value) (0) (0) (0) (0.215) (0.003) 
See notes in Table 3.a. 
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Table 3.c 
Forecasting power of the Hansen-Jagannathan bound against alternative standard predictors 

Forecasting horizon: 6 months 
PANEL A: In sample forecasting ability 

 , 1 2 ,  6t t t t tIPI M X              

X   1  2  Adj.R2 

Market Return 

0.011  0.135 4.43 
(3.96)  (3.34)  
0.040 -0.058 0.128 13.45 
(5.44) (-3.86) (3.62)  

Price/Dividend 

0.022  -3.816 1.50 
(2.95)  (-1.26)  
0.079 -0.085 -9.349 17.55 
(5.50) (-4.76) (-2.91)  

Default Premium 

0.026  -8.566 3.17 
(3.37)  (-1.63)  
0.051 -0.056 -6.792 11.32 
(4.70) (-3.88) (-1.50)  

Term Spread 

0.004)  7.219 8.58 
(1.14)  (4.26)  
0.030 -0.047 5.552 14.04 
(2.71) (-2.46) (2.72)  

Market Illiquidity 

0.012  -0.003 0.51 
(4.29)  (-2.70)  
0.042 -0.061 -0.002 10.13 
(5.27) (-3.64) (-2.32)  

PABEL B: Out-of-sample forecasting ability 
Unrestricted model:  , 1 t 2X ,  6t t t tIPI M              

Restricted model: , 1 tX ,  6t t tIPI            

 
Market Return Price/Dividend 

Default 
Premium 

Term Spread 
Market 

Illiquidity 
RMSE 0.9284 0.8977 0.9711 0.9767 0.8695 
MSE-t 1.0457 0.9671 0.3884 0.5611 1.1432 
(p-value) (0) (0) (0.001) (0.141) (0) 
MSE-F 37.2363 55.0176 14.3956 11.5043 69.4753 
(p-value) (0) (0) (0.001) (0.144) (0.006) 
See notes in Table 3.a. 
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Table 3.d 
Forecasting power of the Hansen-Jagannathan bound against alternative standard predictors 

Forecasting horizon: 12 months 
PANEL A: In sample forecasting ability 

 , 1 2 ,  12t t t t tIPI M X              

X   1  2  Adj.R2 

Market Return 

0.022  0.237 5.14 
(4.64)  (4.63)  
0.077 -0.109 0.225 17.01 
(5.97) (-4.09) (4.88)  

Price/Dividend 

0.030  -2.355 0.05 
(2.36)  (-0.49)  
0.126 -0.143 -11.674 17.04 
(5.76) (-4.79) (-2.48)  

Default Premium 

0.030  -3.360 0.01 
(2.40)  (-0.43)  
0.079 -0.111 0.180 12.19 
(4.31) (-4.08) (0.03)  

Term Spread 

0.007  15.154 14.02 
(1.14)  (5.08)  
0.053 -0.084 12.096 20.53 
(2.95) (-2.65) (3.49)  

Market Illiquidity 

0.023  -0.003 0.11 
(4.89)  (-2.00)  
0.082 -0.117 -0.002 13.51 
(5.96) (-4.06) (-1.27)  

PABEL B: Out-of-sample forecasting ability 
Unrestricted model:  , 1 t 2X ,  12t t t tIPI M              

Restricted model: , 1 tX ,  12t t tIPI            

 
Market Return Price/Dividend 

Default 
Premium 

Term Spread 
Market 

Illiquidity 
RMSE 0.9315 0.8932 0.9056 1.0246 0.6928 
MSE-t 0.6190 0.8253 0.7871 -0.3627 0.9984 
(p-value) (0) (0) (0.002) (0.033) (0.001) 
MSE-F 35.1043 57.0603 47.7192 -11.4718 202.6138 
(p-value) (0.001) (0) (0.004) (0.021) (0.024) 
See notes in Table 3.a. 
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Table 3.e 
Forecasting power of the Hansen-Jagannathan bound against alternative standard predictors 

