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Graphene single-electron transistor as a spin sensor for magnetic adsorbates
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We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the
relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure
of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding
model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can
influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in
the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always
present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We
find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.
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I. INTRODUCTION

Graphene is a very promising candidate for high-precision
molecular sensing due to its extremely large surface to volume
ratio and its electrically tunable large conductivity.1–3 On
the other hand, being a zero-gap semiconductor with small
mass and small density of spinfull nuclei makes graphene a
material with potentially large spin lifetime for both carriers
and host magnetic dopants.4 Taken together, these two ideas
naturally lead to the use of graphene as a detector of the spin
state of extrinsic magnetic centers in the form of magnetic
adatoms, vacancies, and spinfull molecules. This connects
with recently reported2,5 experiments in which gated graphene
nanoconstrictions, operating in the single-electron transport
(SET) regime, showed hysteresis in the linear conductance
when a magnetic field is ramped. This behavior was observed
both when the molecular magnets were intentionally deposited
on graphene, as well as in carbon nanotubes,6 but also in the
case of bare graphene nanojunctions5 where some type of
graphene local moments7–9 are probably playing a role.

The graphene spin sensor experiments of Ref. 2 are
performed in the Coulomb blockade regime, showing a
vanishing linear conductance except in the neighborhood of
specific values of the gate voltage Vg . This means that the
graphene nanoconstriction is weakly coupled to the electrodes
and has a charging energy larger than the thermal energy
(T ∼ 100 mK). The height of the linear conductance peaks
is significantly smaller than G0 = 2e2/h, the quantum of
conductance. These conditions imply that transport takes place
in the sequential regime.10 Thus current flow takes place
due to sequential tunneling of electrons through the graphene
constriction, which we refer to as the central region in the rest
of the paper, and the entire device behaves like a single-electron
transistor.11,12

The aim of this work is to provide a theoretical background
to understand how the magnetic state of localized magnetic
moments affects transport through the graphene nanoconstric-
tion in the SET regime. This is different from previous works
where the influence of the magnetic state of magnetic edges13

and adsorbed hydrogens9 on the conductivity was studied in
the ballistic regime, with a central island strongly coupled to

the electrodes, and also in the diffusive regime14 as well as
SET through graphene islands with magnetic zigzag edges.15

The paper is organized as follows. In Sec. II, we discuss a
tight-binding Hamiltonian for the graphene island exchanged
coupled to the spins of the magnetic adsorbates. The results
of this microscopic calculation justify the use of a simple
single-orbital spin-split model for the SET, discussed in
Sec. III, together with the possible mechanisms that enable
the magnetic sensing. Finally, conclusions are presented in
Sec. IV.

II. MODEL FOR GRAPHENE ISLAND WITH MAGNETIC
ADSORBATES

A. Hamiltonian

Our starting point is a microscopic model for electrons
confined in a graphene nanoisland that are exchanged coupled
to the magnetic centers. The graphene central island is
described with a tight-binding Hamiltonian for the honeycomb
lattice contained in a rectangular stripe of dimensions Lx × Ly

[see Fig. 1(a)]. In order to avoid the spin-polarized states
formed at the zigzag edges,16,17 we impose periodic boundary
conditions in one direction so that the structure only has
open edges of armchair type. The coupling to the magnetic
moments of the adsorbate molecules �m(i) is then assumed to
be a local exchange J or spin-dependent potential, affecting
N sites randomly selected in the graphene central island.
For simplicity, we consider that the magnetic moments of
the molecules are all oriented along the same axis, which
we choose as the spin quantization axis. These assumptions
are good approximations in the case of strongly uniaxial
TbPC2 molecules.2 Hence we can write the Hamiltonian of
the graphene and adsorbates as

H = H0 + J
∑

i

mz(i)Sz(i) + eVg(NTOT − N̂ ), (1)

where H0 is the tight-binding Hamiltonian for π electrons
in graphene considering nearest-neighbor interactions, J is
the strength of the exchange coupling between the graphene
electrons and the magnetic moment of the molecules, which
can take two values, mz(i) = ±1. Finally, the last term in the
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FIG. 1. (Color online) (a) Scheme of a graphene constriction with
randomly distributed magnetic centers. (b) Diagram with the system
energy levels and graphene density of states where ED is the energy
of the Dirac point, EF is the Fermi level of the graphene electrodes,
Vbias is the bias voltage, Vg is the gate voltage that controls the energy
levels in the quantum dot and δ is the spin splitting of the transport
level.

