

Model-Driven Development of Rich Internet
Applications on the Semantic Web

Jesús María Hermida Carbonell

http://www.ua.es/
http://www.eltallerdigital.com/

!
!

!
!

!
!

!
!
!

!
!
!
!

!
!
!
!

!"#$%&'()*$+,'$*$%"-.$+/,"0,,
1)23,4+/$(+$/,5--%)26/)"+7,"+,,

/3$,8$.6+/)2,9$:;
;

<3',=3$7)7;

>$7?7,!@,A$(.)#6,B6(:"+$%%;
CDEF;

!
!

PhD
Thesis

2013

!
!

!
!

!
!
!

!
!
!

!
!
!
!

!
!
!
!

!
!
!

!
!

Model-Driven Development of

Rich Internet Applications on the

Semantic Web

Dissertation

Presented to the Department of Software and Computing Systems,

University of Alicante, in partial fulfilment of the requirements for the

title of

Doctor of Philosophy

Candidate: Jesús María Hermida Carbonell

Advisors: Dr. Santiago Luís Meliá Beigbeder

 Dr. Juan Andrés Montoyo Guijarro

April 2013

 i

ACKNOWLEDGEMENTS

“Success is not final, failure is not fatal: it is the courage to continue that

counts.” WINSTON CHURCHILL

I would sincerely like to thank all those who have been by my side

and have lent me a hand when I needed it.

I would like to express my gratitude to my supervisors Prof. Dr.

Santiago Meliá and Prof. Dr. Andrés Montoyo for all their support in the

difficult moments. Many thanks to Prof. Dr. Santiago Meliá for all the

discussions about “semantics”, models, colourful transformations and

software architectures (in particular, the Model-View-ViewModel pattern).

Many thanks to Prof. Dr. Andrés Montoyo for showing me the pathway

to different fields: Semantic Web, ontology engineering and software

models; and for all his support during these years as a student, from the

first weekly meetings to the last day.

I would like to thank Prof. Dr. Jaime Gómez for all his support as

leader of the Web Engineering group (IWAD) and as supervisor of this

thesis during the first part of this path. Many thanks to him for patiently

listening to my firsts ideas of model-driven methodologies.

I would also like to thank all the members of the Natural Language

Processing group (GPLSI) for their friendship. In particular, I would like

to thank Prof. Dr. Manuel Palomar for making me feel welcomed in the

group. From this period, I especially remember Prof. Dr. Rafael Muñoz,

for our discussions about information extraction on notary documents,

and Prof. Dr. Mayte Romá, for our long discussions about ontologies

ii

and knowledge representation, which have made me consider all the

problems from different viewpoints.

I would like to thank all those have shared an office with me: Héctor,

Elena, Rubén, Jorge, Yoan, Dianelys, José Manuel, Javi and many others.

I would like to express my gratitude to José Javier and Sergio for

their assistance and guidance with the Eclipse Modelling Framework

and the OIDE CASE tool.

I would also like to thank all the members of the Organisations,

Information and Knowledge group at the University of Sheffield for

having welcomed me to be part of their team during my internship

there. I would especially extend my gratitude to its director, Prof. Dr.

Fabio Ciravegna, and all my colleagues and friends: Deep, Rodrigo,

Jonathan, Anna Lisa, Elisabeth, Greg and Mathew.

I would also like to thank all the members of the Digital Earth and

Reference Data unit (Institute for Environment and Sustainability) at the

European Commision Joint Research Center in Ispra for their help.

Especially, to the unit head, Dr. Alessandro Annoni, and the members of

the SHAPE action, led by Dr. Paul Smits, and my supervisor, Dr.

Michael Luzt. Thanks to Chris, Andrej, Vlado, Tomas, Michalis, Ángel,

Robert and all those who work with me every day.

I would not like to forget all the help and support from my parents,

M. Carmen and Jesús, who have been by my side during the difficult

moments and have encouraged me several times to arrive to the finish

line. Also thanks to my sister, Carmen, who always lent me a hand when

I needed it, and all my family members and friends.

I would like to especially thank Alexandra for all her help and for the

energy and confidence she gives me every day along this path we are

walking together. This path started with some endless meetings long

ago. Thank you for cheering me up in the moments when the finish line

seemed to get further away.

Finally, I would like to thank the Spanish Ministry of Education for

their support during the period 2008-2012 by means of the FPU

scholarship I was granted (code AP2007-03076), which allowed me to

complete this doctoral thesis at the University of Alicante and all the

training needed to become a researcher and a lecturer in the near future.

 iii

AGRADECIMIENTOS

“El éxito no es definitivo, el fracaso tampoco: es el coraje de continuar lo que

cuenta”. WINSTON CHURCHILL

Me gustaría agradecer de corazón a todos aquellos que me han

acompañado durante este largo camino y me han dado energías en los

momentos que más lo necesitaba.

Agradecer a mis directores Santiago Meliá y Andrés Montoyo por

toda su ayuda en los momentos complicados. A Santiago Meliá, por

todas las discusiones sobre “semántica”, modelos, transformaciones

variopintas y arquitecturas software (en especial, el patrón Model-View-

Viewmodel). A Andrés Montoyo, por introducirme en el mundo de la

Web Semántica, las ontologías y los modelos, y por toda la ayuda

recibida durante todos los años como doctorando, desde las primeras

reuniones semanales los viernes hasta el último día.

A Jaime Gómez, por todo el apoyo brindado como director del grupo

de investigación Ingeniería Web, Aplicaciones y Desarrollos (IWAD) y

como director de tesis en la primera parte de este camino. Gracias por

escuchar pacientemente mis primeras ideas para el desarrollo de una

metodología dirigida por modelos.

Agradecer a todos los miembros del grupo de investigación en

Procesamiento del Lenguaje y Sistemas de Información (GPLSI) por todo

su cariño en el día a día. Agradezco a su director, Manuel Palomar, por

la siempre cálida acogida dentro del grupo. De este periodo, me llevo un

especial recuerdo de Rafael Muñoz, por aquel verano notarial revisando

sujetos y objetos, y de Mayte Romá, por las largas discusiones sobre

iv

ontologías y representación de conocimiento, que me han ayudado a

intentar ver día a día las cosas desde otras perspectivas. A todos los que

han compartido despacho(s) conmigo: Héctor, Elena, Rubén, Jorge,

Yoan, Dianelys, José Manuel, Javi y a otros muchos.

Expresar mi agradecimiento a Jose Javier y a Sergio su asistencia y su

guía en el uso del Eclipse Modelling Framework y la herramienta OIDE.

Agradecer también a todos los miembros del grupo Organisations,

Information and Knowledge (OAK) de la Universidad de Sheffield por su

grata acogida durante los meses de estancia allí. En especial a su

director, Fabio Ciravegna, y a mis compañeros: Deep, Rodrigo,

Jonathan, Anna Lisa, Elisabeth, Greg y Mathew.

Agradecer a todos los miembros de la unidad Digital Earth and

Reference Data (Institute for Environment and Sustainability) del European

Commission Joint Research Center en Ispra por el afecto recibido desde el

primer día de meses en Italia. En especial, al líder de unidad, Alessandro

Annoni; a los miembros de la acción SHAPE, liderada por Paul Smits; y

a mi responsable, Michael Luzt. Gracias a Chris, Andrej, Vlado, Tomas,

Michalis, Ángel, Robert y a todos los que trabajan conmigo día a día.

Me gustaría no olvidarme de toda la ayuda, apoyo y cariño de mis

padres, Mª Carmen y Jesús, durante estos años, que han estado a mi

lado en momentos difíciles y me han estimulado en muchas ocasiones

para poder llegar a la meta. Extender este agradecimiento a mi hermana

Carmen, que me ha dado una mano cuando me ha hecho falta, y al resto

de mi familia y amigos.

Agradecer de forma muy especial a Alexandra por toda la ayuda y

por él ánimo, apoyo y confianza que me transmite en el día a día de este

camino que estamos andando juntos. Camino que empezó con aquellas

reuniones infinitas hace mucho. Gracias por seguir animándome en los

momentos en que la meta parece alejarse.

Sólo me queda terminar agradeciendo al Ministerio de Educación del

Gobierno de España por la ayuda recibida durante el periodo 2008-2012

a través de la beca FPU (Formación de Profesorado Universitario)

código AP2007-03076 , que me ha permitido realizar esta tesis doctoral y

formarme de forma integral como investigador y profesor universitario

dentro de la Universidad de Alicante.

 v

ABSTRACT

In the last decade, the Web 2.0 brought technological changes in the

manner of interaction and communication between users and

applications, and among applications as well. Rich Internet Applications

(RIA) offer user interfaces with a higher level of interactivity, similar to

desktop interfaces, embed multimedia contents and minimise the

communication between client and server components. Nonetheless,

RIAs behave as black boxes that show the information in a user-friendly

manner but this information can be only visualised gradually, according

to the events triggered by the users on the Web browser, which limits

the access of software agents, e.g., Web searchers.

In the context of the present Internet, where the value has been

moved from the Web applications to the data they manage, the use of

open technological solutions is a need. In this way, the Semantic Web

was aimed at solving issues of semantic incompatibility among systems

by means of standard techniques and technologies (from knowledge

representation and sharing to trust and security), which can be the key

to solving the issues detected in RIA.

Although some solutions exist, they do not cover all the possible

types of RIA or they are dependent on the technology chosen for the

implementation of the Web application. As a first contribution, this

thesis introduces the concept of Semantic Rich Internet Application

(SRIA), which can be defined as a RIA that extensively uses Semantic

Web technologies to provide a representation of its contents and to reuse

existing knowledge sources on the Web. The solution proposed is

adapted to the existing RIA types and technologies. The thesis presents

the architecture proposed for this type of application, describing its

vi

software modules and components. The evaluation of the solution was

performed based on a collection of case studies.

The development of Web applications, especially in the context of

the Semantic Web, is a process traditionally performed manually and,

given the complexity of the SRIA applications in this case, it is a process

which might be prone to errors. The application of model-driven

engineering techniques can reduce the cost of development and

maintenance (in terms of time and resources) of the proposed

applications, as demonstrated their use in other types of Web

applications. Moreover, they can facilitate the adoption of the solution

by the community.

In the light of these issues, as a second contribution, this thesis

presents the Sm4RIA methodology (Semantic Models for RIA) for the

development of SRIA, as an extension of the OOH4RIA methodology.

The thesis describes the development process, the models (with the

corresponding metamodels) and the transformations included in the

methodology. The evaluation of the methodology consisted in the

development of the case studies proposed. The application of this

model-driven methodology can speed up the development of these Web

applications and simplify the reuse of external sources of knowledge.

Finally, the thesis describes the Sm4RIA extension for OIDE, i.e., an

extension of the OIDE CASE tool that implements all the elements of the

Sm4RIA methodology.

 vii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 1

1.1 THE OBJECTIVES OF THIS THESIS 4
1.2 THE STRUCTURE OF THE DISSERTATION 7

CHAPTER 2. STATE OF THE ART 13

2.1 ON WEB APPLICATIONS 13
2.1.1 Rich Internet Applications 14
2.1.2 Web Applications on the Semantic Web 19
2.1.3 RIA for Business Intelligence 24

2.2 ON MODEL-DRIVEN WEB ENGINEERING 26
2.2.1 Model-Driven Engineering of Rich Internet Applications 27
2.2.2 Model-Driven Engineering of Semantic Web Applications 31
2.2.3 Analysis of the Methodologies 37

2.3 CONCLUSIONS 40

CHAPTER 3. RICH INTERNET APPLICATIONS ON THE SEMANTIC WEB 43

3.1 REQUIREMENTS 44
3.2 AN ANNOTATION MODEL FOR SEMANTIC RICH INTERNET APPLICATIONS 46
3.3 STRUCTURE 49
3.4 CASE STUDIES 53

3.4.1 A Social Network Site as a Semantic RIA 54
3.5 SEMANTIC RICH INTERNET APPLICATIONS AS PLATFORMS FOR BUSINESS

 INTELLIGENCE 57
3.5.1 Requirements 58
3.5.2 Case Study: Developing a Social Application for Managing Business

 Knowledge 60
3.6 CONCLUSIONS 62

CHAPTER 4. A METHODOLOGY FOR THE DEVELOPMENT OF SEMANTIC

 RICH INTERNET APPLICATIONS 63

4.1 AN INTRODUCTION TO OOH4RIA 64
4.2 SEMANTIC MODELS FOR RICH INTERNET APPLICATIONS 66

viii

4.2.1 The Sm4RIA User Roles 66
4.2.2 The Sm4RIA Models 67
4.2.3 The Sm4RIA Development Process 69
4.2.4 The Sm4RIA Metamodel (Concrete/Abstract Syntax) 71
4.2.5 Configurations of the Sm4RIA Development Process 74

4.3 CONCLUSIONS 81

CHAPTER 5. DESIGNING THE SERVER COMPONENTS OF A SEMANTIC

 RICH INTERNET APPLICATION 83

5.1 DESIGN THE STRATEGIES OF DATA PERSISTENCE 84
5.1.1 The Domain Metamodel 84
5.1.2 An Example of Domain Model: Social Network Site 87

5.2 BUILD THE DOMAIN ONTOLOGY AND THE ONTOLOGY-DATABASE MAPPING

 RULES 89
5.2.1 The Extended Domain Metamodel: Abstract and Concrete Syntaxes 90
5.2.2 The Extended Domain Model for the Social Network Site 94
5.2.3 Two Models, One Domain 98

5.3 SPECIFICATION OF THE NAVIGATIONAL CONCERNS 100
5.3.1 The Extended Navigational Meta-Model 101
5.3.2 The Extended Navigational Model of the SNS Case Study 107

5.4 CONCLUSIONS 112

CHAPTER 6. DESIGNING THE CLIENT COMPONENTS OF A SEMANTIC

 RICH INTERNET APPLICATION 113

6.1 DEFINING THE STRUCTURE OF THE USER INTERFACE 116
6.1.1 The Extended Presentation Metamodel: Concrete and Abstract Syntaxes 120
6.1.2 An Extended Presentation Model for the Social Network Site 126

6.2 SPECIFYING THE BEHAVIOUR OF THE USER INTERFACE COMPONENTS 130
6.2.1 Extended Orchestration Metamodel: Concrete and Abstract Syntaxes 133
6.2.2 An Extended Orchestration Model for the Social Network Site 137

6.3 GENERATING AN USER-ORIENTED, ONTOLOGY-BASED REPRESENTATION OF

 THE USER INTERFACE 141
6.3.1 The OntoVisu Metamodel 141
6.3.2 The Visualisation Ontology Model of The Social Network Site 146

6.4 CONCLUSIONS 148

CHAPTER 7. GENERATING THE SOFTWARE MODULES OF A SEMANTIC

 RIA THROUGH MODEL TRANSFORMATIONS 151

7.1 THE ARCHITECTURE OF A SEMANTIC RIA 152
7.1.1 The Architecture of the SRIA Server 153
7.1.2 The Architecture of the SRIA Client 162

7.2 MODEL-2-TEXT TRANSFORMATIONS TO OBTAIN A SEMANTIC RIA 169
7.2.1 The OEntity_root Model-to-Text Transformation 175
7.2.2 The Gateway_root Model-to-Text Transformation 178
7.2.3 The Mapping_root Model-to-Text Transformation 185

 ix

7.3 MODEL-TO-MODEL TRANSFORMATIONS TO ACCELERATE THE SM4RIA

 PROCESS 191
7.3.1 Model-to-Model Transformations to Obtain the Extended Domain Model

 194
7.3.2 Model-to-Model Transformations to Obtain the Extended Navigation

 Model 197
7.3.3 Model-2-Model Transformations to Obtain the Visualisation Ontology

 Model 199
7.4 CONCLUSIONS 202

CHAPTER 8. IMPLEMENTATION OF THE METHODOLOGY: SM4RIA

 EXTENSION FOR OIDE 205

8.1 OOH4RIA INTEGRATED DEVELOPMENT ENVIRONMENT 206
8.2 MODELS AND TRANSFORMATIONS 207

8.2.1 Model Editors 207
8.2.2 Transformation Processes 213
8.2.3 New Processes of Software Modernisation 214

8.3 CONCLUSIONS 216

CHAPTER 9. CONCLUSIONS & FUTURE WORK 219

9.1 CONCLUSIONS 219
9.2 FUTURE WORK 230

REFERENCES 235

ANNEX A. SCIENTIFIC CONTRIBUTIONS 249

ANNEX B. MAIN ELEMENTS OF THE NAVIGATIONAL &

 VISUALISATION ONTOLOGIES 253

B.1. NAVIGATIONAL ONTOLOGY: NAVONTOLOGY 253
B.2. VISUALISATION ONTOLOGY 258

ANNEX C. DESCRIPTION OF THE SRIA CASE STUDIES 263

C.1. MEDIA PLAYER 263
C.2. SOCIAL NETWORK SITE 265
C.3. SOCIAL NETWORK SITE FOR BUSINESS KNOWLEDGE MANAGEMENT 265

ANNEX D. DESIGN MODELS RESULTING FROM THE CASE STUDIES 267

D.1. MEDIA PLAYER 267
D.2. A SOCIAL APPLICATION FOR MANAGING BUSINESS KNOWLEDGE AS A

 RI@BI 269

ANNEX E. THE EXTENDED PRESENTATION METAMODEL: ABSTRACT

 SYNTAX 273

ANNEX F. TRANSFORMATION RULES 277

F.1. MODEL-TO-TEXT TRANSFORMATION RULES IN XPAND 277
F.2. MODEL-TO-MODEL TRANSFORMATION RULES IN QVT OPERATIONAL 287

x

ANNEX G. IMPLEMENTATION DETAILS 301

G.1. STRUCTURE OF THE PROJECT GENERATED 301
G.2. XPAND REFERENCE 302
G.3. XTEXT GRAMMAR OF THE EXTENDED DOMAIN MODEL EDITOR 303

ANNEX H. RESUMEN EN ESPAÑOL 307

H.1. INTRODUCCIÓN 307
H.2. RICH INTERNET APPLICATIONS EN LA WEB SEMÁNTICA 311

H.2.1. Requisitos 311
H.2.2. Estructura 314
H.2.3. Casos de estudio 316

H.3. UNA METODOLOGÍA PARA EL DESARROLLO DE SEMANTIC RICH INTERNET

 APPLICATIONS 317
H.3.1. Los roles de usuario en Sm4RIA 319
H.3.2. Los modelos Sm4RIA 320
H.3.3. El proceso de desarrollo Sm4RIA 322

H.4. SM4RIA EXTENSION FOR OIDE 323
H.4.1. Editores de modelos 325
H.4.2. Transformaciones 325
H.4.3. Nuevos procesos 326

H.5. CONCLUSIONES Y TRABAJO FUTURO 327
H.5.1. Conclusiones 327
H.5.2. Trabajo futuro 331

 xi

INDEX OF TABLES

Table 2.1. Summary of the methodologies for developing Rich Internet Applications. 38
Table 2.2. Summary of the methodologies for developing Semantic Web Applications. 39
Table 5.1. Description of the main elements of the Extended Domain metamodel. 91
Table 5.2. Summary of the OCL constraints for the Extended Domain metamodel. 94
Table 5.3. Description of the new elements of the Extended Navigation Metamodel. 103
Table 5.4. Summary of the OCL constraints of the Extended Navigational metamodel.

 106
Table 6.1. Graphical notation of the platform-specific metaclasses of the Extended

Presentation Model. 123
Table 6.2. Summary of the OCL constraints of the Extended Presentation Model. 125
Table 6.3. Description of the main elements of the Extended Orchestration metamodel.

 135
Table 6.4. Summary of the OCL constraints defined over the Extended Orchestration

metamodel. 136
Table 6.5. Description of the main elements of the OntoVisu metamodel. 143
Table 6.6. Summary of the OCL constraints defined over the OntoVisu metamodel. 145
Table 7.1. Mapping between the SRIA server modules and architectural components.