Forecasting horizon: 24 months 
PANEL A: In sample forecasting ability 

 , 1 2 ,  24t t t t tIPI M X              

X   1  2  Adj.R2 

Market Return 

0.044  0.219 1.81 
(6.33)  (3.43)  
0.147 -0.207 0.216 21.37 
(7.19) (-4.81) (3.77)  

Price/Dividend 

0.032  5.565 0.46 
(1.68)  (0.81)  
0.189 -0.236 -9.817 21.37 
(6.16) (-5.19) (-1.53)  

Default Premium 

0.025  14.315 0.92 
(1.20)  (1.08)  
0.129 -0.206 13.137 20.34 
(4.62) (-4.70) (1.15)  

Term Spread 

0.019  25.108 18.16 
(2.21)  (6.26)  
0.105 -0.158 18.529 28.33 
(4.56) (-3.63) (4.72)  

Market Illiquidity 

0.046  0.001 0.00 
(6.53)  (0.48)  
0.150 -4.76 0.003 19.60 
(7.18) (-2.99) (1.18)  

PABEL B: Out-of-sample forecasting ability 
Unrestricted model:  , 1 t 2X ,  24t t t tIPI M              

Restricted model: , 1 tX ,  24t t tIPI            

 
Market Return Price/Dividend 

Default 
Premium 

Term Spread 
Market 

Illiquidity 
RMSE 0.9883 0.9484 0.8680 1.1202 0.5944 
MSE-t 0.0592 0.2713 0.6164 -0.6341 0.8205 
(p-value) (0.023) (0.009) (0.018) (0.051) (0.044) 
MSE-F 5.4911 25.2884 70.7180 -49.8949 303.6104 
(p-value) (0.022) (0.011) (0.021) (0.040) (0.082) 
See notes in Table 3.a. 
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Table 4 
Forecasting power of the Hansen-Jagannathan bound against alternative uncertainty measures 

PANEL A: τ = 3 months 
 , 1 2 ,  3t t t t tIPI M X              

Idiosyncratic Risk. Simple period: 1965:01-2010:07 
   1  2  Adj.R2 

Daily Data 

0.009  -0.981 8.81 
(6.29)  (-2.80)  
0.024 -0.029 -0.904 14.95 
(6.05) (-3.68) (-3.00)  

Monthly Data 

0.007  -0.387 0.49 
(4.32)  (-1.26)  
0.023 -0.032 -0.413 8.14 
(4.82) (-3.43) (-1.33)  

Volatility of SMB Factor. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Daily Data 

0.015  -0.455 8.49 
(4.53)  (-2.49)  
0.027 -0.026 -0.381 13.17 
(5.62) (-3.13) (-2.43)  

Monthly Data 

0.010  -0.134 0.40 
(2.42)  (-1.07)  
0.033 -0.036 -0.266 9.53 
(5.77) (-3.73 (-2.53)  

Volatility of Market Return. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Fornari-Mele 

0.014  -0.180 2.61 
(3.66)  (-1.86)  
0.033 -0.034 -0.210 11.17 
(5.08) (-3.70) (-2.19)  

5 years of monthly data 

0.013  -0.148 0.35 
(1.74)  (-0.90)  
0.047 -0.041 -0.461 11.01 
(5.27) (-4.20) (-3.17)  
VIX. Sample period: 1986:01-2010:07  

   1  2  Adj.R2 

Last day of each month 

0.019  -0.065 13.57 
(3.75)  (-2.33)  
0.041 -0.036 -0.072 25.62 
(4.38) (-3.06) (-3.33)  

Dispersion in SPF. Quarterly Data. Sample period: 1968:IV-2010:4  
   1  2  Adj.R2 