Hamiltonian describes the electrostatic coupling of the total
charge of the dot, which can be either 0 or e, given by the
difference in the number of electrons N̂ and the number of
carbon atoms NTOT in the central island. Sz(i) is the local spin
density of the pz electrons in graphene at site i,

Sz(i) = 1
2 (c†i↑ci↑ − c

†
i↓ci↓), (2)

where c
†
i↑ creates an ↑ electron at the pz orbital of site i of

graphene. In the following, we assume that magnetic fields
controlling the spin orientation of the adsorbates are applied
along the plane of graphene so that it is a good approximation
to neglect the diamagnetic coupling to the graphene electrons.

There are several independent microscopic mechanisms for
spin-dependent interaction between magnetic adsorbates and
the graphene π electrons that can be modeled with Eq. (1).
In the case of magnetic molecule such as TbPC2, used in
Ref. 2, the magnetic Tb atom is separated from the graphene
electrons by the nonmagnetic atoms of the molecule, and the
most likely mechanism for spin coupling is kinetic exchange.19

This coupling will generate a local Kondo-exchange between
graphene electrons and the molecules.20 More complicated
scenarios, like coupling of graphene electrons to unpaired
electrons in the organic rings of the molecules, would imply
that every molecule affects several sites in graphene. Direct
dipolar coupling would also affect several sites per molecule,
but the average magnetic field created by a magnetic moment
of 5μB at 0.5 nm on a disk with an area around 400 nm2,
the graphene constriction area in Ref. 2, is smaller than 1 μT,
which would yield a negligible maximal Zeeman coupling of
nano-electron-volts per molecule.

M

N
J

FIG. 2. (Color online) Spin splitting δ for a sample of dimensions
Ly = Nya and Lx = Nx

√
3a, with Nx = 15 and Ny = 17, being a =

2.46 Å the lattice constant of graphene. δ vs total magnetization MT

for a single spatial distribution of N = 10 magnetic impurities with
(a) J = 5 and (b) 10 meV. The red solid line indicates the average
value 〈δ〉pos. Average 〈δ〉FM

pos vs number of magnetic molecules N for
J = 5 meV (c) and exchange energy J for N = 4 (d). The error bars
correspond to the standard deviation.

B. Relevant energy scales

The reported dimensions of the central region, Lx 	 Ly 	
20 nm, lead to an energy spacing �ε of the single-particle
spectrum much larger than the temperature and the charging
energy.11,12 We also assume that the exchange induced shifts
are smaller than the single-particle splitting. As a result, the
effect of exchange is to shift the bare energy levels, without
mixing them. Thereby, we can safely assume that electrons
tunnel through just one of the single-particle levels, which
might be spin-split due to exchange with molecules, as is
schematically shown in Fig. 1(b). We assume that the charge
of the central island fluctuates between q = 0 and q = −|e|,
and that the transport level is the lowest unoccupied level of the
central island spectrum. The energy of the transport level reads

εσ
T = ε0 + σ

δ

2
− |e|Vg, (3)

where ε0 is the single-particle electron level, σ = ±1 denotes
the spin direction and δ is the magnitude of the spin splitting,
which is a functional of the magnetic landscape {mz}.

Within our model, a given magnetic landscape is defined by
the location i and the magnetic state mz(i) of the N magnetic
adsorbates. In Figs. 2(a) and 2(b), we plot the value of δ for all
the possible magnetic states of a given arrangement of N = 10
atoms, for two different values of J . This choice corresponds
to the estimated number of molecules in Ref. 2. These figures
show a correlation between the magnitude of the splitting δ

and the total magnetization MT . The dispersion of δ for a fixed
total magnetization MT is the outcome of indirect exchange
coupling.18