 154
Table 7.2. Mapping between the SRIA client modules and architectural components.163
Table 7.3. Summary of the Sm4RIA M2T transformation rules, their input models and

the resulting architectural components. 173
Table 7.4. Summary of the Sm4RIA M2T transformation rules, their input models and

the resulting resources. 174
Table 7.5. Xpand code of the OEntity_root M2T transformation rule. 176
Table 7.6. PersonEntity and TrackEntity DataTransferObject components, generated

by the OEntity_root transformation. 177
Table 7.7. Xpand code of the Gateway_root M2T transformation rule. 180
Table 7.8. ServiceAgent component for the MusicBrainz service generated with the

Gateway_root transformation rule. 184

xii

Table 7.9. Xpand code of the Mapping_root model-to-text transformation rule. 187
Table 7.10. Database-to-RDF mapping rules for the Social Network case study using

the D2RQ language. 190
Table 7.11. Summary of the Model-to-Model transformations rules in Sm4RIA. 192
Table 7.12. Summary of the input and output model elements in the Domain2EDM

transformation. 194
Table 7.13. Code of the Domain2EDM QVTo model-to-model transformation rule. 194
Table 7.14. Summary of the input and output model elements in the EDM2ENM

transformation. 197
Table 7.15. Code of the EDM2ENM QVTo model-to-model transformation rule 197
Table 7.16. Summary of the input and output model elements in the Pres&Orch2Visu

transformation. 200
Table 7.17. Code of the Pres&Orch2Visu QVTo model-to-model transformation rule.

 200
Table 8.1. Summary of the model editors included in the extension. 217
Table 8.2. Summary of the features of the code generator processes. 217
Table 8.3. Summary of the model-to-model transformations supported by the tool. 218
Table 9.1. Comparison of Sm4RIA with other methodologies (RIA design features). 223
Table 9.2. Comparison of Sm4RIA with other methodologies (Semantic Web application

design features). 224
Table 9.3. Summary of the contributions of this thesis associated to the objectives. 228
Table F.1. Xpand code of the Bec_root model-to-text transformation rule. 277
Table F.2. Xpand code of the Adapter_root model-to-text transformation rule. 278
Table F.3. Xpand code for the Dto_root model-to-text transformation rule. 279
Table F.4. Xpand code of the Service_root model-to-text transformation rule. 280
Table F.5. Domain2Navigation model-to-model QVTo transformation. 288
Table F.6. Navigation2Presentation model-to-model QVTo transformation. 291
Table G.7 Structure of the Visual Studio solution generated and the description of the

elements. 301
Table G.8. Description of the main elements of the Xpand language. 303
Table G.9. Grammar rules of the Xtext editor for the Extended Domain Model. 303
Table H.10. Resumen de las tareas y contribuciones realizadas asociadas a cada objetivo.

 329

 xiii

INDEX OF FIGURES

Figure 2.1. Semantic Web architecture in 2006 by Tim Berners-Lee. 20
Figure 3.1. Example of instantiation of the three layer ontology representation for

SRIAs. 48
Figure 3.2. Schema of a semantic RIA and the relations with other elements of the Web.

 50
Figure 3.3. Schema of a social network site as a SRIA and the connections to other

applications. 55
Figure 3.4. Screenshot of the main context of the Social Network Site. 57
Figure 3.5. Screenshot of the HTML view for the Social Network Site. 57
Figure 3.6. Schema of a RI@BI and the connections between the application and other

applications and services. 60
Figure 3.7. Screenshot of the project management application as a RI@BI. 61
Figure 4.1. SPEM2 class diagram of the Sm4RIA development process. 66
Figure 4.2. First activity of the Sm4RIA development process. 70
Figure 4.3. Second activity of the Sm4RIA development process. 70
Figure 4.4. Third activity of the Sm4RIA development process. 71
Figure 4.5. Sm4RIA meta-models and their links to the OOH4RIA and Ontology

Definition meta-models. 72
Figure 4.6. First activity of the Sm4RIA(-B) methodology. 75
Figure 4.7. Second activity of the Sm4RIA(-B) methodology. 76
Figure 4.8. First activity of the Sm4RIA(-M) development process. 77
Figure 4.9. Modification of the first activity of Sm4RIA(-M) including M2M

transformations. 78
Figure 4.10. Modification of the second activity of Sm4RIA(-M) including M2M

transformations. 79
Figure 4.11. Modification of the first activity of Sm4RIA(-M) for the generation of RIA

interfaces for Linked Data repositories. 80
Figure 5.1. Schema of the Domain EMOF Metamodel. 86
Figure 5.2. Diagram of the Domain Model of the Social Network Site case study. 88

xiv

Figure 5.3. Diagram of the main elements of the Extended Domain metamodel. 91
Figure 5.4. Extended Domain Model of the SNS case study (Package view). 95
Figure 5.5. Diagram of the content of Local Ontology Model element for the SNS case

study. 97
Figure 5.6. Diagram of the OOH4RIA Navigational metamodel. 102
Figure 5.7. Diagram of the Extended Navigational Metamodel. 103
Figure 5.8. Diagram of the Extended Navigational Model for the SNS case study. 108
Figure 5.9. Diagram (partial) of the Extended Navigational Model for Semantic Web

agents. 111
Figure 6.1. Patterns of extension of the Presentation and Orchestration models. 115
Figure 6.2. Different types of relationship between the Extended Presentation Model

and the Extended Navigational Model. 119
Figure 6.3. Main elements of the Extended Presentation Model. 121
Figure 6.4. Connections between the EMOF Extended Presentation metamodel and

other Sm4RIA metamodels. 122
Figure 6.5. Screenshot with the login form of the Social Network Site. 127
Figure 6.6. Main screenshot of the Social Network Site. 128
Figure 6.7. Example of the existing relationships between the Extended Presentation

Model and the Extended Navigational Model in the main screenshot of the SNS.

 128
Figure 6.8. Screenshot showing the information of the albums and music tracks of the

Social Network Site. 129
Figure 6.9. Example of the existing relationships between the Extended Presentation

Model and the Extended Navigational Model in the “Albums” screenshot of the

SNS. 130
Figure 6.10. Representation of an Event-Condition-Action rule. 131
Figure 6.11. Schema of the Extended Orchestration Metamodel. 134
Figure 6.12. Fragment of the Extended Orchestration Model for the SNS case study.139
Figure 6.13. Main elements of the OntoVisu metamodel (abstract syntax). 143
Figure 6.14. Fragment of the Visualisation Ontology Model of the SRIA MediaPlayer.

 147
Figure 7.1. Structure of a Semantic RIA. 153
Figure 7.2. Configuration model for the general architecture of the SRIA server. 154
Figure 7.3. Detailed architecture of the SRIA server for the Social Network Site case

study. 157
Figure 7.4. UML Sequence diagram of the invocation of the User_get5Tracks method of

the WCFApplicationService component. 160
Figure 7.5. UML Sequence diagram of the invocation of the

Record_getAllTrackOfRecord method of the WCFApplicationService component.

 161

 xv

Figure 7.6. Configuration model of the general architecture of two SRIA clients

(browser and plug-in oriented). 162
Figure 7.7. Detailed architecture of the plug-in-oriented SRIA client (Silverlight client)

for the SNS case study. 165
Figure 7.8. UML Sequence diagram of the invocation of the

Record_getAllTrackOfRecord method from the SRIA client. 167
Figure 7.9. UML Sequence diagram of the invocation of the MusicTrack_newTrack

method from the SRIA client. 168
Figure 7.10. Detailed architecture of the plug-in-oriented SRIA client (Silverlight

client) for the SNS case study. 169
Figure 7.11. SRIA modules and resources obtained from each Sm4RIA model. 170
Figure 7.12. Modification of the SRIA modules and resources obtained from the

Extended Navigational Model. 172
Figure 7.13. UML Sequence diagram of the OEntity_root transformation rule. 175
Figure 7.14. UML Sequence diagram of the Gateway_root M2T transformation rule.

 179
Figure 7.15. UML sequence diagram of the Mapping_root transformation rule. 186
Figure 8.1. Screenshot of the main interface of the OIDE tool. 207
Figure 8.2. Screenshot of the Sm4RIA extension for OIDE showing the EMF

representation of the Extended Domain Model for the SNS case study. 208
Figure 8.3. Screenshot of the Sm4RIA extension for OIDE showing the Xtext

representation of the Extended Domain Model for the SNS case study. 209
Figure 8.4. Screenshot of the Sm4RIA extension for OIDE showing the GMF

representation of the Extended Navigational Model for the SNS case study. 209
Figure 8.5. Screenshot of the Sm4RIA extension for OIDE showing the GMF

representation of the OIDE Presentation Model for the SNS case study (Default

screenshot). 210
Figure 8.6. Screenshot of the Sm4RIA extension for OIDE showing the GMF

representation of the OIDE Presentation Model for the SNS case study (Main

screenshot). 211
Figure 8.7. Screenshot of the Sm4RIA extension for OIDE showing the GMF

representation of the OIDE Presentation Model for the SNS case study (Main

screenshot) 211
Figure 8.8. Screenshot of the Sm4RIA extension for OIDE showing the EMF view of the

Visualisation Ontology Model for the SNS case study. 212
Figure 8.9. Screenshot of the OIDE tool showing the GMF representation of the

Domain Model for the SNS case study. 212
Figure 8.10. Screenshot of the Sm4RIA extension for OIDE showing the Visual Studio

project resulting from the model-to-text transformation processes for the SNS

case study. 213

xvi

Figure 8.11. Screenshot of the Sm4RIA extension for OIDE showing the M2M projects

developed and the Domain2EDM model-to-model transformation in the Eclipse

QVTo editor. 214
Figure 8.12. Screenshot of the Sm4RIA extension for OIDE showing the Navigational

model for the administration view of the SNS case study. 215
Figure 8.13. Screenshot of the Sm4RIA extension for OIDE showing the Presentation

model for the administration view of the SNS case study. 216
Figure C.1. Screenshot of the user interface of the media player. 263
Figure D.2. Domain Model of the Media Player case study. 267
Figure D.3. Ontology view of the Extended Domain Model of the Media Player case

study. 268
Figure D.4. Concept view of the Extended Domain Model for the Media Player case

study. 268
Figure D.5. View of the Extended Navigational Model for human users. 268
Figure D.6. View of the Extended Navigational Model for software agents. 269
Figure D.7. Extended Presentation Model of the Media Player case study. 269
Figure D.8. Domain Model of the RI@BI case study. 270
Figure D.9. Ontology view of the Extended Domain Model for the RI@BI case study.

 270
Figure D.10. Concept view of the Extended Domain Model for the RI@BI case study.

 271
Figure D.11. Extended Navigational Model for the RI@BI case study. 271
Figure D.12. Extended Presentation model showing the main screenshot for the RI@BI

case study. 272
Figure D.13. Event-Condition-Action rule associated to the “Post” button of the user

interface (part of the Extended Orchestration Model) of the RI@BI use case. 272
Figure E.14. Abstract components of the EMOF Extended Presentation Model. 274
Figure E.15. Silverlight components of the EMOF Extended Presentation Metamodel

(part I). 275
Figure E.16. Silverlight components of the EMOF Extended Presentation Metamodel

(part II). 276
Figure H.17. Esquema de la estructura de una Semantic Rich Internet Application. 314
Figure H.18. Diagrama SPEM2 con el proceso de desarrollo Sm4RIA. 319
Figure H.19. Pantalla principal de la herramienta OIDE y de la extensión para Sm4RIA.

 324

Chapter 1. INTRODUCTION

In the present knowledge society, the need to access information has

grown exponentially. During the past two decades, the Internet has

experienced a continuous, relatively rapid, evolution from several points

of view all intended to fulfil the end user’s information requirements.

This led to the creation of different trends, oriented to a specific subset

of these requirements. Murugesan (Murugesan, 2008) identified and

described some of them: Web 1.0, Web 2.0, Rich Internet Applications,

the Semantic Web or the Mobile Web (even though there could be

others).

Among these trends, this thesis is focused on the branch of Rich

Internet Applications. These applications were introduced by the Web

2.0, together with the social applications. Their interfaces provided

functionalities that up to that moment had been considered only in

desktop interfaces. Based on technologies such as Flex, Silverlight or

AJAX, i.e., HTML(5) and JavaScript, among others, these applications

include user interfaces with high degrees of interactivity and

dynamicity, embedding multimedia elements, which can retrieve data

from the Web server without having to change the Web page or click on

a link or button.

An issue of data access, sharing and interoperability.

Despite these advantages regarding data visualisation, Rich Internet

Applications have an important drawback: the existing Web search

engines, which for several users are the main entry point to the Web

contents, cannot easily crawl and index the information they manage. As

2 Chapter 1. Introduction

a result, Web users cannot easily find the content shown, which can at

the same time prevent developers and enterprises from creating and

using this type of applications for their business.

The behaviour of RIA interfaces is driven by user events, i.e., their

information is shown based on the users’ demands, expressed by

manually triggering certain events on the user interface components.

This event-driven behaviour makes the access to the data complicated

independently from the technology chosen to implement the RIA. In this

scenario, HTML-based RIAs have an advantage over plug-in-oriented

RIAs, implemented with other technologies such as Silverlight or Flex,

since their contents are shown using textual representations embedded

in HTML code, similar to the traditional HTML interfaces of the Web

1.0. Some technology-dependent solutions (e.g., for Flex or Silverlight)

are available, which enable the sharing of a part of the content. Those

technology-independent solutions for crawling RIA are expensive in

terms of time and resources, and cannot access all the data they show.

Reusing efforts on the Web.

Given the maturity of the Internet and the technologies developed,

the access to the data stored in RIAs for different user types could be

facilitated by reusing the efforts spent in other trends of the Web. In this

case, the attention is on the techniques and technologies for knowledge

management developed in the context of the Semantic Web. The

Semantic Web (Berners-Lee et al., 2001) considers software systems as

first-class users that help human users with their tasks, not only as mere

tools for managing and visualising information, but also helping in the

whole process of acquisition, management and decision-making. To this

aim, new technologies and tools have been created to provide explicit,

disambiguated meaning to the information flowing throughout the Web

using techniques for knowledge capturing, representation and

management. Understanding the information contained in Web sites

leads to a higher degree of interoperability (at three levels: lexical,

syntactic and semantic) among software components on the Web. From

this perspective, the problems related to the access to RIA data can be

restated as a problem of lack of interoperability, which could be

addressed with Semantic Web techniques and technologies.

Model-Driven Development of Rich Internet Applications on the Semantic Web 3

Development challenges and model-driven engineering.

The combination of these non-complementary Web trends also

involves several trade-offs and challenges in the engineering of Web

applications. As Murugesan stated (Murugesan, 2008), all these could be

summarised into a main challenge: “to design and develop sustainable

Web systems for better a) usability, interface design, and navigation; b)

comprehension; c) performance (responsiveness); d) security and

integrity; e) evolution, growth, and maintainability; f) testability; and g)

mobility.”

The success of the solution proposed for RIA and its acceptance will

directly depend on the cost of addressing these challenges, which is

usually high in terms of resources and time, due to the complexity of the

functionalities required by these applications and the dynamics of the

Web scenario. In this last decade, several model-driven methodologies

for engineering Web applications have appeared, dealing with the

challenges mentioned and facilitating the processes to develop complex

Web applications. Model-driven methodologies propose development

processes whose activities are oriented to the design of software models.

Moreover, they can define collections of transformations to obtain new

models from existing ones or the final software modules of the target

application. Model-driven methodologies are especially adapted to

develop Web systems that provide better usability and facilitate their

evolution and maintainability once the development has been concluded

(aspects a) and f) from Murugesan’s definition). This type of

development techniques, together with a CASE1 tool that supports it,

can reduce the costs related to the mentioned aspects in complex Web

applications.

Nevertheless, none of the existing model-driven Web engineering

methodologies effectively combines the elements required for the

development of a solution to deal with the aforementioned issues of

data access and sharing in RIA using Semantic Web technologies.

Existing methodologies (e.g., WebML) contain part of the elements

needed (e.g., development of rich user interfaces, ontologies, access to

Web services), but these elements remain unconnected. In addition, they

1 Computer-Aided Software Engineering

4 Chapter 1. Introduction

are not completely aligned to the new processes for knowledge sharing

and reuse on the Semantic Web such as the ones introduced by the Web

of Data.

1.1 THE OBJECTIVES OF THIS THESIS

In the light of the issues identified, the research conducted in this

thesis intends to answer three research questions:

RQ1 – Is it possible to improve the interoperability of Rich Internet

Applications with other software systems (such as, Web search engines)

using existing techniques, technologies and resources from the Semantic

Web?

RQ2 – How can the existing model-driven methodologies be extended in

order to develop the solution to the problems detected in Rich Internet

Applications?

RQ3 – How can the proposed solutions be implemented in a CASE tool?

In order to answer these questions, several objectives have been

proposed. They are described and motivated as follows:

Objective 1) Improve the interoperability of Rich Internet Applications

with text-driven software systems on the Web (e.g., searchers).

O1.1) Improve the exportability of the data offered by Rich Internet

Applications.

O1.2) Improve the access to information related to multimedia

elements.

O1.3) Combine techniques, technologies and resources already

developed in the Semantic Web with Rich Internet Applications

technologies.

O1.4) Develop a collection of use cases that assess the validity of the

solution proposed.

Rich Internet Applications behave as black boxes of data, which

makes the access and processing of these data difficult (data

interoperability), especially to some types of clients on the Web (such as

search engines or accessible readers). The only method to gain access

(i.e., crawl and index) to all the textual content of these event-driven

applications is through a visual representation of the data produced by

Model-Driven Development of Rich Internet Applications on the Semantic Web 5

the Web browser, which cannot be employed by software systems (e.g.,

an application can contain animations shown in the user interface

depending on the user data). Some authors2 have provided solutions to

this problem by partially building a graph-based representation of the

navigational structure of the application. Such representations have a

high cost of computation and are still incomplete (e.g., they cannot

access the data hidden behind a search form).

The enterprises behind the development of the Web searches and the

RIA technologies (mainly Adobe with Flex) have also worked on solving

this issue. However, the results of these efforts are not clear. They do not

clarify what type of content can be accessed and the manner in which

these applications should be developed.

The same problem arises in multimedia searches in RIA. RIAs

extensively employ multimedia elements, i.e., images, videos or music,

which complement the textual information they present. RIA

technologies facilitate the use of these elements that help users to

assimilate the information transmitted by the designers. Nonetheless,

given their intrinsic structure, the data exposed through these elements

remain unreachable to search engines.

In this scenario, the first objectives are to improve the exportability of

the textual data visualised in a RIA and the information describing the

multimedia elements it contains, in such a way that external software

agents (Web search engines and accessible readers) could use it.

These objectives could be achieved in a technology-independent

manner by reusing technologies, techniques and resources from another

Web trend, i.e., the Semantic Web and, more specifically, the Web of

Data. During this last decade, new techniques and technologies for

knowledge capturing, storage, management and interoperability have

been developed, which can be reused in RIA. For instance, the use of

ontologies and the techniques for ontology development reached a

sufficient level of maturity to be reused in the first two objectives. In the

case of multimedia elements, there are already some approaches that

deal with the problem of sharing information about multimedia

elements on the Semantic Web.

2 An analysis of the different approaches was performed by Choudhary et al. (Choudhary et al.,

2012)

6 Chapter 1. Introduction

The solution proposed should be validated adequately in order to

ensure its feasibility, detect the possible downsides and propose

improvements that avoid them if possible. In this case, the chosen

assessment method is based on the development of a collection of case

studies (e.g., the development of a media player or a social network site;

for a complete description please check Section 3.4, page 53), because it

can simulate the functionalities of RIA in real scenarios.

Objective 2) Design a model-driven methodology for the development of

the solution.

O2.1) Facilitate the development of the solution proposed in O1.

O2.2) Improve the maintainability of the solution proposed in O1.

O2.3) Extend an existing methodology for the development of RIA.

By addressing the development of the proposed solution from the

perspective of the Web engineering, the associated costs and risks can be

reduced, thus facilitating its adoption. Model-driven methodologies

have proven to be effective for the development of complex Web

applications such as Rich Internet Applications or Semantic Web

applications. Several methodologies dealt with the design and

development of the different concerns: from data persistence to interface

design and personalisation (for a detailed description, please, see Section

2.2).

In real scenarios, the features of Web applications can be updated or

modified according to the changing requirements of the stakeholders.

The need to combine the requirements of two Web trends, which

manage techniques of data visualisation with techniques for knowledge

representation, increases the complexity of developing and maintaining

the solution proposed in order to achieve O1. The choice of a model-

driven methodology can facilitate its development in these scenarios of

frequent changes of requirements. Model-driven methodologies are

capable of dealing with all the desired features of the application by

means of software models and, in this way, any modification to the

application will only involve changes to the underlying models.