D2 for GDP growth 

0.009  -0.002 0.15 
(2.36)  (-0.91)  
0.036 -0.042 -0.005 12.15 
(4.40) (-3.34) (-2.27)  

D3 for GDP levels 

0.011  -0.012 1.16 
(2.62)  (-1.30)  
0.038 -0.043 -0.024 14.10 
(4.75) (-3.53) (-2.66)  

This table displays the results from predictive regressions using the HJ volatility bound, estimated with 
10 size-sorted portfolios, and an alternative measure of uncertainty. Idiosyncratic risk is computed from 
100 size-book-to-market value-weighted portfolios. Both idiosyncratic risk and the volatility of SMB are 
estimated with a rolling window of one month of daily data, in the first row, and 60 months of monthly 
data, in the second row. The volatility of the market return is computed as in Fornari and Mele (2011), 
and also as the standard deviation of the monthly returns using a rolling window of 60 months. VIX 
refers to the last day of the corresponding month. SPF indicates the prediction of GDP provided by the 
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Survey of Professional Forecasters and D2 and D3 are two alternative cross-sectional dispersion 
measures. Numbers in parentheses are t-values based on OLS autocorrelation-robust standard errors. The 
sample period is indicated at the top of each block (due to data availability restrictions). Frequency is 
monthly for all regressions with the exception of the one that includes the SPF that is quarterly 
frequency. Each panel from A to D refers to a different forecasting horizon. 
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Table 4 (continuation) 
PANEL B: τ = 6 months 

 , 1 2 ,  6t t t t tIPI M X              

Idiosyncratic Risk. Sample period: 1965:01-2010:07 
   1  2  Adj.R2 

Daily Data 

0.018  -1.572 7.59 
(6.21)  (-2.72)  
0.047 -0.060 -1.414 16.24 
(6.22) (-3.80) (-2.94)  

Monthly Data 

0.013  -0.423 0.09 
(4.23)  (-0.86)  
0.046 -0.064 -0.475 10.34 
(5.18) (-3.63) (-0.98)  

Volatility of SMB Factor. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Daily Data 

0.027  -0.718 7.08 
(4.60)  (-2.39)  
0.052 -0.055 -0.560 14.21 
(5.84) (-3.45) (-2.31)  

Monthly Data 

0.021  -0.273 0.63 
(2.56)  (-1.15)  
0.065 -0.072 -0.530 12.91 
(6.06) (-3.96) (-2.67)  

Volatility of Market Return. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Fornari-Mele 

0.021  -0.186 0.82 
(2.98)  (-1.15)  
0.057 -0.067 -0.242 11.76 
(4.90) (-3.75) (-1.51)  

5 years of monthly data 

0.018  -0.127 0.00 
(1.19)  (-0.39)  
0.082 -0.076 -0.715 12.72 
(4.97) (-4.28) (-2.60)  
VIX. Sample period: 1986:01-2010:07  

   1  2  Adj.R2 

Last day of each month 

0.031  -0.098 9.61 
(3.99)  (-2.23)  
0.070 -0.064 -0.110 21.35 
(3.97) (-2.65) (-3.07)  

Dispersion in SPF. Quarterly Data. Sample period: 1968:IV-2010:4  
   1  2  Adj.R2 

D2 for GDP growth 

0.013  -0.002 -0.43 
(1.88)  (-0.38)  
0.063 -0.078 -0.007 13.46 
(4.17) (-3.22) (-1.68)  

D3 for GDP levels 

0.015  -0.012 -0.09 
(2.24)  (-0.70)  
0.065 -0.079 -0.033 14.44 
(4.51) (-3.34) (-2.06)  

See notes in Panel A 
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Table 4 (continuation) 
PANEL C: τ = 12 months 

 , 1 2 ,  12t t t t tIPI M X              

Idiosyncratic Risk. Sample period: 1965:01-2010:07 
   1  2  Adj.R2 

Daily Data 

0.031  -1.837 3.65 
(6.17)  (-2.85)  
0.089 -0.118 -1.513 16.21 
(6.32) (-3.93) (-2.89)  