For comparison with the experiments, it is worth consid-
ering two extreme magnetic landscapes. At large external
field, all the magnetic moments are aligned, i.e., mz(i) = +1.
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We refer to this as the ferromagnetic (FM) landscape. At
magnetic fields smaller than the coercive field of the magnetic
molecules, their average magnetization should be zero and
thus,

∑
i mz(i) = 0. We refer to these cases as nonmagnetic

(NM). In order to sample the positional disorder, we perform
an average over positional configurations, both for NM and FM
cases. For a fixed spin choice {mz} with MT = 0, an average
over positional configurations yields 〈δ〉pos = 0. The reciprocal
statement is also true: for a fixed positional configuration, an
average over all the magnetic landscapes with MT = 0 also
yields an average 〈δ〉spins = 0.

In Fig. 2, we plot the average 〈δ〉FM
pos − 〈δ〉NM

pos = 〈δ〉FM
pos over

500 realizations as a function of the number of molecules
N [see Fig. 2(c)] and as a function of the molecule electron
exchange J [see Fig. 2(d)]. We have also calculated 〈δ〉FM

pos
fixing the number of magnetic centers N , the strength of the
coupling J and changing NTOT = NxNy , the total number of
carbon atoms in the island. We find that the results of all these
simulations can be summarized in the following equation:

〈δ〉FM
pos ≈ N

NTOT
J. (4)

Whereas this result has been obtained from exact numerical
diagonalization of the Hamiltonian, this dependence can be
rationalized using first-order perturbation theory, which yields
the spin-dependent shift of the transport level:

�εσ
T = σ

2
J

N∑
i

|φT (i)|2mi, (5)

where φT (i) is the J = 0 wave function of the transport orbital.
We now use |φT (i)|2 	 1

NTOT
so that we can approximate:

�εσ
T 	 σ

2

J

NTOT
MT . (6)

Using the fact that MT = N for the FM configurations and 0
for the NM ones, we arrive to Eq. (4).

III. SPIN-SPLIT SINGLE-ORBITAL MODEL FOR SET

In this section, we discuss SET across a central island
with a single spin-split particle level. This is justified by the
results of the previous section. We obtain expressions for the
current of the system and we discuss the conditions under
which the conductance depends on the magnetic state of the
single-electron transport.

A. Single-electron transistor with a spin-split
single-orbital model

We consider single-electron transport though a spin-split
single transport level,21 with energy εσ

T . We assume that the
occupation of the transport level can be either 0 or 1, the doubly
occupied configuration being much higher in energy. Within
these approximations, the transport level has three relevant
many-body states: uncharged and the two charged with ↑ or ↓
spins. In the zero-applied bias limit, each of these states will
be occupied according to the thermal equilibrium distribution,
which we denoted as P0, P↑, and P↓, respectively. We are
interested in the SET regime, and within the linear response
(eVbias � kBT ), transport will be enabled only when the

addition energy lies within the thermally broadened transport
window defined by the applied bias.

Under these approximations, the current flowing from the
left electrode to the central island is given by

I = e
∑

σ

(
P0W

L
0→σ − Pσ WL

σ→0

)
, (7)

where WL
0→σ and WL

σ→0 are rates for electron tunneling from
the left electrode to the dot and vice versa. Continuity equation
ensures that this current is identical to the current flowing
towards the right electrode and, thereby, equal to the net current
flow. The tunneling rates for electron tunneling out of and into
the dot22 are given respectively by

WL
σ→0 = 2π

h̄
|TL|2ρL

(
εσ
T

)
[1 − f (�σ + Vbias)], (8)

and

WL
0→σ = 2π

h̄
|TL|2ρL

(
εσ
T

)
f (�σ + Vbias), (9)

where TL is the strength of the dot-left electrode coupling, and

�σ ≡ εσ
T − EF , (10)

are the spin-dependent addition energies. Importantly, both
δ and Vg appear on equal footing, as additive quantities in
this equation. The density of states of the left electrode,
evaluated at the spin-dependent transport level energy, is
denoted by ρL(εσ

T ), while f (εσ ) = (eβ�σ + 1)−1 denotes the
Fermi function. The electrode Fermi energy EF is taken to
change linearly with the bias voltage Vbias. In the zero bias
limit, the linear conductance reads

G = G0

∑
σ

(P0 + Pσ )

σ

kBT
Sech2

(
β�σ

2

)
, (11)

where


σ/h̄ = 2π

h̄
|TL|2ρL

(
εσ
T

)
, (12)

is the single-particle tunneling rate between the electrode and
the transport level.