Given the known benefits and the efforts already spent in the field of

Web engineering, another objective is to reuse and extend one of the

existing methodologies for the development of Rich Internet

Model-Driven Development of Rich Internet Applications on the Semantic Web 7

Applications. In this way, the effort involved in designing a new

development process and its artefacts can be minimised.

Objective 3) Develop a CASE tool capable of supporting the methodology

designed.

Implementing the methodology proposed in O2 in a software tool is

necessary in order to spread its adoption. Model-driven methodologies

define a collection of artefacts, i.e., mainly models and transformations,

by means of which designers can generate complete applications or

specific software components. For this aim, the methodology should be

accompanied by a CASE tool that supports and automates the creation

and editing of the models as well as the processes of model

transformation and code generation. The challenge behind this objective

is to develop a tool that could effectively combine the design of

components with techniques of knowledge representation (including

reuse of external knowledge) and rich user interface design.

The process of development of the CASE tool can be used to validate

the methodological proposal and detect those aspects that could be

improved from the perspective of the designers. Furthermore, the

software tool could be easily shared with other researchers, thus

facilitating the assessment of the methodology by other users or its

application to business scenarios.

Most of the existing model-driven methodologies have been

implemented in a CASE tool. Following the same reasoning explained in

O2, reusing an existing implementation would facilitate and speed up

the achievement of this objective.

1.2 THE STRUCTURE OF THE DISSERTATION

The contents of the present dissertation are organised in seven

chapters and eight annexes, which describe the solutions proposed to

the problems detected in order to achieve the objectives of this thesis.

The following chapters of this manuscript are structured as follows:

8 Chapter 1. Introduction

 Chapter 2: State of the Art.

This chapter analyses the state of the art of the different topics

addressed in this thesis. It is divided in two main sections: the

first one deals with Web applications, and the second one

describes model-driven methodologies for engineering Web

applications.

In the first section, the chapter explores the two different types of

Web applications involved in this thesis, starting from Rich

Internet Applications, their main features and the problem of

searching their contents from the perspective of several authors

and their approaches. Subsequently, the same analysis is

repeated, this time focusing on the Semantic Web applications

and those aspects of the Semantic Web (including the Web of

Data) that could be used to propose a solution. Finally, this

section describes a scenario in which the features of both types of

applications are required, i.e., Web applications for Business

Intelligence.

The second section introduces the main model-driven

methodologies employed to develop of each of these application

types, and describes their development process and main

models. It also specifies whether they are supported by a CASE

tool.

 Chapter 3: Rich Internet Applications on the Semantic Web

The first contribution of the thesis is introduced in this chapter: a

new type of Rich Internet Application called Semantic Rich

Internet Applications (SRIA), which employs Semantic Web

technologies to solve the issues identified in the first two

chapters. This chapter focuses on describing the requirements of

this type of application, its structure (its main components) and

the use cases employed for the assessment of the proposal.

 Chapter 4: A methodology for the development of Rich Internet

Applications on the Semantic Web.

Chapter 4 presents the Sm4RIA methodology, i.e., an extension of

the OOH4RIA model-driven methodology addressing the

development of SRIAs. This chapter describes the development

Model-Driven Development of Rich Internet Applications on the Semantic Web 9

process proposed, the Sm4RIA metamodel and the main models

involved in the process. Moreover, the chapter introduces two

configurations of Sm4RIA: one for the development of Business

Intelligence applications; and another oriented towards the

modernisation and reengineering processes.

The following three chapters present each of the activities of the

Sm4RIA development process, detailing all the aspects involved

over the same case study: the development of a social network

site.

 Chapter 5: Designing the server components of a Semantic Rich

Internet Application.

This chapter describes the first activity of the Sm4RIA

methodology, which is focused on the design of the SRIA server

by means of three models: the Domain model, the Extended

Domain Model and the Extended Navigational Model. The

sections of this chapter explain the creation of the models and the

elements of their metamodels, presenting the abstract and

concrete syntaxes and using the development of a social network

site as a case study.

 Chapter 6: Designing the client components of a Semantic Rich Internet

Application.

This chapter describes the second activity of the Sm4RIA

methodology, which is focused on the design of the SRIA client,

including the user interface, by means of two models: the

Extended Presentation Model and the Extended Orchestration

Model. The sections of this chapter explain the creation of the

models, describing the abstract and concrete syntaxes, by

continuing the development of the social network site described

Chapter 3.

 Chapter 7: Generating the software modules of a Semantic RIA:

transformations and implementation.

This chapter describes the third activity of the Sm4RIA

methodology, which is focused on the generation of the SRIA

software modules from the models designed in chapters 5 and 6.

10 Chapter 1. Introduction

This chapter is divided in three main sections. The first one

explains the software architecture of a typical SRIA, based on the

experience gained in the development of the case studies. It

describes all the modules and architectural patterns applied.

Using this architecture as a reference, the second and third

sections describe the transformation processes included in

Sm4RIA, both model-to-text and model-to-model, respectively.

This chapter offers an overview of all the transformation

processes included in the methodology and includes the concrete

definition for some transformation rules.

 Chapter 8: Sm4RIA extension for OIDE.

Chapter 8 introduces the CASE tool “Sm4RIA extension for OIDE”,

which implements the model editors and the transformation

processes of the Sm4RIA methodology using the Eclipse

framework as a basis. This chapter illustrates the main features of

the tool using a series of screenshots.

 Chapter 9: Conclusions and Future Work.

This chapter summarises the main contributions of this thesis by

answering each of the research questions and analyses the degree

of achievement of the established objectives. Finally, in the light

of the conclusions drawn, the main lines of future work are

described.

Furthermore, the manuscript contains a set of annexes that extend

and clarify the information included in the chapters:

 Annex A. Scientific Contributions

The first annex lists the scientific publications resulting from the

research activities derived from this thesis.

 Annex B. Main elements of the Navigational & Visualisation

Ontologies.

This annex describes the Navigational and Visualisation

ontology, introduced in Chapter 3.

 Annex C. Description of the SRIA Case Studies.

Model-Driven Development of Rich Internet Applications on the Semantic Web 11

Annex C describes some of the case studies used in the

evaluation of the SRIA proposal. The case studies are previously

introduced in Chapter 3.

 Annex D. Design Models Resulting From the Case Studies.

This annex contains the Sm4RIA models for the development of

some SRIA case studies.

 Annex E. The Extended Presentation Metamodel: Abstract Syntax.

Annex E contains the schemas of the complete abstract syntax of

the Extended Presentation Metamodel.

 Annex F. Transformation Rules.

This annex includes the code of the model-to-text and model-to-

model transformation rules that was not introduced in Chapter 7.

 Annex G. Implementation Details.

Annex G contains some details of the implementation that were

not introduced in chapters 7 or 8 as well as a brief reference of

the main elements of the languages for the definition of

transformation rules.

 Annex H. Resumen en español.

This last annex includes an extended abstract of the manuscript

in Spanish.

Chapter 2. STATE OF THE ART

This chapter contextualises the problems addressed by this thesis

and the solutions proposed by different authors. This analysis motivates

and constrains the decisions taken in the following chapters. All the

information analysed will be the basis for the proposal of a solution to

the issues identified in the first chapter.

The chapter begins with the analysis of the two new types of Web

applications that involved a technological evolution in the last decade.

First, the analysis explores the concept of Rich Internet Application, their

features and open issues. Subsequently, the chapter aims at describing

the concept of Semantic Web Application, whose features can help to

solve the issues found in RIA, and a specific scenario that requires the

features of both types of application, i.e., Web applications for business

intelligence.

The second part of the chapter addresses the description of the

methods of development of the types of application analysed in the first

part: RIA and Semantic Web applications. Specifically, the chapter

introduces the main model-driven methodologies for each of the

application types, as well as their main objectives, activities and models.

2.1 ON WEB APPLICATIONS

During the last decade, the Web 2.0 (O’Reilly, 2005) considerably

extended the use of the Web among a large variety of users. Within this

broad concept, at least two sub-trends could be identified, one

associated to a change in the users’ behaviour and another technological:

14 Chapter 2. State of the Art

the Social Web and the Rich Internet Applications (RIA). Rich Internet

Applications presented several benefits associated to their user

interfaces, but also reintroduced some issues of exportability of contents

already solved in traditional Web applications. The development of the

Semantic Web created new ways of sharing knowledge across the Web,

which have not been fully considered for the development of RIA.

This section firstly describes the concept of RIA and its main features

and problems on the current Web scenario in a generic manner.

Subsequently, it explores the concept of Web applications on the

Semantic Web emphasising those features that can help to solve RIA

issues. Finally, the section analyses the use of RIA in a specific scenario,

i.e., in the applications for business intelligence, in which the issues

detected are of special interest.

2.1.1 RICH INTERNET APPLICATIONS

With the evolution of the Web architecture and particularly the user

interfaces, a new type of application called Rich Internet Application

appeared. The concept of rich client (and rich internet application) was

firstly introduced by Allaire (Allaire, 2002), whose main features were

the ability to use external Web services, the possibility to use connected

and disconnected clients (i.e., clients that contain the software modules

required to perform some tasks independently from the server) and the

use of complex graphical representations. At that moment, those

features were bound to a single technology, i.e., Macromedia Flash MX,

also introduced by Allaire.

From that initial approach, the concept has grown and evolved

together with the technologies and frameworks for its development.

New technologies appeared, bringing new improvements in the user

interfaces, while others fell in disuse. Due to their increasing size and

requirements, their development was also addressed from the

engineering view point and several methodologies of development were

designed. The concept of Rich Internet Application became widely used

and each approach personalised the definition on the same initial basis.

Busch and Koch in their survey (Busch and Koch, 2009) presented a set

of the main definitions found in scientific articles, pinpointing the

Model-Driven Development of Rich Internet Applications on the Semantic Web 15

positive aspects and the ambiguities of each. From these, they proposed

their own unifying definition.

After a decade of wide use, Rich Internet Applications can be defined

as Web applications with the following features:

1. The application data can be processed by either client or server

components.

2. The communication processes between server and client modules

follow asynchronous protocols, in such a way that the interface is

not blocked while waiting for the server data.

3. Their user interfaces have a look-and-feel (aesthetic features)

similar the one of desktop interfaces, using a wide set of

interactive presentation elements and embedding multimedia

elements, as well.

This definition is supported by different research works (Fraternali et

al., 2010a; Hermida et al., 2011a; Meliá et al., 2008) and is a simplification

of Busch and Koch’s definition focusing on the main features of the RIA.

The features mentioned in this definition are desirable for any RIA. As

explained by Toffetti et al. (Toffetti et al., 2011), depending on the degree

of fulfilment of these requirements, RIA can be classified into different

types:

 Traditional Web applications with RIA-makeover: applications that

use RIA capabilities for some operations (usually asynchronous

communication processes, e.g., Facebook) or embed RIA snippets

(e.g., Flex advertisements).

 Rich UIs: Web applications with widget based UIs where the

client-side logic is an extension of the browser that supersedes its

core responsibilities such as managing states and handling events

(e.g., Gmail).

 Standalone RIAs: Web applications capable of running inside

and/or outside the browser connected or unconnected to the

server.

 Distributed RIAs: these are applications whose data and logic are

distributed across client and server (sometimes dynamically).

They enable online collaboration among users (e.g., Google

Wave).

16 Chapter 2. State of the Art

From the original contribution of Macromedia Flash, several

technologies for the development of this type of applications emerged

and have been improved after several versions, including Flash/Flex.

The analysis of the RIA applications of Busch and Koch (Busch and

Koch, 2009) and Toffetti et al. (Toffetti et al., 2011) introduce an overview

of the current technologies. Each of these technologies provides a set of

features and visual elements for the definition of rich user interfaces and

rich clients, which have several similarities. Although they can invoke

Web services from different types, the client technologies are

incompatible among them. According to the implementation

technologies, RIAs can be classified into three types (Busch and Koch,

2009; Hermida et al., 2011a; Toffetti et al., 2011):

 Browser-oriented RIAs: This type of RIAs are visualised in Web

browsers using the basic built-in components included. They are

based on HTML and JavaScript technologies (i.e., AJAX) and

frameworks (e.g., jQuery3). Their basic components and software

modules are stored as text files that are directly interpreted by

the browser.

 Plug-in-oriented RIAs: This type of RIAs are visualised in the Web

browser but, this time, users need to install a special extension,

normally called plug-ins, which actually renders the information

of the application in the browser. Their basic components are

binary objects that can only processed by its corresponding

interpret. Each technology (e.g., Adobe Flex 4 , Microsoft

Silverlight5 or OpenLaszlo6) generates its own binary objects and

plug-ins which are incompatible among them.

 Desktop RIAs: This type of RIAs can visualised with the Web

browser when the user is on-line, or downloaded and executed

off-line using a special framework. They could be considered as a

special type of plug-in oriented RIA, since their structure, as well

as the technologies in which they are implemented, e.g., Adobe

Air applications7, are similar.

3 jQuery Web site: http://jquery.com
4 Adobe Flex Web site: http://www.adobe.com/en/products.flex.html
5 Microsoft Silverlight Web site: http://www.microsoft.com/silverlight/
6 OpenLaszlo Web site: http://www.openlaszlo.org
7 Adobe Air Web site: http://www.adobe.com/en/products/air.html

Model-Driven Development of Rich Internet Applications on the Semantic Web 17

During the second half of the 90’s, current Web searchers replaced

the old Web directories and gradually became the main gate for users to

access the information stored on the Web. When users search for

information, they mainly trust in the services provided by Web search

engines (or Web information retrieval systems), which, from a collection

of user keywords that express the main informational needs, they can

retrieve a list of the Web documents which probably contain the

information searched. These issues related to the searchability of the

contents of RIAs can prevent developers from implementing complex

RIA applications and enterprises from adopting them for showing their

products and services.

Despite the benefits of the RIA features mentioned in this section,

these applications have not been widely adopted by the developers.

Traditional Web applications with RIA-makeover are a very frequent

type of RIA, which offer an acceptable level of interactivity to users.

JavaScript-based RIA technologies are commonly used (now with

HTML5) and Adobe Flex and Microsoft Silverlight objects are also

numerous. However, the adoption of RIA has been lower than expected

due to the problems detected with the main Web search engines such as

Google or Bing, which discourage the use of the main RIA technologies

(AJAX, Flex or Silverlight) in the Web applications8 9 10. Web search

engines crawl and index the text found in the Web sites, mainly

embedded in HTML code, and they have certain limitations when

crawling the content of RIAs. Crawling in RIA cannot be performed

following the URLs contained in a Web page, since they have an internal

state which cannot be explored following hyperlinks in the HTML code

(RIAs can keep the same address to visualise different information). The

information shown in RIA UIs is driven by the user events (mainly

raised by mouse or keyboard interactions), which complicates the access

to the data independently from the chosen technology. Furthermore, in

the case of plug-in-oriented RIAs, the information visualised is stored in

the binary objects of the applications which can be only interpreted by a

browser extension. Granting access to the RIA server service could be a

8 Flash and other rich media files – Webmaster tools:

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=72746
9 AJAX – Webmaster tools:

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=81766
10 Bing indexing advice – General questions:

http://www.bing.com/community/webmaster/f/12248/t/658480.aspx

18 Chapter 2. State of the Art

solution but it might compromise the data security. Sometimes, it is also

possible to include metadata in the HTML code (normally in the HTML

header) that contains the RIA object with the main keywords related to

the application, which offer a biased view to the search engines.Other

software components might need to use the text of the application for

performing their tasks and, in the same way, they will not be capable of

accessing such information; e.g., the automatic Web readers for people

with physical impairments, which facilitate the access to the information

to people with different problems.

The difficulties of exploring the information shown in RIAs (i.e.,

crawling the content of a RIA) have already been studied by several

authors addressing different tasks over AJAX RIAs. For instance,

Mesbah et al. (Mesbah et al., 2012, 2008) are focused on the processes of

crawling over AJAX applications in order to improve Web information

retrieval. As another example, Benjamin et al. (Benjamin, 2010; Benjamin

et al., 2011) oriented their work on this task towards improving the

processes of automatic testing of RIA. A further analysis on this topic

was performed by Choudhary et al. (Choudhary et al., 2012), which

studied the state of the art on this task and the challenges that still need

to be addressed.

The new methods analyse the structure of the Web site and crawl

across the content being aware of the changes of the content produced

by the user events. Despite the efforts spent on this task, current

approaches cannot provide access to all the information contained in a

RIA in an efficient manner (in terms of time and computational

resources) and can only be applied to browser-oriented RIAs, whose

basic components are similar to the ones of traditional Web applications

with a textual representation (HTML code). Still, plug-in-oriented RIAs

have not been addressed by the research community, given that the

technologies for building this type of RIAs are generally proprietary. In

2008, Google and Adobe, owner of the Flex technology, announced the

improvement of the indexing of the text contained in Flex RIAs11 12.

However, the extent of this improvement is not clear and whether

11 Official Google Webmaster Central Blog: Improved Flash Indexing.
http://googlewebmastercentral.blogspot.es/2008/06/improved-flash-

indexing.html
12 Adobe Advances Rich Media Search on the Web. Press release.
http://www.adobe.com/aboutadobe/pressroom/pressreleases/200806/070108Adob

eRichMediaSearch.html

Model-Driven Development of Rich Internet Applications on the Semantic Web 19

Google is actually using it, since they still recommend not using this

type of applications13.

The rise of the HTML5 standard, which extends and improves the

current HTML standard, with the aim of simplifying the creation of

RIAs, has relegated this problem to a second class in terms of relevance

and popularity. Despite the expectation behind HTML5, it cannot solve

all the issues of AJAX Web applications and it will probably not

extinguish plugin-oriented technologies in the short- or medium-run.

2.1.2 WEB APPLICATIONS ON THE SEMANTIC WEB

After a decade of research and development, the Semantic Web

(Berners-Lee et al., 2001)14 experiences a process of rapid change and

evolution looking for a stable state in which the contributions made

along these years could be exploited by the industry. The initial vision of

the Semantic Web considered software agents as first class Web users

and, as such, the information of the Web should be also translated so

that could be unambiguously processed and “understood” by them.

Describing the architecture of a typical Semantic Web application is

not a simple task, since there is no available standard proposal and each

researcher/developer therefore uses the one that best fits with his/her

goals. The World Wide Web Consortium joined the initial efforts of

standardisation and proposed a seven-layer architecture of the Semantic

Web, introduced by Berners-Lee (Berners-Lee, 2000), as a route map for

researchers and developers. This layered architecture mainly expresses

the desirable features of the whole Semantic Web as a mixture of

different technologies and features, which comprised from low-level

details, such as the representation of the characters, to high-level

features, such as trustworthiness and security of the sources of

knowledge. Two of the pillars of this architecture are the RDF data

model for the representation of data objects as subject-predicate-object

triplets and the use of ontologies for the representation of the knowledge

managed by the applications (see Figure 2.1). Still, this proposal has not

13 As Google indicates in its Webmaster tools Web site:

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=72746
14 Although this citation is the most referenced in the field, the concept of Semantic Web appeared

years before, e.g., in a Berners-Lee’s report (Berners-Lee, 1998a) and the research carried out in
the SHOE project (http://www.cs.umd.edu/projects/plus/SHOE/index.html)

20 Chapter 2. State of the Art

been totally standardised even thought it was widely accepted as a

starting point. Authors such as Horrocks et al. (Horrocks et al., 2005) or

Gerber et al. (Gerber et al., 2008) have proposed some refinements based

on the experiences in real projects.

Figure 2.1. Semantic Web architecture in 2006 by Tim Berners-Lee15.

Traditional Web applications should have been adapted to the W3C

architecture, thus including new annotations in their code that link the

concepts explained in the text to the elements of the ontologies available

on the Web. However, there is no consensus on the concept of semantic

(or Semantic) Web application in the Web community. At present, it is

possible to find different viewpoints of the same concept. Some authors,

such as d’Aquin et al. (D’ Aquin et al., 2008) and Kozaki et al. (Kozaki et

al., 2008), describe them in a general manner as applications of the

Semantic Web, which refer to those applications that use the available

Semantic Web technologies and resources (ontologies, knowledge bases,

etc.) Other authors (Brambilla and Facca, 2007; Corcho et al., 2006;

Frasincar et al., 2010; Lausen et al., 2005) show a common viewpoint,

more related to the field of Web engineering. For them, a semantic Web

application is a Web application that implements the Semantic Web

architecture, completely or partially, and employs technologies

associated to the Semantic Web architecture. From these previous

definitions, in this thesis, a Semantic Web application is defined as a

15 From the Tim Berners-Lee’s presentation at AAAI 2006:

http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html#(14)

Model-Driven Development of Rich Internet Applications on the Semantic Web 21

Web application16 of the Semantic Web which is capable of sharing its

contents as ontology-based annotations to Semantic Web agents.