Monthly Data 

0.026  -0.480 -0.06 
(4.97)  (-0.74)  
0.088 -0.124 -0.568 13.81 
(6.00) (-4.00) (-0.96)   

Volatility of SMB Factor. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Daily Data 

0.044  -0.956 4.53 
(5.15)  (-2.66)  
0.094 -0.113 -0.622 15.53 
(6.46) (-3.69) (-2.40)  

Monthly Data 

0.041  -0.543 1.01 
(2.96)  (-1.34)  
0.124 -0.138 -1.002 17.50 
(6.72) (-4.34) (-3.04)  

Volatility of Market Return. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Fornari-Mele 

0.030  -0.125 -0.03 
(2.39)  (-0.48)  
0.098 -0.126 -0.228 14.26 
(5.20) (-4.03) (-0.90)  

Monthly Data 

0.024  0.001 0.00 
(0.82)  (0.00)  
0.138 -0.136 -1.051 15.00 
(4.82) (-4.55) (-2.08)   
VIX. Sample period: 1986:01-2010:07 

   1  2  Adj.R2 

Last day of each month 

0.045  -0.118 4.46 
(5.26)  (-2.54)  
0.111 -0.109 -0.138 15.82 
(3.74) (-2.34) (-2.84)   

Dispersion in SPF. Quarterly Data. Sample period: 1968:IV-2010:4  
   1  2  Adj.R2 

D2 for GDP growth 

0.020  0.000 -0.61 
(1.65)  (0.06)  
0.107 -0.138 -0.009 15.44 
(4.24) (-3.18) (-1.45)  

D3 for GDP levels 

0.025  -0.011 -0.45 
(2.08)  (-0.38)  
0.115 -0.142 -0.050 16.80 
(4.61) (-3.33) (-1.87)   

See notes in Panel A 
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Table 4 (continuation) 
PANEL D: τ = 24 months 

 , 1 2 ,  24t t t t tIPI M X              

Idiosyncratic Risk. Sample period: 1965:01-2010:07 
   1  2  Adj.R2 

Daily Data 

0.055  -2.009 1.82 
(6.94)  (-2.63)  
0.167 -0.227 -1.571 22.21 
(7.43) (-4.79) (-1.89)  

Monthly Data 

0.052  -1.617 0.42 
(6.67)  (-1.34)  
0.169 -0.233 -2.110 22.02 
(7.57) (-4.96) (-2.16)   

Volatility of SMB Factor. Sample period: 1965:01-2010:07 
   1  2  Adj.R2 

Daily Data 

0.076  -1.385 4.19 
(5.88)  (-3.05)  
0.174 -0.219 -0.808 22.42 
(7.79) (-4.46) (-2.26)  

Monthly Data 

0.077  -0.901 1.30 
(3.80)  (-1.61)  
0.226 -0.255 -1.638 25.65 
(7.87) (-5.23) (-3.74)  

Volatility of Market Return. Sample period: 1965:01-2010:07  
   1  2  Adj.R2 

Fornari-Mele 

0.040  0.255 0.07 
(1.56)  (0.48)  
0.174 -0.237 -0.145 20.59 
(5.95) (-4.88) (-0.34)  

Monthly Data 

0.047  -0.014 0.00 
(1.14)  (-0.02)  
0.261 -0.257 -2.002 24.22 
(5.63) (-5.10) (-2.71)   
VIX. Sample period: 1986:01-2010:07 

   1  2  Adj.R2 

Last day of each month 

0.069  -0.150 2.60 
(3.30)  (-1.91)  
0.221 -0.237 -0.231 24.98 
(4.83) (-3.23) (-2.55)   

Dispersion in SPF. Quarterly Data. Sample period: 1968:IV-2010:4  
   1  2  Adj.R2 