B. Influence of magnetic state on conductance

From the above discussion it is apparent that, for a given
gate potential Vg and temperature T , the linear conductance
depends on the magnetic landscape affecting the central island
through two classes of independent mechanisms, illustrated in
Fig. 3: (i) the change of the addition energies �σ which, as
we show below, would result in a lateral shift of the G(Vg)
resonance curve [see Fig. 4(a)] and (ii) the change of the
electron lifetime 
 = ∑

σ 
σ , that would result in a vertical
resizing of the G(Vg) resonance curve [see Fig. 5(a)].

In the first mechanism, the change in the magnetic state
modifies the value of δ, which must have a similar effect
than changing the gate potential. It resembles the magneto-
Coulomb effect,23,24 by which the applied magnetic field
changes the Fermi energy of the electrode, shifting the G(Vg)
curves. However, this first mechanism necessarily implies a
change of sign of the variation of G as the gate potential
is scanned along the resonance (see top panel of Fig. 4).
Importantly, this is not observed in the experiments with
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FIG. 3. (Color online) (a) Scheme showing the transport level
energy splitting. Scheme of spin dependence of transport due to
(b) detuning of the transport level with respect to the electrode
Fermi energy, (c) magnetoresistance associated to spin polarized
electrode(s), and (d) energy dependent tunneling rates.

magnetic molecules,2 but it is observed in the case of graphene
nanoconstrictions.5

Motivated by the behavior reported in Ref. 2, we pay
attention also to the second mechanism. For spin unpolarized
transport, the change in the transport energy level results in a
change on tunneling rate 
/h̄ only if the electrode density of
states depends on energy, which is exactly the case of graphene.
For spin-polarized transport, the relative orientation of the
electrode and island magnetic moments gives rise to magne-
toresistive effects that are accounted for by the changes in 
σ

C. Transport for constant tunneling rates

We now discuss our transport simulations for the graphene
single-electron transistor spin sensor. We focus on the first spin
sensing mechanism in a single-electron transistor: changes in
spin splitting of the transport level produce changes in addition
energies �σ [see Fig. 3(b)]. For that matter, we neglect both
the energy and spin dependence of the tunneling rates 
σ . In
Fig. 4(a), we show the linear conductance, in units of g0 =
β
G0, as a function of gate voltage, for several values of
the transport level splitting δ, in units of kBT . It is apparent
that the Coulomb blockade peaks undergo a lateral shift, as
expected from the fact that Vg and δ appear on equal footing on
the spin-dependent addition energies. At � = 0, the two spin
channels contribute. Therefore, as we increase δ, the height of
the conductance peaks decreases, because one of the two spin
channels is removed from the transport window of width kBT .

In Fig. 4(b), we plot the variations in the linear conductances
as a function of the spin splitting δ, for several values of Vg .
We see two types of curves. For values of Vg such that the
transport level is occupied, as we increase δ, the transport
level is pushed downwards, away from the elastic transport
window, switching off the transistor conductance. In contrast,
for Vg such that the transport level is empty for δ = 0, lying
above the elastic transport window, ramping δ makes one of the
two spin states of the transport level enter the transport window,
giving rise to the double-peak structure. The fact that δ and
Vg play analogous roles is illustrated in Figs. 4(c) and 4(d),

g

g

g

FIG. 4. (Color online) Conductance in units of g0 = G0β
 as a
function of the gate voltage eVg and the level splitting δ. (a) The
normalized conductance as a function of the gate potential eβVg ,
where the labels corresponds to the different βδ values. (b) The
conductance as a function of βδ for several values of the gate eβVg .
For the sake of clarity, all curves have been displaced by 0.1. In
(c) and (d), we present a contour plot of the dot charge (defined
as Q = P↑ + P↓) and the dot magnetization (m = P↑ − P↓) as a
function of the gate voltage eVg and level splitting δ.

where we show the average magnetization and occupation of
the transport level in the phase diagram defined by these two
variables.