Other research approaches studied the possible features and the

structure/architecture of the Semantic Web applications as a first step

towards the standardisation of this type of applications with the aim of

improving their development by means of software engineering

techniques (or more specifically, techniques of Web Engineering).

Brambilla and Facca (Brambilla and Facca, 2007) defined a set of

requirements and features for developing Semantic Web portals, which

facilitate the development using a model-driven approach. Heitmann et

al. (Heitmann et al., 2009) analysed the different software modules

contained in current Semantic Web applications and subsequently

propose an architecture as a basis for the development of future

applications. One of the latest studies on this topic was presented by

Rovan et al. (Rovan et al., 2011), which proposes a categorisation of the

existing types of applications according to their purpose and

functionalities. From the Social Semantic Web subfield17, Kinsella et al.

(Kinsella et al., 2009) described and analysed specific types of semantic

Web applications developed, such as semantic wikis or semantic blogs.

It is a fact that nowadays, one decade after the publication of the

view of the Semantic Web, the Semantic Web architecture is still

uncompleted, upmost layers of the architecture, which are the most

complex, have not been designed or standardised and the adoption of

the lower ones is slowly increasing. By the end of the 2000’s, a new

extension of the Web appeared as a subset of the Semantic Web, which

was called the Web of Data18. The idea underpinning this initiative is to

create a Web not based on documents (i.e., Web pages), but on data, in

which it would be possible for users to easily navigate though data of

different sources and natures using links. Another aim of the Web of

Data is to make public and freely available the huge amounts of data

that are currently distributed across different applications and resources

using Semantic Web technologies in such a way that could be

16 Defined by Isakowitz et al. (Isakowitz et al., 1998), equivalent to the concept of Web Information

System (WIS).
17 The Social Semantic Web (Mikroyannidis, 2007) is a combination of the approaches of the Social

and the Semantic Web. The community of research on this topic is focused on applying
technologies of the Semantic Web to social applications; or using social approaches to continue
the construction of the Semantic Web (or the Web of Data).

18 Heath and Bizer (Heath and Bizer, 2011) offer a good introduction of the concept of Web of Data.

22 Chapter 2. State of the Art

automatically shared and reused. This will enable users and applications

to obtain new, valuable knowledge from the reuse of the data (and

knowledge) stored on the Web.

The Web of Data presents a more realistic and short-timed vision of

the Web that can be reached by using the technologies already

developed for the Semantic Web architecture. The architecture of the

Web of Data reuses the four lowest layers of the original Semantic Web

architecture, which contain the main techniques and technologies for

sharing knowledge on the Web (see Figure 2.1: from URI and Unicode to

SPARQL, OWL and RIF). This facilitates that the applications, which can

be considered Semantic Web applications as well, share a common

structure independently their goals.

Apart from the use of Semantic Web technologies, the Web of Data is

founded over the concept of Linked Data, which refers to a collection of

good practices for publishing and linking data structures on the Web

proposed by Berners-Lee (Berners-Lee, 2006), which have been

developed by the research community by the end of last decade. The

four main principles are the following:

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names.

3. When someone looks up a URI, provide useful information,

using the standards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more

things.

Based on these four principles, data from different nature can be

published on the Web as linked datasets. Apart from the Berners-Lee’s

Web site, there are two main information sources about Linked Data and

the existing datasets on the Web of data: the linkeddata.org Web site19 and

the LinkingOpenData W3C Community Project 20 , which coordinate the

efforts of the community and the diffusion of the Linked Data concept,

as well as, a register with the main datasets21 of the Web of Data.

19 http://linkeddata.org
20 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
21 An overview of the datasets available on the Web of Data can be found on the following web site:

http://richard.cyganiak.de/2007/10/lod/

Model-Driven Development of Rich Internet Applications on the Semantic Web 23

During the past five years, the Web of Data has experienced a

constant growth in the number of datasets freely available22, supported

and boosted by different organisations (with public or private funding

such as the UK Government) and users (from academia or industry).

The existing dataset network is continuously enriched with data of any

nature and topic from local databases, aiming at improving the

permeability of the data in our societies. At present, there are several

data repositories storing information on a wide variety of topics, e.g.,

from statistics published by their national governments (e.g., data.gov

from the US government; and data.gov.uk, from the UK government) to

the number of music records of their favourite artist (e.g., MusicBrainz

or Jamendo).

To this end, several approaches and applications have already dealt

with processes of transformation that turn our closed databases into

linked datasets on the Web (Barrasa Rodríguez, 2007; Berners-Lee,

1998b; Bizer and Seaborne, 2004; Būmans and Cerāns, 2010; Volz et al.,

2004; Xu et al., 2006).

Still, a large amount of information flowing through the Web is

managed by traditional Web applications. In order to adapt them to the

Web of Data (these applications could be considered as legacy Web

applications), developers could directly extend the features of the Web

applications or simply employ one of the existing tools (e.g., OpenLink

Virtuoso Server 23 , D2RQ 24 or ODEMapster 25), which are capable of

translating the tuples of a relational database into ontology instances

given a set of mapping rules.

The development of rich clients (clients with rich interfaces) in

applications of the Semantic Web or the Web of Data is primarily

oriented to the visualisation of data aggregations or mash-ups (mostly

based on JavaScript technologies as can be noticed from an analysis of

the last international mash-up competitions26 27). However, the study

and application of Semantic Web technologies in Rich Internet

22 The evolution can be visualised from:
http://richard.cyganiak.de/2007/10/lod/#history

23 OpenLink Virtuoso Web site: http://virtuoso.openlinksw.com/
24 D2RQ Web site: http://d2rq.org
25 ODEMapster: http://mayor2.dia.fi.upm.es/oeg/index.php/es/technologies/9-

r2o-odempaster
26 AI Mashup Challenge 2012: https://sites.google.com/site/aimashup12/home
27 AI Mashup Challenge 2011: http://sites.google.com/a/fh-

hannover.de/aimashup11/

24 Chapter 2. State of the Art

Applications has not been taking into consideration in depth. In this

area, it is worth mentioning the research carried out by Linaje et al.

(Linaje et al., 2009a), who presented the requirements and the changes

needed to include semantic (ontology-based) annotations within AJAX

user interfaces by applying the W3C WAI-ARIA standard for RIA

accessibility (World Wide Web Consortium, 2011).

2.1.3 RIA FOR BUSINESS INTELLIGENCE

Business intelligence (BI) applications have been traditionally

focused on the analysis and exploitation of the local business data in

order to obtain valuable knowledge about different enterprise areas

(marketing, human resources, etc.) that support decision-making

processes. To this aim, a wide set of data analysis/mining/visualisation

or data warehousing techniques have been developed and applied.

In contrast to these traditional approaches, in the present

Information era, enterprises live in an increasingly globalised

environment, in which the Web has become the main communication

platform, linking information and services among enterprises and their

potential clients. Business information systems are progressively ported

to the open Web, which improves the availability of the applications and

the access to external business data and the new types of information

and services offered by other organisations28.

In this context, BI Web applications need to include a set of specific

functionalities that facilitate the management of knowledge from the

Web and the publication/access to external Business-to-Business (B2B)

and Software-as-a-Service (SaaS) services 29 . In addition, these

applications require user interfaces (UI) that support the visualisation

(in a user-friendly manner) of different types of data/knowledge.

As shown by Raspal (Raspal, 2010), White (White, 2009) or Laurent

(Laurent, 2010), Rich Internet Applications start to play a relevant role as

BI Web applications due to their intrinsic features: UIs with high level of

28 Davenport (Davenport, 2000) presented an overview of the Enterprise systems, as well as his

predictions about the future of these systems. Some of the aspects he mentioned are still
challenges in this decade, e.g., the use of techniques for knowledge management (Barjis et al.,
2011).

29 The Software & Information Industry Association provided one of the first definitions of this
concept and a complete overview (Software & Information Industry Association, 2001).

Model-Driven Development of Rich Internet Applications on the Semantic Web 25

interactivity and usability (comparing with traditional Web

applications) and the asynchronous communication between the server

and the client of a Web application, led by a set of mature technologies.

RIAs have proven to be an appropriate platform to visualise data from

different sources, whose rich user interfaces offer experiences similar to

the ones provided by desktop interfaces.

Business scenarios on the Web need solutions with proven

effectiveness and specifically adapted to their requirements, helping

them to achieve their present goals and improve their future strategy.

RIAs are not as specialised in the management of knowledge from the

Web as BI systems require. The BI RIAs should deal with issues of

knowledge management (KM) and visualisation that finally require

complex software modules combined in a single architecture. Thus, the

complexity of the architecture notably increases the cost of development

and maintenance, which is a risk factor that threatens the viability of this

type of applications and their future success.

In the Web field, KM techniques have been developed by the

Semantic Web community, which has successfully applied these

techniques to the management of the enterprise knowledge and the

development of KM applications, as described by Penella et al. (Penela

et al., 2011) and Allemang (Allemang, 2010).

KM activities are focused on the organisation of the knowledge

contained in the whole enterprise and the creation of new knowledge, in

a manner that facilitates the development of business processes. These

activities have a direct impact on the employees, who need to carry out a

special effort in order to implement and deploy them in the core of the

enterprise. The combination of techniques from the Semantic Web with

approaches from the Social Web or Web 2.0 – also aligned to the concept

of Social Semantic Web, or Web 3.0; (Mikroyannidis, 2007) – helps to

implement KM activities on an enterprise, as demonstrated by some

existing proposals, e.g., Yammer30 or MiKrow (Penela et al., 2011).

Yammer is a social network site successfully introduced in several

companies that facilitates the communication of the employees as well

as the organisation of the information they use in their daily activity. In

a similar manner, MiKrow is a micro-blogging tool that improves the

30 Yammer, the enterprise social network: https://www.yammer.com/product/

26 Chapter 2. State of the Art

processes of communication and information sharing between the

employees of a company. This tool automatically relates the content to

the concepts normally used to carry out their tasks.

Other types of initiatives deal with the management of the enterprise

knowledge in order to improve the productivity level of the employees.

Some research projects have tackled this problem using KM techniques,

e.g., ACTIVE (Simperl et al., 2010) or NEPOMUK (Groza et al., 2007).

ACTIVE aims to study methods for introducing KM technologies and

applications in the employees’ daily tasks in a way that it does not

increase the cost of the task, measured in terms of effort or time.

As regards the approaches originating from the Semantic Web field,

the continuous growth of the Web of Data has led to new solutions for

data sharing and reusing. Allemang (Allemang, 2010) shows the impact

of Semantic Web technologies on the business scenario and proposes

some adaptation for the publication of enterprise information of an

enterprise as linked data. This opens a path towards a scenario in which

enterprises and public organisms seamlessly share their data.

2.2 ON MODEL-DRIVEN WEB ENGINEERING

One of the aims behind the definition of the requirements and the

standard architecture of a Web application is the subsequent

standardisation of its development processes, which might spread the

use of these applications. The adoption of a new type of applications in

business scenarios depends mainly on its maturity, benefits and

development costs and risks. The application of model-driven

methodologies to the development of Web applications can provide a

solid framework for mitigating these risks. Model-driven engineering

methodologies facilitate the representation of all the concerns of an

application as software models, which can be subsequently employed to

automatically generate the code of the application. In this manner, the

cost of development and maintenance of the application can be

minimised, thus encouraging the use of RIA platforms.

This section describes and analyse the main development

methodologies for Rich Internet Applications and Semantic Web

applications, including its main features and design process. The

Model-Driven Development of Rich Internet Applications on the Semantic Web 27

description will be divided in two subsections, each of which addresses

the development of one type of application.

2.2.1 MODEL-DRIVEN ENGINEERING OF RICH INTERNET

APPLICATIONS

The development of Rich Internet Applications from the Software

Engineering (or Web Engineering) viewpoint is a relatively new research

field. The existing model-driven methodologies could be classified in

four groups as Busch and Koch (Busch and Koch, 2009) indicate:

a) Specialised extensions to existing methods for developing Web

applications.

b) Methods focused on the development of the RIA client and rich

user interfaces, which reuse other methods for developing the

RIA server.

c) New methods for developing RIAs.

d) Pattern-based approaches.

This section pinpoints the main methodologies proposed offering an

overview of its main features.

2.2.1.1 WEBML

WebML – Web Modelling Language (Ceri et al., 2000) – is a model-

driven methodology for the development of data-intensive Web

applications. It defines a waterfall software process of seven stages

through which developers can conceptualise different aspects of a Web

application. This methodology is based on four models (Ceri et al.,

2002):

 The Data model, which represents the main data structures of the

application using a notation similar to the Entity-Relation model

but also compatible with object-oriented representations.

 The Hypertext model and the Content Management model,

which specify the organisation of the contents (in terms of Web

pages and links) and the business logic of the application.

 Finally, the Advanced Hypertext model, which addresses issues

related to the manner of navigation and the effects over the

application.

28 Chapter 2. State of the Art

During the last decade, the original WebML methodology has been

extended with primitives for modelling different aspects of Web

applications or even new types of application (Ceri et al., 2009). Bozzon

et al. (Bozzon et al., 2006), Toffetti (Toffetti Carughi, 2007) and Fraternali

et al. (Fraternali et al., 2010a) introduce an extension of the method to

tackle the development of Rich Internet Applications. Specifically, they

proposed an extension of the Data model to facilitate the representation

of distributed and temporary data objects, and the Hypertext model,

which include new primitives to manage the new types of data objects.

Moreover, the authors propose to include a new model for defining the

dynamic behaviour of the elements of the RIA user interface, i.e., the

RIA dynamic model, similar to UML activity diagrams.

This methodology is supported by a CASE tool called WebRatio31

(Acerbis et al., 2007).

2.2.1.2 UWE

UWE – UML-based Web Engineering, proposed by Koch and Kraus

(Koch and Kraus, 2003, 2002) is a model-driven development

methodology for Web applications based on the use of UML models.

More specifically, the methodology uses a UML profile for the

specification of the use cases and the design aspects.

The development process in UWE is driven by the design of five

models and the transformations between them:

 Requirements model, which extends the UML Use Case model with

new stereotypes, used for the specification of the application

requirements.

 Content model, which is a UML class diagram for the

representation of the data objects managed by the application.

 Navigation model, which extends the UML class model for the

representation of the navigation of users within a Web

application.

 Process model, which extends the UML class model for the

representation of the behaviour of the application and the

interaction with the users.

31 WebRatio Web site: http://www.webratio.com

Model-Driven Development of Rich Internet Applications on the Semantic Web 29

 Presentation model, which extends the UML class model for the

representation of the structure of the user interface using abstract

elements, avoiding aesthetic details.

UWE is supported by the ArgoUWE CASE tool (Knapp et al., 2004),

which implements the UML profile and the model transformations.

During the last decade, UWE was adapted to Web applications for

business scenarios customisable Web applications and Rich Internet

Applications, based on the use of the Business Process Modeling Notation

(BPMN) standard. There are two extensions of UWE for the

development of Web applications: one proposed by the original authors,

and another presented by other research group.

Koch et al (Koch et al., 2009) proposed a pattern-based approach for

the development of Rich Internet Applications with UWE. The authors

proposed the definition of extension points in the UWE models for

including references to the development of RIA. The patterns are

defined as UML state models which are integrated into the UWE models

by means of model-to-model transformations or to the final Web

application code by means of model-to-text transformations.

The second approach, proposed by Machado et al. (Machado et al.,

2009), extended the UML profile of UWE including the elements

required to model the specific features of RIA. The resulting

methodological extension was called UWE-R. The authors addressed the

design of RIA including new elements in the Navigation, Process and

Presentation models, which inherit the structure and behaviour of UWE

profile elements.

2.2.1.3 RUX-METHOD

RUX-Method – Rich User eXperience Method (Linaje et al., 2007; Linaje

Trigueros et al., 2007; Preciado et al., 2007) – is a model-driven

methodology focused on the development of rich user interfaces, i.e., the

user interface and the client modules of a Rich Internet Application. In

order to generate the final user interface, this methodology proposes a

three-step process driven by the specification of three models:

 the Abstract Interface, which represents the abstract elements of

the interface, independent from the chose implementation

technology;

30 Chapter 2. State of the Art

 the Concrete Interface, which represents the structure and the

behaviour of the RIA interface in a platform-independent

manner. It is based on three presentations: Spatial (structure of

the interface and aesthetic features), Temporal (behaviour of the

interface) and Interaction (user interactions). It relates the

elements of the interface to the services provided by the RIA

server.

 the Final Interface, which adapts the abstract elements of the two

previous interfaces to a specific technology and relates the

elements of the interface with the services provided by the RIA

server.

RUX-Method does not support the design and development of the

RIA server modules since it is focused on the RIA user interface and

client modules. For the development of the RIA server, the authors

initially recommended to reuse the Data and Hypertext models of

WebML (Brambilla et al., 2008). In order to reduce the dependence

between RUX and WebML and prove the flexibility of the method, they

also proposed a subsequent adaptation for using UWE models (Preciado

et al., 2008).

RUX-Method is supported by the RUX-Tool CASE tool (Linaje et al.,

2009b).

2.2.1.4 OTHER APPROACHES

Other well-known model-driven methodologies for engineering Web

applications were also extended to support the development of Rich

Internet Applications. This section presents a brief summary of them.

The OOHDM methodology – Object Oriented Hypermedia Design

Method (Schwabe and Rossi, 1998) – was also extended to deal with the

development of Rich Internet Applications (Urbieta et al., 2007). The

proposed approach extends the OOHDM Interface model to address the

development of the rich user interfaces by means of Abstract Data Views

(ADVs), which represent all the structural elements of the rich interface

and are organised hierarchically. In order to represent the behaviour of

the interface, the authors proposed to use ADV-Charts, which are state

machines that allow expressing interface transformations resulting from

user interactions.

Model-Driven Development of Rich Internet Applications on the Semantic Web 31

The OOWS methodology – Object Oriented Web Solutions (Valverde

Giromé, 2010) – is a model-driven methodology specialised for the

development Web (2.0) applications (backend and frontend) based on

OO-Method. Valverde and Pastor (Valverde and Pastor, 2008) proposed

an extension of the method that addressed the development of Rich

Interfaces. In this case, the authors defined a new model, i.e., the

Interaction Model, to specify the components of the rich user interface

and their dynamic behaviour. They also defined a collection of usual

interaction patterns that might occur between users and the RIA

interface.

A complete classification of all the existing methodologies and a brief

description for each of them can be found in the analysis performed by

Toffetti et al. (Toffetti et al., 2011).

2.2.2 MODEL-DRIVEN ENGINEERING OF SEMANTIC WEB

APPLICATIONS

In the same manner that Rich Internet Applications, the design (and

modelling) of Semantic Web applications has been studied by the main

model-driven development methodologies, which proposed their own

extensions. Furthermore, new methodologies have been created for this

purpose both in the Semantic Web and the Software Engineering field.

The goal of this subsection is to analyse each methodology

highlighting their most relevant features. Given the architecture of the

Semantic Web (and also the Web of Data), all these methodologies need

to model the knowledge managed by the application by means of an

ontology (or a vocabulary). Therefore, these methodologies share an

activity (or task) for addressing the design of a (domain) ontology that

represents the application. The last subsection will review the main

approaches for modelling ontologies using software modelling

languages, such as UML.

2.2.2.1 WEBML EXTENSION

Brambilla and Facca (Brambilla and Facca, 2007) defined the main

requirements and features of semantic Web portals and proposed an

extension of WebML to address the development of this type of

32 Chapter 2. State of the Art

applications. The solution proposed aimed to be generic and thus

reusable by other methodologies. The extension adds two new stages to

the process: ontology import, which addresses the importation of existing

ontologies; and annotation design, which defines the manner annotations

are included within semantic Web applications. Moreover, the authors

extended the Hypertext model with new primitives that manage the

data obtained from the ontologies imported and its instances.

In a parallel work, Brambilla et al. (Brambilla et al., 2007) established

the requirements and defined a set of WebML primitives that allows the

exploitation of semantic Web services in Web applications. The

approach relies on the Web Service Modeling Ontology32 and involves

the same stages that the previous work. In addition to this, the authors

include new primitives in the Hypertext model in order to consume data

from external services.