D2 for GDP growth 

0.032  0.005 -0.33 
(1.31)  (0.39)  
0.187 -0.242 -0.013 22.25 
(4.69) (-3.70) (-1.12)  

D3 for GDP levels 

0.043  -0.003 -0.62 
(1.68)  (-0.05)  
0.202 -0.251 -0.078 24.08 
(5.34) (-3.93) (-1.61)   

See notes in Panel A 
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Table 5 
The Hansen-Jagannathan volatility bound with different portfolio sets 

PANEL A: Descriptive statistics 

 Book-to-Market Momentum Dividend Yield 
 Mean 0.489 0.622 0.451 
 Median 0.470 0.605 0.450 
Std. Dev. 0.131 0.183 0.109 
Skewnes 0.154 0.710 0.080 
Kurtosis 1.937 3.514 2.356 
Correlations Book-to-Market Momentum Dividend Yield 
Size 0.173 0.174 0.115 
Book-to-Market  0.236 0.564 
Momentum   0.113 

PANEL B: Forecasting ability 
      ttt,t MIPI  

 Book-to-Market Momentum Dividend Yield 
      Adj. R2     Adj. R2     Adj. R2 

1 
0.001 0.003 0.04 0.002 0.000 -0.18 0.000 0.004 0.23 
(0.45) (0.81)  (1.16) (-0.03)  (0.05) (1.09)  

3 
0.003 0.006 0.05 0.007 -0.002 -0.16 0.002 0.009 0.21 
(0.65) (0.63)  (1.36) (-0.21)  (0.37) (0.78)  

6 
0.008 0.009 -0.02 0.014 -0.003 -0.16 0.008 0.010 -0.03 
(0.83) (0.47)  (1.43) (-0.20)  (0.76) (0.44)  

12 
0.021 0.006 -0.16 0.026 -0.004 -0.17 0.023 0.003 -0.18 
(1.36) (0.20)  (1.61) (-0.16)  (1.27) (0.06)  

24 
0.060 -0.027 0.08 0.045 0.003 -0.19 0.040 0.014 -0.14 
(2.88) (-0.66)  (1.82) (0.08)  (1.56) (0.24)  

This Table reports descriptive statistics (Panel A) and forecasting estimation results (Panel B) for the 
Hansen-Jagannathan volatility bound estimated with overlapping sub-periods of five years of monthly 
returns from book-to-market–, momentum-, and dividend yield-sorted portfolios. The sample period for 
the estimation of the volatility bound goes from January 1927 to December 2010. The sample period for 
the forecasting analysis goes from January 1965 to July 2010. Numbers in parentheses are t-values based 
on OLS autocorrelation-robust standard errors. 
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Table 6 
Markov Switching Models for excess returns on the size-book-to-market-momentum-dividend-

yield-sorted portfolios 
PANEL A: Size-sorted portfolios 

Mean 
Parameters Size1 Size2 Size3 Size4 Size5 Size6 Size7 Size8 Size9 Size10 

0,1  -0.070 -0.024 -0.013 -0.026 -0.024 -0.023 -0.014 -0.020 -0.013 -0.002 
(-4.49) (-1.16) (-0.61) (-1.19) (-0.98) (-0.97) (-0.62) (-1.18) (-0.65) (-0.29) 

0,2  0.041 0.004 0.007 0.015 0.008 0.000 0.007 -0.006 -0.002 -0.013 
(5.75) (0.42) (0.82) (1.84) (1.07) (0.04) (1.03) (-0.76) (-0.30) (-1.92) 

1,1  49.979 6.894 -2.328 2.848 0.441 0.182 -4.402 7.024 -3.402 2.283 
(5.59) (0.53) (-0.18) (0.22) (0.03) (0.01) (-0.32) (0.76) (-0.30) (0.43) 