D. Transport with energy-dependent tunneling rates

We now consider the second mechanism for spin sensing
in a single-electron transistor: changes in spin splitting of the
transport level produce changes in the tunneling rates 
σ . This
can happen for the two following reasons. (1) One of the
electrodes is spin polarized, so that 
↓ �= 
↑. Spin-polarized
transport is sensitive to the product of the magnetic moment
of electrode and central island. This type of effect has been
thoroughly discussed in the case of SET with ferromagnetic
electrodes.25,26 (2) The density of states of the electrode
depends on energy. Thus changes in the transport level change

σ , for both spins. This is a natural scenario for graphene
electrodes.32,33
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g g

FIG. 5. (Color online) Normalized conductance for ferromag-
netic electrodes as a function of the level splitting δ for several gate
values. In (a) and (c), the density of states depends of the polarization
ρ = ρ0(1 + σP), in this particular case, we take a polarization of
P = 0.9. In (b) and (d), the electrode density of states is linear with
the energy, ρ(�σ ) = ρ(ε0 + σδ/2 − ED). For the sake of clarity the
conductance curves in (c) and (d) have been displaced by 0.2 and 4
units, respectively.

Let us consider first the case of spin polarized electrodes.
We do the assumption that the density of states is spin
dependent but energy independent: ρσ = ρ0(1 + σP), with
P the electrode polarization. In Fig. 5(a), we plot the linear
conductance versus Vg curves for several values of the splitting
δ, assuming a large value of the electrode spin polarization
P = 0.9. It is apparent that, on top of the shift of the resonance
curve whose origin was discussed in the previous section,
there is a change in the amplitude of the curve. Notice that
G(δ = kBT ) and G(δ = 2kBT ) are smaller than G(0) for all
values of Vg . In this specific sense, the gate-independent spin
contrast is similar to the experimental report with magnetic
molecules.2 In Fig. 5(a), we show the linear conductance as
a function of δ for different values of Vg . It is apparent that,
as opposed to the case of nonmagnetic electrodes shown in
Fig. 5(b), the function G(δ) is no longer an even functions,
reflecting the magnetoresistive behavior. Basically, transport
is favored when the spin polarizations of the electrode and the
central island are parallel.

We now consider a non-spin-polarized electrode with an
energy-dependent density of states. This scenario occurs
naturally in graphene. If we consider idealized graphene
electrodes, neglecting effects of interactions, disorder and
confinement, we have ρ(ε) = ρ0|ε − ED|, where ED is the
Dirac point. The G(Vg) curves, shown in Fig. 5(b) for
different values of δ, shift and change amplitude. The shift
is related to the change of the addition energies, discussed
in the previous section, and the change in amplitude comes
from the variation of the tunneling rate as the transport

level scans the energy-dependent density of states of the
electrode.

In Fig. 5(d), we plot G(δ) for several values of Vg .
The curves are similar to the case with energy independent
tunneling rates, except for the dip at zero δ, which occurs
because we chose the bare transport level right at Dirac point.
This is the most favorable choice to maximize the effect of
energy dependence of 
. From our results, and given the fact
that experimentally is not possible to put the Fermi energy
arbitrarily close to the Diract point,28 we find it unlikely that
this effect is playing a role in the experiments.

E. Sensitivity of the single-electron transistor spin sensor

We now discuss the sensitivity of the spin sensor based
on the graphene single-electron transistor, as described by our
model, neglecting changes in 
. From Fig. 4(a), we propose,
as rule of thumb, that variations of δ similar or larger than
kBT can be resolved. Estimating δ from the case of fully
spin-polarized magnetic adsorbates, given in Eq. (4), we find
a relation between the minimal number of magnetic centers
N that can be detected, and the temperature and exchange
constant:

N

NTOT
>

kBT

J
. (13)

It is apparent that decreasing the temperature, or increasing
the spin-graphene exchange coupling, increases the sensitivity
of the device (makes it possible to detect a smaller concen-
tration of molecules). For instance, at 100 mK, and taking
NTOT ∼ 15 000, which corresponds to an approximate area
of 400 nm2, one could detect 10 molecules for an exchange
coupling J � 15 meV.