Regarding the development of Social Web applications, Fraternali et

al. (Fraternali et al., 2010b) defined and analysed a collection of software

patterns used in existing community-based Web applications. Moreover,

they proposed a set of examples that demonstrate the manner they can

be implemented using WebML and WebRatio.

2.2.2.2 ONTOWEBBER

OntoWebber (Jin et al., 2001) is one of the first methodologies for

developing Semantic Web applications, supported by a tool with the

same name. The proposed methodology was divided in four activities:

(i) Integration, whose aim is to retrieve data from heterogeneous

sources on the Web and transform them into a RDF model;

(ii) Articulation, in which the semantic inconsistencies of data

sources are solved;

(iii) Composition, in which the domain ontology is built and the

site views are designed according to modelling ontologies are

constructed and site views are created on the underlying data

as site models; and

(iv) Generation services, in which the new Web applications is

generated from the site models.

32 WSMO. Please see the following web site: http://www.wsmo.org/

Model-Driven Development of Rich Internet Applications on the Semantic Web 33

OntoWebber proposes six models that capture and represent the

information necessary for generating Semantic Web applications from

the authors´ viewpoint:

 Domain model, which models the domain ontology of the

application (can be created automatically by analysing the

domain data and extracting the underlying concepts, properties

and relations);

 Site View model and Navigational model, which specify aspects

related to the navigation of the users through the Web site;

 Content model, which associates the concepts of the domain

ontology to the Site view and Navigational models;

 Presentation model, which specifies the structure and the

visualisation of the Web pages;

 Personalisation model, which the Web site is adapted to the needs

of user depending on different parameters; and

 Site Maintenance model, which models the behaviour of the Web

site when certain data changes happen.

2.2.2.3 RUX-METHOD EXTENSION

As an extension of RUX-Method, Linaje et al. (Linaje et al., 2009a)

presented the requirements and the modifications needed to include

semantic annotations within AJAX user interfaces by applying the

World Wide Web Consortium WAI-ARIA recommendation (World

Wide Web Consortium, 2011), which addresses the accessibility of Web

user interfaces by means of a set of ontologies. The solution proposed is

implemented, and thus supported, by the EditSAW tool, which is a CASE

tool for the development of accessible Web sites with its own underlying

methodology.

In a second approach, Linaje et al. (Linaje et al., 2011) propose a

solution applying ontoRUX, i.e., an extension of the WAI-ARIA

ontology. The authors implemented their approach in editRUX, i.e., a

software component embedded in RUX-Tool that enables the designers

to include semantic annotations within user interfaces.

34 Chapter 2. State of the Art

2.2.2.4 SHDM

SHDM – Semantic Hypermedia Design Method (Lima and Schwabe,

2003) – is an ontology-driven design methodology for building Web

applications on the Semantic Web. From a collection of three ontologies,

i.e., domain (describing the data of the application), navigation (defining

the structure of the application and the navigation paths) and

presentation (specifying the visualisation of the Web sites), the method

generates all the modules of a Web application.

In subsequent works (Fialho and Schwabe, 2007; W3C Model-based

User Interfaces Incubator Group, 2009), SHDM was extended with a

collection of primitives for the design of RIAs. This extension increased

the number of elements of the presentation ontology and extended the

functionalities of the Web generator. In this last version, the authors

overcame the lack of annotation in their initial Web applications by

means of RDFa (World Wide Web Consortium, 2008a).

It is worth mentioning that the original SHDM proposal aims at

generating textual annotations within browser-oriented RIAs, based on

HTML and JavaScript. This evidently limits the type of technologies that

can be used to generate RIAs.

Recently, de Souza and Schwabe (De Souza Bomfim and Schwabe,

2011) updated the methodology in order to generate Web applications

that could work with data from the Web of Data, i.e., fulfilling the

Linked Data principles. This approach is implemented by the Synth

platform, which supports the design and development of applications

on the Web of Data.

2.2.2.5 WSDM

WSDM – Web Semantics Design Method (De Troyer et al., 2007),

formerly known as Web Site Design Method (De Troyer and Leune, 1998)

– is an audience-driven design methodology of Semantic Web

applications. This methodology defines an iterative development

process that accounts for the users to which is addressed the application

from the first stages. More specifically, the design process is divided in

five activities: a) Mission Statement Specification, b) Audience

Model-Driven Development of Rich Internet Applications on the Semantic Web 35

Modelling, c) Conceptual Design, d) Implementation Design and e)

Implementation.

WSDM employs OWL ontologies (World Wide Web Consortium,

2004) to define the domain model of the applications, which allows

designers to directly reuse knowledge from other applications directly

from the Web. The Semantic Web applications generated by means of

WSDM are semantically annotated using XPointer links referencing

ontology elements (Casteleyn et al., 2006). This methodology also deals

with the generation of semantic annotations for visually impaired users

(Plessers et al., 2005).

2.2.2.6 HERA

Hera (Houben et al., 2003) is a methodology for designing Semantic

Web Information Systems (SWISs), defined as Web Information

Systems33 (WIS) that use Semantic Web technologies. Specifically, the

method uses ontologies for the representation of the domain knowledge

of the application, enabling the reuse and allows the reuse of other

existing ontologies. Moreover, the authors propose a method for

annotating the Web sites generated.

From the Hera perspective, the architecture of a SWIS can be divided

in three layers:

 Semantic Layer, which implements the processes of data gathering

and integration from different types of sources;

 Application Layer, which defines the structure of the application

and includes the definition of the adaptation processes; and

 Presentation Layer, which includes the modules that generate the

presentation of the application for a specific presentation

platform, e.g., HTML or WML (Wireless Markup Language).

There are two main activities in the process defined by the Hera

methodology: Data Collection (Vdovjak et al., 2003), in which data from

different sources can be integrated; and Presentation Generation

(Frasincar et al., 2010), in which the designer builds a hypermedia

presentation for the data retrieved in the first phase.

33 Defined, in this case, as information systems that use the Web paradigm (and technologies) to

retrieve information from different sources and deliver it to Web users.

36 Chapter 2. State of the Art

Van der Suijs et al. (Van der Sluijs et al., 2006) proposed an extension

of the methodology, called Hera-S, “to support the design of navigation-

oriented Web structures over Semantic Web data.” Hera-S enables the

generation of Semantic Web applications that, using the Sesame RDF

framework (Broekstra et al., 2002) for the management and storage of

RDF triples, allow other applications to directly access and modify the

data using the SeRQL language – Sesame RDF Query Language (Broekstra

and Kampman, 2003).

2.2.2.7 ON MODELLING ONTOLOGIES

In the development of Semantic Web applications or Knowledge

Management applications, the problem of modelling ontologies is a

traversal task, since ontologies capture the semantics of the data

structures managed by applications. The differences between modelling

and designing ontologies have been discussed widely since they offer

mechanisms for knowledge representation.

Cranefield and Purvis (Cranefield and Purvis, 1999) introduced one

of the first approaches for the modelling of ontology using existing

languages, i.e., UML. The authors suggest the manner in which the

elements of the UML class diagram can be used to design ontologies and

the limitations of the approach.

In the field of model-driven Software Engineering, Djurić et al.

(Djuric et al., 2004) introduced a UML profile for the design of

ontologies. This approach was adapted to the Model-Driven

Architecture standard in subsequent proposals presented by Gašević et

al. (Gasevic et al., 2007, 2005). Here, the authors introduced a process

and a domain specific language for the design and generation of OWL

ontologies. These pieces of work led to the Object Management Group

standard for the definition of a metamodel for designing ontologies

called the Ontology Definition Metamodel (Object Modeling Group,

2009).

The use of models for the representation of ontologies opens up

some philosophical issues about the differences between meta-

modelling and ontology design, which are not clearly addressed in the

previous approaches. The similarity of the concepts of model and

ontology as well as the similarity of their components may cause some

Model-Driven Development of Rich Internet Applications on the Semantic Web 37

confusion in researchers and developers. To clarify this issue, Kappel et

al. (Kappel et al., 2006) and Silva Parreiras et al. (Silva Parreiras et al.,

2007) analysed the characteristics of both methods for knowledge

representation and proposed a transformation between the MDA 34

framework (UML and EMOF/Ecore metamodels) and the OWL

representation language, which is the standard in the W3C architecture

for the Semantic Web.

Although these approaches have not been directly applied to the

development of Semantic Web applications, they established the basis

for modelling ontologies from a generic viewpoint (not applied to a

specific task).

2.2.3 ANALYSIS OF THE METHODOLOGIES

Each of the methodologies described in Section 2.2 addresses the

problems related to the development of Rich Internet Applications and

Semantic Web applications. This section synthesises those aspects of the

methodologies more relevant according to the objectives of this thesis.

Table 2.1 and Table 2.2 show the results of this analysis. The first

table analyses the features related with the development of RIA, while

the second one contains those related to the development of Semantic

Web applications. All the features are aligned to the objectives in this

thesis, which offers an overview of how they are covered by the current

methodologies. As can be appreciated from these tables (and described

in this chapter), the existing methodologies contain the features required

for modelling rich user interfaces (each using its own approach) and also

the features required for developing Semantic Web applications.

However, none of them combines the techniques for modelling an

application with both types of functionalities (see Table 2.2, “Design rich

user interfaces”). Moreover, the applications they generate do not share

their knowledge to be consumed on the Web of Data.

The methodology proposed for the achievement of O2 needs to

combine these two modelling aspects in an effective manner35.

34 Model-Driven Architecture: http://www.omg.org/mda/
35 The final comparison including the methodology proposed in this thesis can be found in Chapter

9, Table 9.1 (page 223) and Table 9.2 (page 224).

38 Chapter 2. State of the Art

Table 2.1. Summary of the methodologies for developing Rich Internet Applications.
M

et
h

od
ol

og
ie

s

H
er

a/

H
er

a-
S

M
od

el
-

d
ri

ve
n

N

o

O
n

to
W

eb
b

er

M
od

el
-

d
ri

ve
n

O
nt

oW
eb

be
r

N

o

W
S

D
M

M
od

el
-

d
ri

ve
n

N

o

S
H

D
M

O
nt

ol
og

y-

d
ri

ve
n

Y

es

a Y
es

Y
es

, w
ith

 th
e

P
re

se
nt

at
io

n

on
to

lo
gy

Y
es

, w
ith

 th
e

P
re

se
nt

at
io

n

on
to

lo
gy

Y
es

N
o

O
O

W
S

M
od

el
-d

ri
ve

n

Y

es

a,
 e

xt
en

ds
 O

O
-

M
et

ho
d

Y
es

Y
es

, w
ith

 th
e

In
te

ra
ct

io
n

m
od

el

Y
es

, w
ith

 th
e

In
te

ra
ct

io
n

m
od

el

Y
es

N
o

O
O

H
D

M

M
od

el
-

d
ri

ve
n

Y

es

a Y
es

Y
es

, w
ith

A
bs

tr
ac

t D
at

a

V
ie

w
s

Y
es

, w
ith

A
D

V
-c

ha
rt

s

Y
es

N
o

R
U

X
-M

et
h

od

M
od

el
-

d
ri

ve
n

R
U

X
 T

oo
l

Y

es

b N
o

Y
es

, w
ith

 th
e

C
on

cr
et

e

In
te

rf
ac

e

Y
es

, w
ith

 th
e

C
on

cr
et

e

In
te

rf
ac

e

Y
es

N
o

U
W

E
-R

M
od

el
-d

ri
ve

n

Y

es

a Y
es

Y
es

,

ex
te

nd
in

g
th

e

P
re

se
nt

at
io

n

m
od

el

Y
es

,

ex
te

nd
in

g
th

e

N
av

ig
at

io
n

an
d

P
ro

ce
ss

m
od

el
s

Y
es

N
o

U
W

E

M
od

el
-d

ri
ve

n

A
rg

oU
W

E

Y

es

d

Y
es

Y
es

, w
ith

 a
 n

ew

se
t o

f p
at

te
rn

s

ov
er

 th
e

P
re

se
nt

at
io

n

m
od

el

Y
es

, w
ith

 a
 n

ew

se
t o

f p
at

te
rn

s

ov
er

 th
e

N
av

ig
at

io
n

an
d

th
e

P
ro

ce
ss

m
od

el

Y
es

N
o

W
eb

M
L

M
od

el
-

d
ri

ve
n

W
eb

R
at

io

Y

es

a Y
es

Y
es

, w
ith

 th
e

H
yp

er
m

ed
ia

m
od

el

Y
es

, w
ith

 th
e

H
yp

er
m

ed
ia

m
od

el

Y
es

Y
es

Fe
at

u
re

T
yp

e

C
A

SE
 to

ol

 D
ev

el
op

 R
ic

h

In
te

rn
et

 A
pp

lic
at

io
ns

T
yp

e
of

 m
et

ho
d

o-

lo
gy

 (B
us

ch
 &

 K
oc

h

20
09

)

D
es

ig
n

R
IA

 s
er

ve
r

D
es

ig
n

th
e

st
ru

ct
ur

e

of
 R

ic
h

U
se

r

In
te

rf
ac

es

D
es

ig
n

th
e

be
ha

vi
ou

r
of

 R
ic

h

U
se

r
In

te
rf

ac
es

G
en

er
at

e
br

ow
se

r-

or
ie

nt
ed

 r
ic

h
cl

ie
nt

s
G

en
er

at
e

pl
ug

in
-

or
ie

nt
ed

 r
ic

h
cl

ie
nt

s
C

A
SE

 to
ol

 s
up

po
rt

Objective

O
3

O
2

O
1

O
1

O
1

O
1

O
1

O
3

 General Rich Internet Applications

Model-Driven Development of Rich Internet Applications on the Semantic Web 39

Table 2.2. Summary of the methodologies for developing Semantic Web Applications.

M
et

h
od

ol
og

ie
s

H
er

a/

H
er

a-
S

Y
es

Y
es

, i
n

th
e

D
at

a

co
lle

ct
io

n

ac
ti

vi
ty

Y
es

Y
es

Y
es

Y
es

, b
as

ed
 o

n

Se
R

Q
L

N
o

N
o

N
o

N
o

O
n

to
W

eb
b

er

Y
es

Y
es

, w
it

h
th

e

D
om

ai
n

m
od

el

Y
es

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

O
nt

oW
eb

be
r

W
S

D
M

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

S
H

D
M

Y
es

Y
es

, w
it

h
th

e

D
om

ai
n

on
to

lo
gy

Y
es

, w
it

h
th

e

do
m

ai
n

on
to

lo
gy

Y
es

, i
n

an
ot

he
r

ap
p

ro
ac

h
(D

e
S

ou
za

B
om

fi
m

 &
 S

ch
w

ab
e,

 2
01

1)

Y
es

Y
es

N
o

Y
es

N
o

Y
es

, i
n

an
ot

he
r

ap
p

ro
ac

h
(D

e
S

ou
za

B
om

fi
m

 &
 S

ch
w

ab
e,

 2
01

1)

Y
es

Sy
nt

h
pl

at
fo

rm

O
O

W
S

N
o

O
O

H
D

M

N
o

R
U

X
-M

et
h

od

Y
es

N
o

N
o,

 o
nl

y
w

or
ks

 w
it

h

O
nt

oR
U

X
.

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

ed
it

R
U

X
, i

nc
lu

d
ed

 in

R
U

X
T

oo
l

U
W

E
-R

N
o

U
W

E

N
o

W
eb

M
L

Y
es

Y
es

, u
si

ng
 th

e

O
nt

ol
og

y

m
od

el

Y
es

Y
es

, w
it

h

Se
m

an
ti

c
W

eb

Se
rv

ic
es

Y
es

Y
es

Y
es

, S
em

an
ti

c

W
eb

 S
er

vi
ce

s

N
o

N
o

N
o

N
o -

Fe
at

u
re

D
ev

el
op

 S
em

an
ti

c
W

eb

A
pp

lic
at

io
ns

D
es

ig
n

on
to

lo
gi

es

Im
po

rt
 o

nt
ol

og
ie

s

R
eu

se
 e

xt
er

na
l

kn
ow

le
d

ge
 b

as
es

G
en

er
at

e
on

to
lo

gy

in
st

an
ce

s
G

en
er

at
e

se
m

an
ti

ca
lly

an
no

ta
te

d
U

Is

G
en

er
at

e
a

se
rv

ic
e

fo
r

ac
ce

ss
in

g
th

e
on

to
lo

gy

in
st

an
ce

s
A

lig
ne

d
to

 th
e

Li
nk

ed

D
at

a
pr

in
ci

p
le

s
G

en
er

at
e

Li
nk

ed
 D

at
a

da
ta

se
ts

R
eu

se
 L

in
ke

d
D

at
a

da
ta

se
ts

D
es

ig
n

ri
ch

 U
Is

C
A

SE
 to

ol
 s

up
p

or
t

Objective O
2

O
1.

1,
 O

1.
2,

O
1.

3

O
1.

3

O
1.

3

O
1.

1,

O
1.

2
O

1.
1,

O
1.

2
O

1.
1

O
1.

1,
 O

1.
2,

O
1.

3
O

1.
1

O
1.

3

O
1

O
3

 Semantic Web Applications

40 Chapter 2. State of the Art

2.3 CONCLUSIONS

This chapter reviewed the concepts needed to contextualise the

issues found in the first chapter and to propose a solution to them.

Furthermore, it described the main model-driven methodologies that

address the development of the features required to develop the

solution designed.

The first part of the chapter started with the description of the

concept of Rich Internet Application and the manner it was extended

and refined in the last decade reaching the level of maturity sufficient to

be address from an engineering viewpoint. As mentioned during the

chapter, their user interfaces introduced a set of benefits regarding

traditional Web applications that attracted several users and developers

(e.g., better UI interactivity, more complex widgets and the use of

asynchronous communication processes between clients and servers.)

However, due to their intrinsic structure, they reintroduced the problem

of accessing the information visualised and retrieve it. Despite the

efforts spent in order to solve this issue, from the information analysed,

it can be concluded that, at present, there is no solution that proved their

validity for any type of RIA. The approaches analysed offer only partial

solutions to the content of the RIA and are computationally expensive.

Subsequently, the analysis of the Semantic Web applications

illustrated how these applications were designed to share knowledge on

the Web based on the architecture of the Semantic Web. The techniques

and technologies used in this field could be reused to extend the concept

of RIA and, thus, solve the data exportability issues detected and, at the

same time, provide an unambiguous representation of the knowledge

contained in the application, which could improve the searches of data.

This possible approach could mainly solve the problems related to Web

searches and adaptability but would not affect other issues such as

application testing, which was also a problem in the context of research

in RIA. As could be seen, the use of the features of both application

types is especially relevant for the development of Web applications for

Business Intelligence.

The second part of the chapter was focused on the analysis of the

existing model-driven methodologies for engineering Web applications.

From this analysis, it could be noticed that none of the methodologies

Model-Driven Development of Rich Internet Applications on the Semantic Web 41

combine the features needed to resolve the problems found in RIA. The

studied methodologies address the features required independenly, i.e.,

without combining the features for the development of RIA and the ones

for Semantic Web applications. In most of them, the techniques and

technologies from the Semantic Web were considered some years ago

and were not updated.

The methodologies that consider most of the requirements are

WebML and SHDM. However, WebML does not combine the features

for modelling Rich Internet Applications and Semantic Web

applications. Moreover, it does not consider the new manners of

consuming and producing knowledge on the Semantic Web proposed in

the Web of Data.

SHDM shares the same issue with WebML. They propose different

solutions to design Semantic Web applications, rich user interfaces and

applications that consume linked data from the Web of Data. However,

the authors have not proposed a combined solution that could solve the

issues found in RIA. With the last extension of SHDM (De Souza

Bomfim and Schwabe, 2011), it is possible to create applications that

consume data from the Web of Data, but this extension does not deal

with the problems related to RIA.

RUX-Method uses the ontoRUX ontology, which extends the WAI

ARIA ontology, for annotating rich user interfaces in browser-oriented

RIA. Although, this approach uses all the features required, it is oriented

to a single goal, i.e., improving the accessibility of the interfaces. RUX-

Method generates applications that share information of accessibility in

a single manner, and it does not consider some tasks shared by the

methodologies for the development of Semantic Web applications, e.g.,

the design of domain ontologies.

One aspect noticed during the analysis is that none of the

methodologies, apart from RUX-Method, designs and generates plugin-

oriented RIA. This might be a sign of the problems detected in this type

of RIA, whose data is not represented using a textual representation.

RUX-Method (with RUX tool) generates Flex applications but do not

address the issues of data access related to them.