1,2  -24.296 6.921 5.815 0.581 5.603 9.439 4.357 12.637 9.559 14.003 
(-4.60) (1.20) (1.08) (0.11) (1.11) (1.93) (0.92) (2.41) (2.08) (3.10) 

Variance Parameters         

0,1  -4.481 -4.998 -5.157 -5.253 -5.491 -5.469 -5.720 -5.783 -5.959 -6.627 
(-16.14) (-12.87) (-13.61) (-13.97) (-14.79) (-13.47) (-14.95) (-15.92) (-14.09) (-24.32)

0,2  -7.492 -6.827 -6.870 -6.923 -6.924 -6.802 -7.142 -6.933 -7.192 -7.703 
(-26.69) (-20.95) (-20.73) (-19.06) (-21.36) (-21.97) (-23.18) (-19.05) (-24.80) (-15.87)

1,1  -365.81 141.071 160.167 159.500 244.234 147.985 318.689 235.962 258.989 388.931
(-2.26) (0.64) (0.74) (0.72) (1.13) (0.65) (1.45) (1.24) (1.14) (2.36) 

1,2  676.603 474.787 443.129 463.020 415.489 299.247 469.299 257.520 391.428 194.780
(4.41) (2.42) (2.31) (2.23) (2.29) (1.69) (2.60) (1.08) (2.21) (0.60) 

Log Likelihood Values 

Unrestricted 766.795 755.653 776.949 796.460 821.807 853.828 867.082 879.991 927.237 979.075

0,1 0,2 

1,1 1,2   

758.036 754.411 772.024 793.675 813.282 846.706 860.999 875.468 923.544 976.734
0.00 0.14 0.00 0.03 0.00 0.00 0.00 0.01 0.01 0.05 

0,1 0,2 

1,1 1,2   

734.202 742.324 769.073 791.304 796.953 830.308 859.992 858.294 922.054 955.093
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The following Markov switching model is estimated for each portfolio i, within the set of portfolios 
indicated at the top of each panel,

 
1 1 0, 1, 1

1 1 1 0, 1,(0, ),  log( )

i i i i
t ft S S t t

i i i i i
t St St S S t

R R Def

N h h Def

  

  
  

  

   

   

where R is the monthly return on the portfolio, Rf  is the risk free rate, and Def is an aggregate default 
premium calculated as the spread between Baa corporate bond rates and 10-year government bond rates. 
In the two first blocks, we report parameter estimates and t-values (in parentheses). The last rows provide 
the log Likelihood value for the specification above and also for two restricted cases in order to test the 
null of symmetry across states in the mean equation, on the one hand, and in the variance equation, on the 
other. Numbers bellow the log Likelihood values are p-values associated to Likelihood ratio tests. Sample 
period goes from January 1965 to December 2010.

 

 
 
 
 
 
 
 
 
 



 
 

54

Table 6 (continuation) 

PANEL B: Book-to-market-sorted portfolios 
 

Mean 
Parameters BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 BM9 BM10 

0,1  -0.003 -0.026 -0.007 -0.002 0.002 -0.016 -0.022 0.000 -0.003 -0.003 
(-0.35) (-2.63) (-0.77) (-0.07) (0.10) (-0.62) (-1.70) (-0.02) (-0.25) (-0.25) 

0,2  0.008 0.005 0.012 -0.005 -0.005 0.003 0.020 0.007 -0.001 0.008 
(1.18) (0.96) (1.61) (-0.74) (-0.81) (0.47) (2.80) (1.30) (-0.08) (1.02) 

1,1  2.676 21.240 6.769 -18.721 -11.168 -4.413 11.829 -6.986 3.099 3.709 
(0.50) (3.49) (1.31) (-1.31) (-1.04) (-0.32) (1.56) (-0.64) (0.52) (0.54) 

1,2  -0.832 -1.735 -4.265 10.087 10.375 5.010 -4.731 2.402 8.962 2.999 
(-0.16) (-0.40) (-0.74) (2.37) (2.44) (1.25) (-0.98) (0.65) (1.96) (0.55) 