Recent reports have shown that it is possible to fabricate
graphene nanoislands with lateral dimensions of 1 nm.27 These
dots have NTOT < 100. Thus they would permit the detection
of the spin of a single magnetic adsorbate provided that kBT

is kept hundred times smaller than J . For T = 100 mK,
this implies J > 1 meV. Interestingly, in such a small dot
Coulomb blockade persists even at room temperature, but
increasing kBT , keeping the sensitivity would require also to
increase J .

IV. DISCUSSION AND CONCLUSIONS

Because of its structural and electronic properties, graphene
is optimal for a spin sensor device. Being all surface, the
influence of adsorbates on transport should be larger than any
other bulk material. Because of the linear relation momentum
and large Fermi velocity, energy level spacing in graphene
nanostructures can easily be larger than the temperature, the
tunneling induced broadening, and the perturbations created by
the adsorbates. One of the consequences is that single-electron
transport takes place through a single-orbital level.

Our simulations show how the spin splitting δ of the
transport level is sensitive to the average magnetization of
the magnetic adsorbates, which is controlled by application
of a magnetic field along the plane of graphene, to avoid
diamagnetic shifts. On the other hand, the linear conductance
G of the single-electron transistor depends on δ, which
accounts for the sensing mechanism. More specifically, G
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depends on δ due to either changes in the spin-dependent
addition energies �σ or changes in the electrons lifetime

σ . The first is independent of the nature of the electrodes,
whereas the second only happens if they are magnetic or have
an energy-dependent density of states.

We have shown how, within an independent particle
model and in the single-electron transport regime, the energy
dependence of the graphene electrode density of states can
only be relevant if the transport energy level is fine tuned
to the Dirac point. However, this fine tuning is quite unlike
to happen in experimental conditions.28 Still, the combined
action of disorder and Coulomb interaction could give rise
to a so-called Coulomb gap in the density of states of
graphene, that might make the tunneling rates depend on the
energy.29–31

Finally, we have assumed that both the edges of the
graphene island and graphene electrodes are nonmagnetic.
Our discussion of the effect of spin-polarized electrodes on the
transport properties of the device would be valid for electrodes
with ferromagnetic zigzag edges. A second possibility, out of

the scope of this work, is to consider a graphene single-electron
transistor whose central island has ferromagnetic edges. This
case has been already studied.15

In conclusion, we have studied the mechanisms by which a
graphene single-electron transistor could work as a sensor of
the magnetic order of magnetic atoms or molecules adsorbed
on the graphene central region. Our work has been motivated
in part by recent experimental works.2,5 Whereas further work
is still necessary to nail down the physical mechanisms for the
spin sensing principles underlying the experimental work, our
study provides a conceptual framework for graphene single-
electron transistor spin sensors.
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13F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev.
Lett. 102, 136810 (2009).

14C. H. Lewenkopf, E. R. Mucciolo, and A. H. Castro Neto, Phys.
Rev. B 77, 081410(R) (2008).

15M. Ezawa, Phys. Rev. B 77, 155411 (2008).
16J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 99, 177204

(2007).
17O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).

18L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99, 116802
(2007).

19P. W. Anderson, Phys. Rev. 124, 41 (1961).
20J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
21P. Recher, E. V. Sukhorukov, and Daniel Loss, Phys. Rev. Lett. 85,

1962 (2000).
22H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics

of Semiconductors (Springer-Verlag, Berlin, 1996).
23K. Ono, H. Shimada, and Y. Ootuka, J. Phys. Soc. Jpn. 66, 1261

(1997).
24S. J. Van Der Molen, N. Tombros, and B. J. Van Wees, Phys. Rev.

B 73, 220406 (2006).
25J. Barnas, A. Fert Phys. Rev. Lett. 80, 1058 (1998).
26P. Seneor, A. Bernand-Mantel, and F. Petroff, J. Phys.: Condens.

Matter 19, 165222 (2007).
27A. Barreiro, H. S. J. van der Zant, and L. M. K. Vandersypen, Nano

Lett. 12, 6096 (2012).
28A. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov,

L. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V.
Gorbachev, Nano Lett. 12, 4629 (2012).
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