Chapter 3. RICH INTERNET

APPLICATIONS ON THE SEMANTIC WEB

The last chapter analysed the current approaches that could be used

to solve the issues detected in RIA. As could be seen, several authors

(Fraternali et al., 2010a; Linaje et al., 2007; Meliá et al., 2008) have dealt

with the specification of a set of well-defined features desired for any

RIA and the manner in which they should be developed using different

model-driven methodologies. Nonetheless, the combination of Semantic

Web techniques and technologies in the development of RIAs has not

been studied in depth. Given that the Semantic Web technologies are

specialised in representing and sharing knowledge across the Web, the

combination of both approaches can solve the issues found in RIAs in a

technology-independent manner, i.e., providing a solution that could be

applied to any type of RIA.

In the light of these considerations, this chapter introduces a new

class of RIA called Semantic Rich Internet Application, which extensively

use Semantic Web techniques, technologies and resources for sharing

their own data and reuse data from other sources to enrich their own

contents.

The following sections describe all the aspects of this type of

applications, starting with their requirements. Consequent to these

requirements, the structure of the application is defined and explained,

highlighting the software modules missing in traditional RIAs. Finally,

this chapter introduces a collection of case studies used to evaluate the

proposal and validate the fulfilment of the proposed requirements.

44 Chapter 3. Rich Internet Applications on the Semantic Web

3.1 REQUIREMENTS

The definition of a specific set of requirements for a Web application

facilitates the identification of the main goals and the main software

components of the application. In this case, these requirements also

show the differences between traditional RIAs and SRIAs. The

requirements for the development of SRIA combine aspects of RIA and

other aspects of Semantic Web applications in such a way that the

resulting applications could be considered RIAs as well as Semantic

Web applications.

This section proposes a specific list of requirements that characterise

SRIAs focusing on those requirements that are not considered in the

development of traditional RIAs. This list takes into consideration the

studies carried out by other authors such as Brambilla and Facca

(Brambilla and Facca, 2007) and Roval et al. (Rovan et al., 2011), focused

on the engineering of Semantic Web applications, as well as the initial

architecture of the Semantic Web and the principles of Linked Data,

described in Section 2.1.2 (page 19).

The proposed features can be summarised in two high-level non-

functional requirements. The fulfilment of these first requirements is

associated to the fulfilment of a collection of functional requirements

described below each, which constrain the functionalities of the

resulting applications. The proposed list of requirements can be

described as follows:

R1) High level of exportability and reusability of the application

content. The application must be capable of providing its contents in

a meaningful, unambiguous and structured manner to software

agents or even other Semantic RIAs.

Rf1.1) The application must use ontologies as knowledge representation

formalism. All the data stored and managed by a SRIA must be

represented by means of ontologies, since they are the standard

for the representation knowledge on the Semantic Web.

Rf1.2) The application must provide semantic annotations of the

content. Ontologies provide a method to represent and structure

the underlying knowledge used by a SRIA. However, it is also

necessary to map the data stored in a SRIA into ontology

Model-Driven Development of Rich Internet Applications on the Semantic Web 45

instances and annotate certain chunks of information to

effectively represent what information is being shown in a

certain moment. This information will be contained in the

annotation model (Bettencourt et al., 2006) proposed for SRIAs,

which will be introduced in the next subsection.

R2) High level of reusability of external knowledge. Following the

philosophy behind the Semantic Web and the principles of the

Linking Open Data project, the application should be enriched with

knowledge from other sources. The application should not be

isolated, but be capable to obtain knowledge from different sources

of the Semantic Web. This requirement can be split into two sub-

requirements:

Rf2.1) The application must reuse existing ontologies. As a result, it

would be possible to interconnect knowledge among a network

of applications leading to richer user contents. Moreover, it can

simplify the processes of knowledge sharing (R1) and the

processes of design and development of similar applications.

Rf2.2) The application must reuse existing knowledge bases. With the

instances obtained from other Web sources it would be possible

to enrich the contents showed to users by means of mashups.

Initially, in order to make easier the complexity of reusing

knowledge in an open domain, only two types of knowledge

sources are considered.

Rf2.2.1) The application must reuse knowledge from the

available Linked Data sources/services. The application will

use ontology instances from the Linked Data datasets

spread across the Web.

Rf2.2.2) The application can reuse of knowledge from other

applications. SRIAs should be compatible with other

SRIAs, i.e., the knowledge shared by a SRIA should be

consumed by other SRIAs following the Linked Data

principles.

In this requirement list, ontologies and knowledge bases, which

contain ontology instances, are considered as different elements, even

thought, in several approaches, e.g., Gómez-Pérez et al. (Gómez-Pérez et

al., 2007), instances are part of ontologies. Although it could be a

46 Chapter 3. Rich Internet Applications on the Semantic Web

controversial decision, it was taken based on the definitions given by

Gruber (Gruber, 1995), and supported by Guarino (Guarino, 1998): “an

ontology serves a different purpose than a knowledge base state”. While the

instances contained in the ontologies can be considered as shared

knowledge describing a domain, the instances contained in a knowledge

base “may include the knowledge needed to solve a problem or answer arbitrary

queries about a domain”. This approach facilitates the conceptualisation of

those repositories of ontology instances with different goals that store

instances of a common ontology, which is not an unusual case on the

Semantic Web or the Web of Data.

3.2 AN ANNOTATION MODEL FOR SEMANTIC RICH INTERNET

APPLICATIONS

The requirement Rf1.2 establishes the necessity of an annotation

model that defines the manner in which the application will be

annotated and how the ontology instances will be shared. This section

introduces the annotation model proposed for SRIAs based on the

different annotation models available on the Semantic Web.

The proposed annotation model is based on ontologies (fulfilling

Rf1.1). However, as mentioned before, ontologies can only provide the

formalisms and mechanisms to capture and represent the underlying

knowledge used by a SRIA. In some cases, it might be also relevant to

annotate certain chunks of information to effectively represent what

information is being shown to the users.

Before introducing the actual annotation model, in order to avoid

ambiguities, the first step is to define the concept of semantic annotation

in this context. Based on the definition by Bettencourt et al. (Bettencourt

et al., 2006), a semantic annotation is a reference (i.e., a HTTP URI/IRI) to

an ontology element (i.e., a concept, a property or an instance) that is

attached to a resource (i.e., from a chunk of information or a complete

SRIA). In “traditional” Semantic Web applications, these annotations can

be shared within the HTML code of the user interface, which might

attached to the resource annotated. However, since some types of RIA

do not contain user interfaces with HTML code (plugin-oriented RIAs),

it is necessary to provide alternative methods of accessing the

annotations or the ontology instances.

Model-Driven Development of Rich Internet Applications on the Semantic Web 47

Given these initial considerations, the SRIA annotation model

proposed in this thesis contains the following elements:

1. The annotation model is composed of three types of ontology-

based annotations divided in two groups: content and context

annotations. Content annotations refer to the content of the application,

which depends on the domain and the goals of the application. This

group includes:

(i) domain annotations, which include information about the

domain of the application. These annotations are related to a domain

ontology (concepts, properties or instances) that might change from

one application to another depending on the goals and type of

content of the application. For instance, if the target application is a

media player, the domain ontology will contain concepts related to

the music domain, while, if it manages the information of a

university, the domain ontology will contain concepts from the

educational domain.

Context annotations include information related to the context where

the main information is shown, e.g., the relative position within the Web

application, the path followed to a certain internal state or Web page, the

UI element in which the information is visualised, etc. This group

includes the following types of annotation:

(ii) navigational annotations, which are associated to knowledge

about the navigational aspects of the SRIA: navigational nodes,

transitions, links, etc. These aspects are represented in a navigational

ontology called NavOntology, which should be instantiated by any

application. This ontology and its instances can be linked to any

domain ontology and, thus, it will be possible to create a large

network of ontology instances that will help to locate contents on the

Web (Hermida et al., 2009). NavOntology was initially designed for

traditional Web applications and subsequently adapted in order to

capture the knowledge related to the navigation in RIA. For a

detailed description of the elements of the ontology, please check

Annex B.

(iii) visualisation annotations, which are related to knowledge

about the structure (UI components) and behaviour of the visual

elements of the application. These elements are represented by

48 Chapter 3. Rich Internet Applications on the Semantic Web

means of a visualisation ontology, which captures knowledge about

the components of the UI in terms of screenshots, widgets and panels

(including their size, position, contents, aesthetics, etc.) and the

events that can be triggered from each of them under certain

conditions and the actions performed as a result. In this case, the

ontology is also shared by all the SRIAs, which will need to

instantiate it according to their UI. The elements of this ontology can

be linked to the elements of NavOntology and the domain ontology

of the application. For a more detailed description, please check

Annex B.

Using this three-layer annotation model, it is possible to

obtain/generate a complete representation of the data objects and the

context in which they are visualised within the SRIA, which can be

useful for better understanding the content of the application and

automatically replicate the behaviour of the application in other

platforms (e.g., mobile). Figure 3.1 illustrates the manner in which the

three ontology representation can be combined and the resulting

knowledge obtained. The figure depicts the instances of the three

mentioned ontologies for a SRIA media player (please, see the

description of the case study in Sections 3.4 and C.1).

Figure 3.1. Example of instantiation of the three layer ontology representation for SRIAs.

The instances of the domain ontology are coloured in blue and show

a certain user with their playlist and their music track. Coloured in red,

the instances of the NavOntology specify the different navigation

contexts and the domain instances shown in each of them. Finally, the

instances of the visualisation ontology represent the different elements

Model-Driven Development of Rich Internet Applications on the Semantic Web 49

that can be visualised and the links to NavOntology and the domain

ontology.

2. Embedded textual annotations. When developing browser-

oriented SRIAs, textual annotations will be included following the three-

layer representation and using the RDFa standard (World Wide Web

Consortium, 2008a) within the text-based contents of the RIA (mainly

HTML code).

3. Open service for sharing knowledge. For those SRIA in which it

is not possible to embed textual annotations, i.e., plug-in-oriented SRIAs,

it is necessary to provide another means of gaining access to the

ontology representation of the contents. Opening a point of access to the

contents, based on the efforts of the Linking Open Data Project36 for data

sharing and reuse, can simplify and boost the processes of knowledge

retrieval (ontologies and instances) from a SRIA. In this context, the

service most frequently implemented on the Semantic Web and the

Linked Data cloud is the SPARQL endpoint37. Given that this solution

does not cause any type of drawback, it could also be applied to

browser-oriented as an alternative method of obtaining a representation

of the application knowledge.

3.3 STRUCTURE

Once the requirements and the SRIA annotation model have been

clarified, the next step is to define the structure of the SRIA, which

represents the software modules of the SRIA and specifies their function.

Figure 3.2 illustrates a schema of the structure proposed in this thesis.

This schema also represents the processes of consuming knowledge

from other sources, i.e., the Linked Data cloud and another SRIA.

Similarly to RIA, SRIAs are developed according to a client-server

architecture whose clients, which contain rich UI interfaces, invoke the

36 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
37 A definition of the service can be found at http://sandbox.semantic-

mediawiki.org/wiki/SPARQL_endpoint: “A SPARQL endpoint is a conformant SPARQL

protocol service as defined in the SPROT specification. A SPARQL endpoint enables users (human or

other) to query a knowledge base via the SPARQL language. Results are typically returned in one or

more machine-processable formats. Therefore, a SPARQL endpoint is mostly conceived as a machine-

friendly interface towards a knowledge base. Both the formulation of the queries and the human-readable

presentation of the results should typically be implemented by the calling software, and not be done

manually by human users. “

50 Chapter 3. Rich Internet Applications on the Semantic Web

Web services offered by the server using asynchronous communication

processes using the Web infrastructure. In this way, SRIA clients and

servers are totally decoupled.

The SRIAs server reuses part of original RIA components,

specifically, those components that perform the basic operations over

data:

Figure 3.2. Schema of a semantic RIA and the relations with other elements of the Web38.

1) Database, which manages the persistent storage of the data

objects.

2) Business Logic, including those components that perform the

main tasks of the application and manage all the objects retrieved

from the database.

3) Web Service Interface, which offers a set of server services to the

UI interface that provides access to the server data and business

logic.

38 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-

cloud.net/

Model-Driven Development of Rich Internet Applications on the Semantic Web 51

Regarding SRIA clients, their UIs share most of the software

components of RIA UIs. Depending on the technology employed to

implement the RIA client, they can be classified into two categories:

plug-in-oriented (Figure 3.2, SRIA) or browser-oriented (Figure 3.2,

SRIA-2). The classification of RIA applications was explained in Section

2.1.1 (page 14).

As illustrated in Figure 3.2, apart from the RIA modules, SRIAs

include a set of new software modules in order to fulfil the proposed

requirements, directly related to the reuse of knowledge from the

(Semantic) Web. Each of the new modules can be described as follows:

1) Knowledge base (server module). This module manages the

knowledge base (KB) of the application, which stores the

ontology instances used in the application (based on RDF –

Resource Description Framework). Given the need to reuse

knowledge from the Semantic Web, SRIAs require as a storage

system a KB, which can be implemented over the existing

database.

2) Linked Data service (server module). This module offers a

service to access a part of the knowledge stored in the SRIA

knowledge base. In this case, this approach is aligned to Linked

Data principles following the SPARQL protocol for RDF (World

Wide Web Consortium, 2008b). Nonetheless, this interface could

be changed depending on the requirements of the application by

other type of service, e.g., semantic Web services (SWS). Since the

structure of the query can directly affect the performance of the

service, in this proposal, the SPARQL endpoint can limit the

access to a certain number of classes or instances of a class

depending on the developers’ preferences.

3) Semantic Web service gateway (server module). This gateway

actually groups several types of service clients: Web services

(SOA, REST), semantic Web services and Linked Data endpoints.

This module enables the access to ontologies and KBs on the Web

on demand (even those of other SRIAs) in order to

enrich/complete the content provided to the end users.

Depending on the resource to be accessed, the gateway chooses

one access method, e.g., for Linked Data endpoints, it uses the

SPARQL protocol by means of a SPARQL-enabled client.

52 Chapter 3. Rich Internet Applications on the Semantic Web

4) Semantic annotation generator (client module, browser-

oriented interfaces). In browser-oriented SRIAs, the client can

include a software module that embeds RDFa annotations, which

links the shown UI with the ontology instances stored in the KB

or external knowledge sources. In the case of plug-in-oriented

SRIAs, users could access the same knowledge through the

Linked Data service or the HTML+RDFa view generated by the

following module.

5) HTML interface generator (server module). This module

generates an HTML representation of the ontology instances

stored in the KB. This view is annotated using RDFa referencing

the ontology instances stored in the KB. Unlike RIA UIs, this

interface can be easily crawled and indexed by Web searchers.

The entry point to the interface is a URL included in the header

of the header of the HTML Web page containing the RIA client.

In this UI, the communication between the client and the server

follows the synchronous process used in traditional Web

applications.

It is worth noticing that the manner in which SRIAs produce and

consume data/knowledge from/to the Semantic Web is based on the

existing Semantic Web applications, and more specifically, on the

applications that interact with the Linked data cloud. From the Linked

Data perspective and as a consequence of the defined structure, SRIAs

can be treated as new nodes of the Linked Data network (as Figure 3.2

intends to represent). In the case of plug-in-oriented SRIAs, users would

still be able to access the knowledge of the application through the

Linked Data service. The annotated HTML view of the interface can

facilitate the access to data to those clients that are not adapted to the

Linked Data cloud.

This general structure aims to be a guide to the components that are

needed for the development of SRIAs. Based on this, it would be

possible to choose different architectural patterns for the development of

different components of the SRIA. For instance, the SRIA client could be

developed using different patterns, e.g., Model-View-Controller, Model-

View-Presenter, Model-View-Viewmodel, etc. The architecture chosen in this

thesis is introduced in Section 7.1 (page 152).

Model-Driven Development of Rich Internet Applications on the Semantic Web 53

3.4 CASE STUDIES

Semantic RIAs can be used a generic platform for the development of

different types of applications, since they bring a technology-

independent solution, using existing techniques, to solve the main

shortcomings of RIAs. The assessment of the SRIA proposal was

performed by means of the development of a set of case studies. The

qualitative analysis of the applications developed helped to improve the

approach in an iterative process. Each of these case studies was also

validated externally in national and international conferences and

international journals. This chapter introduces three case studies,

developed in this evaluation process:

1) The development of a media player, inspired by the case study

presented by Brambilla and Facca (Brambilla and Facca, 2007),

which aims at building a SRIA as a media player for the

management of the users’ personal songs. The application can

share the personal data about music files as instances of the

MusicOntology ontology and can reuse the information

published by the MusicBrainz Linked Data endpoint.

This case study was first introduced by Hermida et al. (Hermida

et al., 2011b) and it is fully explained in Annex C.

2) The development of a social network site on the Semantic Web,

as defined by Kinsella et al. (Kinsella et al., 2009), which aims at

developing a SRIA as social network site for sharing

knowledge/comments about music. This case study was first

introduced by Hermida et al. (Hermida et al., 2011a) and the

details of this case study will be explained in the next subsection,

since it will be used as a reference in the rest of the thesis.

3) The development of a SRIA for Business Intelligence. The SRIA

approach was also applied in the field of Business Intelligence,

leading to the development of a new case study. This last case

study consisted in the development of a social network site for

sharing knowledge among the employees of a company. Given

the special requirements detected in this last case study, it will be

explained in Section 3.5.

The case studies were developed using the .NET framework (C#)

and, particularly, the Windows Communication Foundation (WCF, for

54 Chapter 3. Rich Internet Applications on the Semantic Web

the server components) and Silverlight (for the client components)

frameworks.

3.4.1 A SOCIAL NETWORK SITE AS A SEMANTIC RIA

RIAs and Social Network Sites share some shortcomings that mainly

limit the portability of the data stored. Social sites are normally born as

proprietary sites where their API-based access methods do not share all

their available information and the semantics of the data elements might

vary between applications. Currently, it is usual that users have

different profiles in several networks since they cannot reuse their own

personal data (Breslin and Decker, 2007; Breslin et al., 2009). As

mentioned before, RIAs show the information in a user-friendly manner

but, due to their intrinsic structure and technological issues, they also

suffer these types of limitations. The application of the SRIA approach to

this case can help to solve the issues found in the social sites as well.

In this case, Figure 3.3, the schema of the SRIA when applied to the

development of a Social Network Site slightly modifies from the original

one including the representation of other applications of the Social

Semantic Web (Kinsella et al., 2009), which could be accessed by the

SRIA in order to retrieve knowledge from them (e.g., a semantic wiki).

As can be appreciated, the structure of the SRIA is not modified.

Given the functionalities of the SRIA, the main benefits of applying

the proposal to the development of social platforms are the following

(Hermida et al., 2011a):

1) Benefits from the use of Semantic Web technologies:

a. Improved interoperability among social sites. The use of

ontologies such as FOAF or SIOC, allows Web designers

to describe all the personal data of the SNS (list of friends,

contents from the wall, etc.) in a standard manner and

facilitates the process of sharing among different social

sites. While the FOAF ontology is widely used on the

Web to describe people, documents and their relations,

SIOC can complementarily describe all the types of

possible contents of a social site.

Model-Driven Development of Rich Internet Applications on the Semantic Web 55

Figure 3.3. Schema of a social network site as a SRIA and the connections to other applications.

b. Enrichment of the contents. SRIAs can reuse knowledge

from other sites or existing knowledge sources in order to

enrich the content presented to users. For instance, a SRIA

can automatically access knowledge contained in

DBpedia (http://www.dbpedia.org) to obtain

supplementary information about a certain topic.

Moreover, depending on the RIA technology, SRIAs can

add semantic annotations to the content visualised by the

users, which can be employed by different Web users,

such as searchers or special clients for people with

physical impairments.

2) Benefits from the use of RIA technologies

a. Improved usability of the user interface. The use of a RIA

interface in a SNS is not a novel approach. There currently

exist some examples, such as facedeck39, that offer a higher

degree of interactivity to users and a friendlier, desktop-

like UI. The main difference is that this approach aims at

39 http://www.telerik.com/products/facedeck.aspx

56 Chapter 3. Rich Internet Applications on the Semantic Web

building the complete SNS as a SRIA, not only the UI,

thus improving the behaviour of the whole application.

The second use case is the development of a Social Network Site

using a SRIA as a platform (Hermida et al., 2011a). The application will

be focused on the music domain (instead of having a general purpose)

and will embed a music player, similar to the one developed in the first

case study, thus offering a platform for online music sales as well.