Variance Parameters         

0,1  -6.046 -5.670 -6.011 -5.474 -5.792 -5.851 -6.363 -6.313 -6.198 -6.158 
(-25.63) (-19.38) (-26.86) (-10.35) (-13.86) (-10.29) (-20.57) (-13.91) (-23.31) (-32.49)

0,2  -7.650 -8.519 -8.253 -7.299 -7.301 -7.344 -7.990 -7.555 -6.407 -7.479 
(-14.20) (-29.90) (-23.65) (-30.71) (-25.24) (-30.78) (-19.94) (-24.26) (-13.35) (-20.57)

1,1  239.459 -191.70 64.165 63.275 130.531 278.189 377.339 557.231 333.301 574.048
(1.68) (-1.02) (0.45) (0.22) (0.54) (0.88) (2.39) (2.44) (2.43) (5.57) 

1,2  373.879 1073.89 737.350 517.349 401.007 492.156 658.316 490.760 -472.33 521.853
(0.92) (6.78) (3.23) (3.72) (2.24) (3.41) (2.63) (2.56) (-1.55) (2.19) 

Log Likelihood Values 

Unrestricted 867.423 913.921 917.672 918.529 949.512 947.735 955.242 959.573 922.640 842.693

0,1 0,2 

1,1 1,2   

867.494 908.843 916.719 912.444 946.100 942.729 949.933 957.915 920.195 802.594
0.47 0.00 0.19 0.00 0.02 0.00 0.00 0.10 0.04 0.00 

0,1 0,2 

1,1 1,2   

857.118 903.996 899.221 912.029 929.102 941.709 945.883 945.602 907.837 803.439
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 6 (continuation) 

PANEL C: Momentum-sorted portfolios 
 

Mean 
Parameters Mom1 Mom2 Mom3 Mom4 Mom5 Mom6 Mom7 Mom8 Mom9 Mom10 

0,1  0.011 -0.037 -0.009 -0.027 -0.018 -0.016 -0.024 -0.010 0.006 -0.005 
(0.46) (-2.13) (-0.68) (-1.58) (-1.12) (-1.47) (-0.82) (-0.49) (0.23) (-0.19) 

0,2  -0.020 -0.011 -0.013 -0.012 -0.002 0.000 -0.002 0.003 0.002 0.009 
(-2.33) (-1.48) (-2.31) (-2.05) (-0.41) (0.02) (-0.30) (0.48) (0.31) (1.01) 

1,1  -19.814 16.969 4.266 9.028 1.985 8.542 3.199 1.879 -10.238 -0.582 
(-1.21) (1.67) (0.50) (0.93) (0.20) (1.35) (0.21) (0.19) (-0.80) (-0.04) 

1,2  14.843 12.209 12.748 13.528 7.193 5.601 6.795 4.773 6.316 6.473 
(2.44) (2.40) (3.10) (3.32) (1.85) (1.31) (1.69) (1.14) (1.69) (1.31) 

Variance Parameters         

0,1  -5.634 -5.683 -5.990 -5.833 -5.810 -6.002 -5.231 -5.467 -4.883 -4.969 
(-17.42) (-17.07) (-23.16) (-16.34) (-13.49) (-20.89) (-6.85) (-10.99) (-9.94) (-13.82)

0,2  -7.295 -7.118 -8.297 -7.324 -7.724 -7.274 -6.945 -6.817 -6.143 -5.772 
(-18.52) (-22.68) (-26.30) (-25.66) (-31.69) (-17.24) (-28.10) (-22.49) (-21.81) (-16.08)

1,1  703.209 468.410 420.961 307.059 190.483 241.803 -5.242 49.476 -146.50 72.041 
(4.02) (2.81) (2.97) (1.58) (0.69) (1.41) (-0.01) (0.16) (-0.54) (0.32) 