The present case study does not introduce new social features, which

have been exploited by existing SNSs such as Apple’s Ping40 or lastFM41.

Instead, it is aimed at studying the interconnection (interoperability)

between social network sites using open SW techniques and resources,

already studied by other authors, e.g., Kinsella et al. (Kinsella et al.,

2009), and Rich Internet Applications.

The final application will manage the basic features of current SNSs,

i.e. (a) the management of a user profile, (b) the connections with other

users and (c) a personal wall where users can share their thoughts,

impressions or comments with their contacts. Moreover, users will be

able to (i) share their music preferences, groups and songs; (ii) follow

their favourite artists; and (iii) read and publish news on all these topics.

Figure 3.4 depicts a screenshot of the final application, whose UI can

be divided in four different areas: (1) the music player, located on the

top of the application, together with the main menu; (2) the user profile,

right area, with the main user information; (3) the wall, in the central

area, with the main user’s and user friend’s stories and comments; and

(4) a search form, on the left part of the UI, with a form to search friends,

artists or songs within the SNS.

Figure 3.5 shows the entry point of the HTML view for this

application. From this Web site, users can visualise the data of different

data entities by using one of the available links (i.e., MusicArtist, for

music artists; Person, for users; Record, for music albums; or Track, for

music tracks). Moreover, they can find the URI of the Linked Data

service, which provides the data objects as ontology instances.

The final implementation of this application can be fount at
http://suma2.dlsi.ua.es/ooh4ria/sm4ria.html#uc.

40 http://www.apple.com/itunes/ping/
41 http://www.last.fm/

Model-Driven Development of Rich Internet Applications on the Semantic Web 57

Figure 3.4. Screenshot of the main context of the Social Network Site.

Figure 3.5. Screenshot of the HTML view for the Social Network Site.

3.5 SEMANTIC RICH INTERNET APPLICATIONS AS PLATFORMS

FOR BUSINESS INTELLIGENCE

As shown by Raspal (Raspal, 2010), White (White, 2009) or Laurent

(Laurent, 2010), Rich Internet Applications (RIA) start to play a relevant

role as Web applications for Business Intelligence due to their intrinsic

features: UIs with high level of interactivity and usability (in contrast to

traditional Web applications) and the asynchronous communication

58 Chapter 3. Rich Internet Applications on the Semantic Web

processes between the server and the client of a Web application, led by

a set of mature technologies e.g., Flex/Flash, Silverlight or AJAX. RIAs

have proven to be an appropriate platform to visualise data from

different sources, whose rich user interfaces offer experiences similar to

the ones provided by desktop interfaces.

However, RIAs are not as specialised in the management of

knowledge from the Web as BI systems require. RIAs for Business

Intelligence should deal with issues of knowledge management (KM)

and visualisation that finally require complex software modules

combined in a single architecture.

In order to explore the possibilities of SRIAs as knowledge

management applications in business environments, in the last case

study, the SRIA proposal was adapted to the BI environment, obtaining

as a result a new subtype of application, the RI@BI (RIA for BI)

(Hermida et al., 2013). This application overcomes the limitations of

traditional RIA platforms applying knowledge management techniques

from the Semantic Web and a collection of B2B components to improve

the communication with other business Web applications.

The RI@BI proposal is based on the functionalities of the SRIA

solution. Unlike SRIAs, RI@BIs aims at providing a solution adapted to

the business scenario and thus considers aspects related to B2B (or SaaS)

services, which have special relevance in this scenario.

3.5.1 REQUIREMENTS

Given the new needs and the known limitations of RIAs when

applied to business scenarios, it is important to extend the set of

requirements defined in Section 3.1 for SRIAs in order to include new

functionalities that finally overcome them. These new, specific

functional requirements can be described as follows:

Rf3) Consumption of B2B data/services from other

departments/enterprises. The application should be connected to

other departments’/enterprises’ applications to reuse their data

and/or services. Due to their growing importance, it would be

especially relevant to support the use of SaaS services.

Model-Driven Development of Rich Internet Applications on the Semantic Web 59

Rf4) Provenance of data/services to other departments/enterprises.

As the application needs of data/services from other applications, it

should be capable of providing these to other applications as well.

Rf5) Complex visualisations of data/knowledge (data mash-ups).

The application should use the advance mechanisms for the

integration of knowledge from different sources in a manner

transparent to users. Not only should the visualisation components

(widgets) represent data from the applications itself but also they

should mix data/knowledge from different sources and represent

them in complex widgets.

Within the Semantic Web, the approaches based on the concept of

Linked Data offer a more ambitious perspective towards the creation of

open enterprises or networks of enterprises that seamlessly share their

data following a common goal. This approach is totally aligned to the

SRIA approach and to the RI@BI approach, described in this section, as

well.

Based on the structural schema of a SRIA, Figure 3.6 illustrates the

schema of a typical RI@BI and the connections with other sources from

the Web and other B2B services provided by other applications.

As shown in the figure, RI@BIs include a set of new software

modules (coloured in green), which are directly associated to the

exploitation of B2B services, in order to fulfil the proposed requirements.

1) Service interface (server module). This interface publishes a set

of B2B services of the RI@BI to external organisations depending

on the goals of the application. The application could provide

different types of services: from data providers to data

processing, or even SaaS services. Unlike the Linked Data service

(e.g., an SPARQL endpoint), this service could handle secure

accesses.

2) Web service gateway (server module). This module allows

applications to invoke external B2B services provided by other

organisations. For instance, it would be possible to access the

private data of other enterprises or use external services to store

the application data (e.g., Dropbox42).

42 http://www.dropbox.com/

60 Chapter 3. Rich Internet Applications on the Semantic Web

Figure 3.6. Schema of a RI@BI and the connections between the application and other

applications and services.

3.5.2 CASE STUDY: DEVELOPING A SOCIAL APPLICATION FOR

MANAGING BUSINESS KNOWLEDGE

The case study chosen to assess this proposal concerns the

development of a social network site (SNS) for the management of the

knowledge related to the projects and the daily tasks of the employees of

a specific enterprise using a RI@BI as a platform. This case study is based

on the miKrow system (Penela et al., 2011) and the case study presented

in Section 3.4.1. The target enterprise in this case is a software

development company. The RI@BI includes the most usual, basic

features of current SNSs:

(i) user profile and role;

(ii) different types of social connections;

(iii) a wall where employees can share their thoughts,

impressions or comments with other users.

Moreover, given the purpose of the application, users will be able to:

a) create new tasks (only managers);

Model-Driven Development of Rich Internet Applications on the Semantic Web 61

b) check the projects he/she is involved in;

c) check the tasks he/she is working on;

d) manage the resources (e.g., documents) associated to each

project/task;

e) follow the activities of other users (only managers); and

f) (automatically) associate the content to ontology elements. This

last feature will help users find other tasks, messages or

colleagues that are involved in the same types of issues.

The aim of this case study is to analyse: (i) the capabilities of RI@BI as

BI Web applications; and (ii) the interconnection (interoperability)

between different business applications and knowledge sources, in

particular, Semantic Web resources. As in the SNS case study, the final

application does not include new social features, which have already

been studied and exploited by other authors such as Yammer (2011),

Penela et al (2011) and Kinsella et al (2009). Moreover, security and trust

issues are out of the scope of this example.

Figure 3.7 contains a screenshot of the final application, which shows

the last stories created by a user and the replies he received from his

colleagues. The final Web application can be found at

http://suma2.dlsi.ua.es/ooh4ria/sm4ria.html#uc.

Figure 3.7. Screenshot of the project management application as a RI@BI.

62 Chapter 3. Rich Internet Applications on the Semantic Web

3.6 CONCLUSIONS

The content of RIAs cannot be easily crawled and indexed by Web

search engines, which can prevent developers from implementing RIA

applications and enterprises from using this type of application for their

business. In this context, the first contribution of this thesis is the

definition of the concept of Semantic RIA, whose main goal is to

provide a generic solution to this problem based on the existing

Semantic Web techniques and independent from the implementation

technology. The SRIA approach extends the structure of the traditional

RIA including modules for sharing local knowledge and consuming

knowledge from the Semantic Web. The knowledge managed by the

SRIA is completely available as linked data using the annotation model

proposed. This three-layer model combines different existing

approaches and can provide a complete view of the application from the

user perspective, hiding design or implementation details, in such a way

that this knowledge could be reused to create widgets for other Web or

desktop applications.

The three case studies developed have been used to assess the

proposal in three different scenarios: a) the Semantic Web with the

development of a media player, b) the Social Semantic Web with the

development of a SNS, and c) the field of Business Intelligence with the

development of the enterprise SNS. The qualitative assessment was

performed either internally, i.e., by analysing the features developed

and the possible improvements, and externally, i.e., in international

conferences and journals. The evaluation of performance and scalability

issues was not in the scope of the analysis carried out.

The complexity of the resulting SRIA architecture notably increased

the cost of development and maintenance (comparing to RIA or

traditional Web applications), which is a risk factor that threatens the

viability of this type of applications and their future success, especially

when working in business scenarios. SRIAs require complex software

modules combined in a single architecture in order to deal with issues of

knowledge management and visualisation.

Chapter 4. A METHODOLOGY FOR THE

DEVELOPMENT OF SEMANTIC RICH

INTERNET APPLICATIONS

During the past decade, model-driven methodologies have been

proven to successfully address all the phases in the development of

different types of Web applications, including RIA. This type of

methodologies (usually supported by CASE tools) facilitates the

systematic design and generation of Web applications and can be an

appropriate solution for the development of SRIA, given the complexity

of their structure. Model-driven methodologies can reduce the cost of

development in terms of time and resources and, thus, can minimise the

risk of project failure, which are important factors when developing

applications in the business context.

These methodologies are relatively new and one of the aspects not

yet supported is the development of RIAs capable of managing

information from the Semantic Web. In order to address the

development of SRIAs, this thesis presents the Sm4RIA methodology43 on

the basis of the OOH4RIA methodology (Meliá et al., 2008), specialised

in the development of traditional RIA. The goal of this methodology is

to cover all the phases of development of SRIAs from the design of the

data entities and the user interface to the generation of the software

modules.

43 Semantic Models for RIA, /sem for RIA/. Originally introduced by Hermida et al. (Hermida et al.,

2011b)

64
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

In order to fulfil the requirements of SRIAs, Sm4RIA defines new

processes and artefacts:

(i) two new MOF metamodels, created as an extension of the

OMG Ontology Definition Metamodel (Object Modeling

Group, 2009), which lead to the definition of two new

ontology models;

(ii) a set of model-to-model transformations that can create

mock-ups of the different Sm4RIA models, which can help the

designer to obtain an ontology model from another;

(iii) a set of model-to-text transformations that generate the new

SRIA software modules from the whole collection of models.

Furthermore, the Sm4RIA methodology extends the OOH4RIA

development process:

(i) including new modelling mechanisms to the OOH4RIA

functional models as an extension of the OOH4RIA MOF

metamodel.

(ii) adapting the existing activities to the development of SRIAs

by adding new tasks and modifying the existing ones.

In order to contextualise the contribution of Sm4RIA, the next section

introduces the main process and components of the OOH4RIA

methodology. Subsequently, the chapter will introduce all the aspects of

the Sm4RIA methodology.

4.1 AN INTRODUCTION TO OOH4RIA

OOH4RIA (Meliá et al., 2008) defines a model-driven methodology

whose main aim is to cover all the phases of the RIA lifecycle

development. It facilitates the specification of a RIA (all its software

components, whose final code can be partially personalised by the

developers) by means of four models: Domain and Navigation models,

extending the OO-H server-side models (Gómez et al., 2001), and two

RIA-specific presentation models, i.e., the Presentation and

Orchestration models.

The OOH4RIA methodology defines a development process for RIA

that starts with the specification of the Domain model, which represents

the data structures, the relations between them and the operations that

Model-Driven Development of Rich Internet Applications on the Semantic Web 65

can be performed. The Domain meta-model allows designers to specify

the Object-Relational mapping rules without ambiguities.

With the OOH4RIA Domain model, designers can (1) classify the

class operations based on a predefined topology (including elements

such as create, delete, relationer, unrelationer, etc.) to facilitate the

generation of the CRUD functionality of a data-intensive application

server; (2) use a collection of complex data types such as set, bag or list,

for defining class attributes and operations; and (3) define Object-

Relational mapping using concepts not considered in OO-H such as the

object identifier (used for defining the primary key).

After the Domain Model, the designer specifies the Navigation

Model, which defines the navigation of the user through the application

data and the invocation of the class operations. This model establishes

the most relevant semantic paths through the data space, filtering the

domain elements that will be available in the RIA clients. In addition, it

facilitates the definition of OCL filters for gathering information from

the domain classes.

At this point, the UI designer defines the structure (widgets, panels

and style) and the behaviour of the RIA client (and rich user interface)

using the Presentation and Orchestration model. At present, there are

several RIA frameworks, each of which offers different sets of widgets,

properties and events. The OOH4RIA Presentation model is a platform-

specific model which is adapted to the elements of the Silverlight

framework, even though it can be adapted to other technologies. This

model, due to its graphical notation (WYSIWYG), offers a visual

representation to the designers, similar to the final RIA UI that will be

generated. To complete the specification of the RIA UI, the OOH4RIA

Orchestration model can be used to describe the behaviour of the

components of the RIA UI by means of the definition of a set of Event-

Condition-Action (ECA) rules over the UI widgets.

Once the models have been defined, in the final activity, a set of

model-to-text transformation rules can be invoked in order to generate

the RIA implementation from the information stored in the models.

OOH4RIA defines two main transformation processes: one for the

generation of the RIA server from the Domain and Navigation models;

and another for the generation of the RIA client side from the

Presentation and Orchestration models.

66
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

From this description the following sections explain the main

elements and activities of the Sm4RIA methodology.

4.2 SEMANTIC MODELS FOR RICH INTERNET APPLICATIONS

Figure 4.1 shows an overview of the Sm4RIA development process

using an SPEM244 class diagram, conformant to an extension of the

SPEM2 meta-model that includes aspects not considered in the original

meta-model, e.g., the representation of the transformation engines

(called Model Transformers in the model) using a new stereotype called

ProcessRole and the MDA transformations using a new collection of

stereotypes extending the TaskDefinition SPEM meta-class, e.g.,

PIM2PIM, PIM2PSM, etc.

Figure 4.1. SPEM2 class diagram of the Sm4RIA development process.

The following subsections explain each of the components illustrated

in the figure, i.e., the user roles and the models (including the meta-

models), and the development process as a whole. The final result of the

process, i.e., the SRIA, has already been explained in Chapter 3.

4.2.1 THE SM4RIA USER ROLES

There are five types of user role involved in the different activities of

the process (see Figure 4.1):

44 Software Process Engineering Meta-model (Object Management Group, 2008).

<<WorkDefinition>>
“Sm4RIA Development Process”

Model2Model
Transformer

Server
Designer

Model2Text
Transformer

Ontology
Designer

UI Designer

Design the
SRIA server

Design the
SRIA client

Generate
a SRIA

Domain
Model

Extended
Navigation

Model
Extended

Orchestation
Model

Extended
Presentation

Model

Visualisation
Ontology

Model

<<performs,
primary>>

<<output,
mandatory>>

<<output,
mandatory>>

<<output,
mandatory>>

<<input,
mandatory>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

<<output,
mandatory>>

<<performs,
primary>>

<<input, mandatory>>

<<input, mandatory>>

<<input, mandatory>>

<<input,
mandatory>>

<<input,
mandatory>>

<<output,
mandatory>>

<<output,
optional>>

SRIA

<<performs,
primary>>

Extended
Domain
Model

<<output,
mandatory>>

Model-Driven Development of Rich Internet Applications on the Semantic Web 67

a. Server designer or back-end designer. The server designer

creates the server components of the SRIA, e.g., the database, the

Web service interface, etc.

b. User-interface (UI) designer. The user interface designer

performs those tasks related to the construction of the SRIA user

interface and the invocation of the services provided by the SRIA

server.

c. Ontology designer. The ontology designer carries out the tasks

related to the interconnection of the SRIA with external

knowledge sources. These tasks could be also performed by the

Server designer depending on their personal background.

d. Model-2-model transformer. This role corresponds to the

transformation engine capable of transforming one model into

another.

e. Model-2-text transformer. This last role corresponds to the

transformation engine capable of transforming the content of a

model into programming code.

4.2.2 THE SM4RIA MODELS

There are six models involved in the development process of a SRIA,

which address different concerns:

1. Domain Model (Platform-Independent Model). The Domain

model, imported from the OOH4RIA methodology with no

modification, and defines the main data structures of the

application (classes, attributes and types), the relationships

among them and the operations that can be performed over

them. The operations are classified into two groups: CRUD

operations (create-read-update-delete), which are the basic

operations over any data object and the custom operations,

whose signature can be defined by the designer. Furthermore, it

defines the Object-Relational mappings that will be used to

transform the relational database tuples into data objects.

2. Extended Domain Model (EDM, Platform-Independent Model).

The EDM was created for the definition of lightweight ontologies

that could represent the domain entities of the application and

the relationships among them. Moreover, this model captures the

68
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

ontologies imported from other sites and the knowledge bases

available for each of the ontologies modelled. The specific goals

of the model can be described as follows:

a. represent the domain ontology of the application;

b. establish the relations between the SRIA ontology and

external ontologies, thus aligning the domain elements

with external elements (or even reuse external elements in

local ontologies);

c. define the external sources that will be available to the

SRIA users;

d. define the mapping rules between the ontology elements

and the data objects defined in the Domain Model;

e. define operations over ontology instances (e.g., for

filtered searches of external instances).

3. Extended Navigation Model (ENM, Platform-Independent

Model). The Extended Navigation Model is an extension of the

OOH4RIA Navigation Model. The ENM specifies the manner in

which users will be able to access the data and the ontology

instances defined in the last two models. For each user role, it is

possible to define a different navigational model that filters the

information retrieved from the SRIA server and the services that

can be invoked. The ENM also captures the manner in which

SRIAs publish their own structured knowledge and connect their

information to other sources of knowledge on the Web.

4. Extended Presentation Model (EPM, Platform-Specific Model).

The EPM extends the OOH4RIA Presentation Model. This model

specifies the structure of the SRIA representing the screenshots,

panels and widgets of the UI as well as their main features:

position, size and style (text font, font colour, background colour,

etc.) In contrast to the other models, this is a WYSIWYG model,

in which the visualisation of the UI model should be completely

equivalent to the generated UI. In this model, it is also possible to

include ontology-based annotations over static UI components.

5. Extended Orchestration Model (EOM, Platform-Specific

Model). The EOM is an extension of the OOH4RIA Orchestration

model. The EOM is represented as a collection of Event-

Condition-Action rules that specifies the behaviour of the user

Model-Driven Development of Rich Internet Applications on the Semantic Web 69

interface according to the events triggered by the users when

interacting with the UI elements. It connects the UI events with

the actions that can be performed by the SRIA server, which are

specified in the EDM and ENM.

6. Visualisation Ontology Model (VOM, Platform-Independent

Model). The Visualisation Ontology model combines the

knowledge contained in the EPM and EOM in order to create the

instances of the Visualisation Ontology needed for SRIA

annotation model. This model should be automatically built

using a M2M transformation.

4.2.3 THE SM4RIA DEVELOPMENT PROCESS

In a similar manner that OOH4RIA, the Sm4RIA development

process is divided in three main activities, which group tasks and

modelling elements with the same final goal:

1. To design the elements of the SRIA server;

2. To design the elements of the SRIA client; and

3. To generate the final SRIA through a set of automatic model-to-

text transformation processes.

The SPEM2 sequence diagram of each of the activities is illustrated in

Figure 4.2, Figure 4.3 and Figure 4.4. Those tasks coloured in orange are

new tasks or have been reused and modified from OOH4RIA.

The Sm4RIA development process starts with the design of the

server. In this activity, the designers model all the aspects that will be

used during the process of generation. The first task, performed by the

Server designer, is the definition of the Domain model, which defines

the main data structures of the application, the relationships among

them and the operations that can be performed over them.

Subsequently, the Ontology designer creates the EDM, which builds the

domain ontology, imports external ontologies and KBs and maps the

ontology instances and the data objects of the SRIA.

70
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

Figure 4.2. First activity of the Sm4RIA development process.