1,2  730.955 398.052 942.209 468.387 592.318 168.168 189.129 106.189 -254.58 -282.09 
(2.86) (1.79) (4.33) (2.49) (4.07) (0.61) (1.36) (0.61) (-1.52) (-1.31) 

Log Likelihood Values 

Unrestricted 699.502 818.125 892.998 926.152 963.736 946.305 952.437 935.104 895.850 758.868

0,1 0,2 

1,1 1,2   

699.113 814.733 891.787 923.532 959.920 944.992 949.371 924.767 892.276 755.860
0.34 0.02 0.15 0.04 0.01 0.13 0.02 0.00 0.01 0.02 

0,1 0,2 

1,1 1,2   

663.410 774.061 861.906 911.582 932.061 929.441 929.301 928.468 886.252 733.869
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

See notes in Panel A. 
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Table 6 (continuation) 

PANEL D: Dividend yield-sorted portfolios 
 

Mean 
Parameters DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 

0,1  -0.005 -0.018 0.000 -0.002 -0.011 -0.002 -0.010 -0.004 0.007 -0.013 
(-0.51) (-0.26) (0.05) (-0.21) (-1.48) (-0.26) (-0.46) (-0.36) (0.89) (-1.52) 

0,2  0.006 0.000 -0.003 -0.013 0.021 0.004 0.000 -0.004 -0.003 0.011 
(0.67) (0.05) (-0.36) (-1.48) (2.41) (0.58) (-0.08) (-0.57) (-0.36) (1.58) 

1,1  3.968 -17.189 2.548 0.708 9.547 3.953 -4.909 1.737 1.972 7.974 
(0.66) (-0.48) (0.49) (0.11) (1.83) (0.96) (-0.41) (0.27) (0.39) (1.35) 

1,2  2.897 4.790 6.666 15.839 -9.744 2.132 6.635 9.875 1.761 -1.127 
(0.47) (1.12) (1.10) (2.92) (-1.68) (0.43) (1.69) (2.41) (0.32) (-0.25) 

Variance Parameters         

0,1  -5.704 -4.959 -6.056 -5.738 -6.594 -6.047 -5.780 -6.259 -7.389 -7.275 
(-28.44) (-3.95) (-27.54) (-18.21) (-39.85) (-32.64) (-12.26) (-20.37) (-16.41) (-30.00)

0,2  -7.439 -6.790 -6.304 -6.899 -8.301 -6.815 -7.163 -7.241 -6.723 -7.728 
(-15.00) (-28.79) (-13.57) (-15.23) (-14.29) (-14.78) (-25.87) (-18.31) (-23.71) (-18.87)

1,1  179.864 87.796 198.364 39.767 456.071 26.114 239.765 297.389 144.743 840.509
(1.55) (0.11) (1.57) (0.22) (4.55) (0.26) (0.94) (1.71) (0.52) (6.80) 

1,2  476.672 364.089 -648.05 -32.232 651.240 -350.42 334.197 143.346 465.150 310.811
(1.37) (2.66) (-1.97) (-0.12) (1.77) (-1.10) (1.96) (0.56) (2.99) (1.24) 

Log Likelihood Values 

Unrestricted 813.200 873.457 889.385 911.985 919.495 951.178 949.151 976.257 996.803 1003.64

0,1 0,2 

1,1 1,2   

811.876 872.072 868.268 908.426 918.727 951.117 945.972 973.814 981.558 1000.53
0.13 0.13 0.00 0.01 0.23 0.47 0.02 0.04 0.00 0.02 

0,1 0,2 

1,1 1,2   

807.528 869.476 868.960 902.391 906.684 933.945 943.797 952.326 982.303 985.014
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

See notes in Panel A. 
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 Figure 1 
The HJ bound estimated with the overlapping 60-month periods of returns of 10 size-sorted 

portfolios from January 1927 to December 2010 
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