Both domain models are the input of the Define the Navigation Model

task, in which the server designer specifies the manner in which users

will be able to navigate across the data and the ontology instances (local

or external). Moreover, it defines which server operations will be

invoked by the UI or by external clients. This model also represents the

invocation of external services from the Semantic Web (e.g., SWS or

Linked Data endpoints), previously defined in the EDM.

Figure 4.3. Second activity of the Sm4RIA development process.

The second activity, i.e., the design of the SRIA client or user

interface, continues by transforming the Extended Navigation model

into the EPM and, subsequently, the EOM, through two model-to-model

transformations called Nav2Pres and Nav&Pres2Orch. The resulting

models should be completed by the UI designer. It is worth noticing that

these transformations are optional since the UI designer can also create

the EPM and EOM from scratch. Additionally, the Enrich Presentation

Model and Enrich Orchestration model tasks can also be performed by the

UI designer. In these two tasks, the ontology designer includes the static

ontology-based annotations and links the UI elements to the external

<<Activity>>
Design the SRIA server

Server
designer

Ontology
designer

Domain
model

Extended
Navigation

Model

Define
Domain model

Define the
navigation

model

Extended
Domain
Model

Extended
Navigation

Model

Domain
model

Extended
Domain
Model

Design the
EDM

<<Activity>>
“Design the SRIA client”

UI Designer

Extended
Navigation

Model

Model2Model
Transformer

Presentation
Model Skeleton

Orchestration
Model Skeleton

Orchestration
Model

Presentation
Model

Extended
Orchestration

Model

Extended
Presentation

Model

<<PIMtoPSM>>
Pres&Nav2Orch

<<PIMtoPSM>>
Nav2Pres

Ontology
Designer

Extended
Orchestration

Model

Extended
Presentation

Model
Design the

Presentation
Model

Design the
Orchestration

Model

Enrich the
Presentation

Model

Enrich the
Orchestration

Model

Visualisation
Ontology

Model

<<PSMtoPSM>>
Pres&Orch2Visu

Visualisation
Ontology

Model

Model2Model
Transformer

Model-Driven Development of Rich Internet Applications on the Semantic Web 71

knowledge sources. Once the EPM and the EOM are completed, they are

both transformed into the Visualisation Ontology Model using the

Pres&Orch2Visu M2M transformation, thus combining and abstracting

the knowledge captured in them.

Figure 4.4. Third activity of the Sm4RIA development process.

Finally, in the last activity the final SRIA software modules are

automatically generated from the set of models created in the first two

activities through a set of model-to-text (PSM2Code) transformations.

These transformation processes cannot generate all the code of the

software components, e.g., customised operations cannot be

automatically generated. Part of the code should be manually completed

by developers.

The whole development process will be explained in depth in the

next chapters using the SRIA case studies. In this way, the validity of the

Sm4RIA approach could be assessed qualitatively.

4.2.4 THE SM4RIA METAMODEL (CONCRETE/ABSTRACT

SYNTAX)

The Sm4RIA models introduced in Section 4.2.2 are conformant to the

Sm4RIA meta-model, which extends the OOH4RIA meta-model and the

OMG’s ODM. Figure 4.5 depicts an UML package diagram with the

Sm4RIA meta-model, its components and the links to the meta-models

they extend.

<<Activity>>
“Generate a SRIA”

Model2Text
Transformer

Extended
Navigation

Model

Extended
Domain
Model

Extended
Orchestration

Model

Extended
Presentation

Model

<<PSMtoCode>>
Generate SRIA client

<<PIMtoCode>>
Generate SRIA server

<<PSMtoCode>>
Generate Ontologies and

mapping rules

SRIA

Domain
Model

Visualisation
Ontology

Model

72
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

Figure 4.5. Sm4RIA meta-models and their links to the OOH4RIA and Ontology Definition meta-

models.

The OOH4RIA metamodel is composed by four metamodels

addressing different concerns: Domain, Navigation, Presentation and

Orchestration. The Sm4RIA metamodel reuses the OOH4RIA Domain

metamodel and extends the last three OOH4RIA ones. Sm4RIA defines

two new metamodels, not included in OOH4RIA, i.e., the Extended

Domain metamodel and the Ontovisu metamodel, which extend the

ODM’s OWLBase metamodel.

 Extended Domain metamodel. This metamodel extends the ODM

OWLBase including elements not only for the design of

ontologies ontologies but also the knowledge bases and external

services (and their features: type, method of access, type of

information) with the instances of the ontologies. The EDM is

conformant to this metamodel.

 Extended Navigation metamodel. The Extended Navigation

metamodel includes a new set of meta-elements that represent

external navigational classes, attributes and operations, which

are linked to elements of the EDM. The ENM is conformant to

this metamodel.

<<metamodel>>
ODM

<<metamodel>>
Sm4RIA

<<metamodel>>
OWLBase

<<metamodel>>
Extended
Domain

<<metamodel>>
OntoVisu

<<merge>> <<merge>>

<<metamodel>>
Extended

Navigation

<<metamodel>>
Extended

Presentation

<<metamodel>>
Extended

Orchestration

<<metamodel>>
OOH4RIA

<<metamodel>>
Domain

<<metamodel>>
Navigation

<<metamodel>>
Presentation

<<metamodel>>
Orchestration

<<merge>> <<merge>> <<merge>>

Model-Driven Development of Rich Internet Applications on the Semantic Web 73

 Extended Presentation Metamodel. The EPM extends the elements

of the OOH4RIA Presentation Model adding new elements for

the representation of static semantic annotations and the creation

of UI contexts using external navigational classes from the ENM.

 Extended Orchestration Metamodel. The EOM adapts the

OOH4RIA Orchestration model to the new EPM and ENM

including or modifying the elements required to invoke external

actions.

 OntoVisu. The last metamodel contains a set of elements that

model the visualisation of the SRIA from the user’s perspective.

It allows describing the structural, behavioural and functional

aspects of the UI elements in a platform-independent manner in

contrast to the visual elements (widgets, panels) of the OOH4RIA

Presentation and Orchestration metamodels, which depend on

the SRIA implementation technology. In the same manner that

the Extended Domain Metamodel, this metamodel extend the

ODM OWLBase metamodel.

To sum up, the new Sm4RIA metamodels focus on three main tasks:

 To design the SRIA domain ontology and knowledge base –

Extended Domain Metamodel. Sm4RIA allows defining the domain

ontology of the application and the method of storage of the

ontology instances, facilitating the creation of a knowledge base

from the data stored in the SRIA database.

 To manage the access to ontologies and knowledge bases on the

(Semantic) Web – Extended Domain and Navigation

metamodels. Sm4RIA facilitates the reuse of existing ontologies in

the SRIA domain ontology and includes primitives to access

other ontology instances stored in other Web services.

 To manage the processes of semantic annotation and knowledge

sharing within the SRIA – Extended Navigation Metamodel and

OntoVisu. Sm4RIA metamodels defines conditions (based on the

user data/preferences) to monitor the generation of domain

ontology instances from the database tuples and how they are

included within the SRIA interface.

74
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

4.2.5 CONFIGURATIONS OF THE SM4RIA DEVELOPMENT

PROCESS

As mentioned before, the main goal of the Sm4RIA methodology is to

cover all the development phases of the SRIA proposal. This section

shows how the Sm4RIA development process can be applied to two

special cases of SRIA: the development of RI@BI applications (which

contain an extended set of requirements, see Section 3.5), and the

reengineering and modernisation of legacy applications into SRIAs,

which is an interesting case given the high number of existing Web

applications on the Web.

In order to address these development processes, two new subsets of

components were included in Sm4RIA called Sm4RIA-B (Hermida et al.,

2013), which groups the elements designed to address the development

of RI@BI applications; and Sm4RIA-M, which contains the elements that

support the reengineering and modernisation of legacy applications.

4.2.5.1 ADDRESSING THE DEVELOPMENT OF RI@BI

APPLICATIONS

The adoption of a new type of applications, such as RI@BIs, in

business scenarios depends mainly on its maturity, benefits and

development risks and costs. The application of model-driven

methodologies to the development of RI@BIs can provide a solid

framework for spreading the adoption of these applications. Model-

driven engineering methodologies facilitate the representation of all the

concerns of an application as software models, which can be

subsequently employed to automatically generate the code of the

application. In this manner, the cost of development and maintenance of

the application can be minimised, thus encouraging the use of RIA

platforms.

The Sm4RIA methodology includes a collection of modelling

elements and processes specialised for the specification of BI SRIAs

(labelled as Sm4RIA-B components). Given that this type of SRIAs needs

to fulfil additional requirements, the Sm4RIA-B components are

explained in a different section that the general design process for SRIA.

Model-Driven Development of Rich Internet Applications on the Semantic Web 75

The following paragraphs describe the specific processes (or subtasks)

included to the mentioned aim:

Activity 1. Design the SRIA (RI@BI) server (the affected tasks have

been coloured in blue in the SPEM2 diagram depicted in Figure 4.6):

 During the definition of the EDM, designers can specify the

external data structures required to invoke external services.

 During the definition of the ENM, designers can specify external

service links to B2B services and can define mechanisms for

mashing up knowledge from different sources from the Semantic

Web. Furthermore, designers can indicate, for each navigational

class, the navigational operations and the traversal links that will

be offered as B2B services to other applications and their

characteristics (e.g., type of service, access method, parameters).

Figure 4.6. First activity of the Sm4RIA(-B) methodology.

Activity 2. Design the SRIA (RI@BI) client (the affected tasks have

been coloured in blue in the SPEM2 diagram depicted in Figure 4.7):

 The Extended Presentation metamodel includes visualisation

elements designed for BI SRIAs: new types of complex data

analysis widgets, such as charts or maps.

 In the Extended Orchestration model, the presentation widgets

can be linked to the mash-up methods previously defined in the

ENM.

<<Activity>>
“Design the RI@BI server”

Server
designer

Ontology
designer

Domain
model

Extended
Navigation

Model

Define
Domain
model

Define the
navigation

model

Extended
Domain
Model

Extended
Navigation

Model

Domain
model

Extended
Domain
Model

Design the
EDM

76
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

Figure 4.7. Second activity of the Sm4RIA(-B) methodology.

4.2.5.2 ADDRESSING THE MODERNISATION OF LEGACY WEB

APPLICATIONS WITH SM4RIA

During the past five years, the Web of Data has experienced a

constant growth in the number of datasets freely available, supported

and boosted from different organisations (with public or private

funding) and users (from academia or industry). The existing dataset

network is continuously enriched with data of any nature and topic

from local databases, aiming at improving the permeability of the data

in our societies. However, despite on-going efforts, a large amount of

information flowing through the Web is still not available in these

repositories, but stored in traditional Web applications or legacy Web

applications. Unlike data repositories, Web applications are not static.

The structure of the application can change during its development and

exploitation, while the database can suffer major/minor modifications.

Moreover, it is not unusual that the information about the

design/development of a legacy Web application is not available.

In this context, the SRIA approach could improve the existing

applications providing a rich user interface and a manner of sharing the

knowledge/data contained as linked data. At the same time, the Sm4RIA

methodology could support the process of transition between the legacy

Web application and the resulting SRIA. This process of modernisation

will be focused on the data of the Web application given that the main

interest remains in sharing them as linked data.

In order to generate SRIAs from legacy applications, Sm4RIA

includes a collection of modelling artifacts and processes (labelled as

«Activity»
“Design the RI@BI client”

UI Designer

Extended
Navigation

Model

Model2Model
Transformer

Presentation
Model Skeleton

Orchestration
Model Skeleton Extended

Orchestration
Model

Extended
Presentation

Model

<<PIMtoPSM>>
Pres&Nav2Orch

<<PIMtoPSM>>
Nav2Pres

Extended
Orchestration

Model

Extended
Presentation

Model
Design the

Presentation
Model

Design the
Orchestration

Model

Visualisation
Ontology

Model

<<PSMtoPSM>>
Pres&Orch2Visu

Visualisation
Ontology

Model

Model2Model
Transformer

Model-Driven Development of Rich Internet Applications on the Semantic Web 77

Sm4RIA-M) that 1) facilitate the extraction of the domain knowledge

contained in the schema of the legacy database; 2) specify the manner

this knowledge will be mapped onto a Web resource; and 3) generate

the implementation of the software components of the new SRIA.

Unlike the development process of a new application from scratch,

modernisation processes require a task(s) that extracts the information

required for the models from a pre-existing source, which in this first

case, is the structure of an existing database. In Sm4RIA, this task is

included in the first activity of the development process, represented by

an SPEM2 diagram depicted in Figure 4.8 (coloured in orange those

tasks and models specific for modernisation processes).

Figure 4.8. First activity of the Sm4RIA(-M) development process.

In this case, instead of specifying a new Domain model from the

stakeholders’ requirements, the first activity can start with a text-2-

model transformation that extracts the main components of the database

schema and creates a first version of Domain model. Subsequently, the

server designer checks, and corrects if necessary, the model resulting

from the transformation process. In addition, they need to include those

elements that cannot be automatically obtained from the database:

derivate attributes, class (custom) operations, compositions and

aggregations.

Using the reengineered Domain model, in the next tasks, the

designer builds the domain ontology of the application (at least one)

using the EDM and links all its elements to the domain model

previously obtained from the database. As mentioned before, both

domain models are the basis for creating the rest of the Sm4RIA models.

This process of modernisation can be further automated using

model-to-model transformations in some specific cases such as, the

<<Activity>>
Design the SRIA server

Server
designer

Ontology
designer

Domain
model

Extended
Navigation

Model

Complete
Domain
model

Define the
navigation

model

Extended
Domain
Model

Extended
Navigation

Model

Domain
model

Extended
Domain
Model

Design the
EDM

Legacy
database
schema Extract domain

model
components

Text2Model
Transformer

OOH4RIA
Domain
Meta-
Model

Domain Model
Skeleton

78
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

development of administrative views for legacy Web applications or

(S)RIA. This task is usually performed in any project and the

requirements and features of the resulting applications are normally

similar independently from the application domain. Administrators

mainly need a view which:

a) Can show any piece of data stored in the database;

b) Facilitates the invocation of the main CRUD operations and

search operations over the domain objects;

c) Protected by an authentication process.

Given the simplicity of the features of this view, it is possible to

automatically build most of the Sm4RIA design models that capture

them. To this aim, in the first and second activities of the process,

designers can apply a collection of model-to-model transformation

processes as illustrated by the SPEM2 diagrams in Figure 4.9 and Figure

4.10 (the transformations are coloured in orange).

Figure 4.9. Modification of the first activity of Sm4RIA(-M) including M2M transformations.

In this way, once the back-end designer has completed the Domain

model, the Dom2EDM and EDM2ENM M2M transformations can be

invoked obtaining as a result the EDM and the ENM of the application,

respectively. The first transformation obtains a domain ontology from

the data entities defined in the Domain model. Moreover, the resulting

EDM includes the database-ontology mapping rules and defines the

basic query operations over ontology instances. Subsequently, the

EDM2ENM transformation creates an ENM with all the possible

navigational nodes and paths, and the invocations of the main CRUD

operations for each data entity. In this process, it is supposed that there

is only a single administrator in the Web application. If there were more

than one with different security levels, it would be necessary to indicate

<<Activity>>
“Design the SRIA server”

Server
designer

Domain
model

Extended
Navigation

Model

Complete
Domain
model

<<PIM2PIM>>
EDM2ENM

Extended
Domain
Model

Extended
Navigation

Model

Domain
model

Extended
Domain
Model

<<PIM2PIM>>
Dom2EDM

Legacy
database
schema Extract domain

model
components

Text2Model
Transformer

OOH4RIA
Domain
Meta-
Model

Domain Model
Skeleton

Model2Model
Transformer

Model-Driven Development of Rich Internet Applications on the Semantic Web 79

which data objects can be accessed by each of them in the Domain model

and, subsequently, generate a view of the ENM for each of them.

Depending on the complexity and security needs, it might be more

convenient to model this case manually.

In the second activity, the ENM is transformed into the EPM and

EOM in the ENM2EPM and ENM&EPM2EOM M2M transformation

processes. Both transformations build the structure and behaviour of the

user interface based on a collection of navigational patterns. From each

of the detected patterns, the first transformation creates a default set of

components of the UI while the second one specifies the required ECA

rules, which define the behaviour of the UI and the invocation of the

SRIA server services.

Figure 4.10. Modification of the second activity of Sm4RIA(-M) including M2M transformations.

It is worth noticing that although in this case most of the processes

are performed automatically, it is also possible to include a task in which

a designer checks the resulting models and adapt them to their needs.

For instance, the style of the UI elements can be modified after the

generation of the model even thought this can be also carried out once

the application has been generated.

The automatic generation of the complete UI as shown in this

process can be only performed with those Web applications in which the

UI is usually very similar and its features do not vary depending on the

application domain. In other cases, it is recommended to obtain a mock-

up that can be completed by the UI designer or even create it from

scratch.

«Activity»
“Design the RI@BI client”

Extended
Navigation

Model

Model2Model
Transformer

Extended
Orchestration

Model

Extended
Presentation

Model

Extended
Orchestration

Model

Extended
Presentation

Model

Visualisation
Ontology

Model

<<PSMtoPSM>>
Pres&Orch2Visu

Visualisation
Ontology

Model

<<PIMtoPSM>>
ENM2EPM

<<PIMtoPSM>>
ENM&EPM2EOM

80
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

Another example of this type of UI is the HTML views of raw Linked

data such as those generated by the some of the main Linked Data

managers, e.g., OpenLink Virtuoso or D2RQ. These views are normally

used for the visualisation of the RDF content of the repository with a

user-friendly HTML view, which could be also indexed by the Web

search engines. In order to generate (S)RIA rich user interfaces for the

Linked Data repositories, which improve the interaction of traditional

Web interfaces with the human users, it would be also possible to use an

alternative approach that takes as input the domain ontology (-ies) or

vocabulary (-ies) on which the Linked Data repository is based on.

With this aim, the first activity of the Sm4RIA development process

can be reconfigured as depicted in Figure 4.11. In this last version of the

first activity, from the domain ontology (-ies) of the repository, a text-2-

model process extracts the main elements of the ontology and creates a

mock-up of the EDM, which can be completed or modified by the

ontology designer. Once completed, the EDM2Domain and EDM2ENM

transformation processes build the Domain model and the ENM from

the EDM. The EDM2Domain transformation creates a domain model

with the main data structures for the management and local storage (if

necessary) of the ontology instances.

Figure 4.11. Modification of the first activity of Sm4RIA(-M) for the generation of RIA interfaces

for Linked Data repositories.

The “Extract ontology components” task performs different subtasks

depending on the representation language of the input ontology. It

should be taken into consideration that the goal of the EDM metamodel

is the representation of lightweight ontologies and it cannot therefore

represent complex ontology elements such as user axioms or rules.

<<Activity>>
“Design the SRIA server”

Ontology
Designer

Extended
Domain
Model

Extended
Navigation

Model

Complete
EDM

<<PIM2PIM>>
EDM2ENM

Domain
Model

Extended
Navigation

Model

Extended
Domain
model

Domain
Model

<<PIM2PIM>>
EDM2DomainOntology

Extract
ontology

components

Text2Model
Transformer

Sm4RIA
Extended
Domain

Metamodel

EDM skeleton

Model2Model
Transformer

Model-Driven Development of Rich Internet Applications on the Semantic Web 81

4.3 CONCLUSIONS

This chapter has introduced the main contributions of this thesis: the

SRIA approach and the Sm4RIA methodology.

The content of RIAs cannot be easily crawled and indexed by Web

search engines, which can prevent developers from implementing RIA

applications and enterprises from using this type of application for their

business. In this context, the first contribution is the definition of a new

class of RIA, i.e. the Semantic RIA, whose main goal is to provide a

generic solution to this problem based on the existing Semantic Web

techniques and independent from the implementation technology. The

SRIA approach extends the structure of the traditional RIA including

modules for sharing local knowledge and consuming knowledge from

the Semantic Web. The knowledge managed by the SRIA is completely

available as linked data using the annotation model proposed. This

three-layer model combines different existing approaches and can

provide a complete view of the application from the user perspective,

hiding design or implementation details, in such a way that this

knowledge could be reused to create widgets for other Web or desktop

applications.

The three case studies developed have been used to assess the

proposal in three different scenarios: the Semantic Web with the

development of a media player, the Social Semantic Web with the

development of a SNS, and the field of Business Intelligence for

enterprises. The qualitative assessment was performed either internally,

i.e., analysing the features developed and the possible improvements,

and externally, i.e., in international conferences and journals. The

evaluation of performance and scalability issues was not in the scope of

the analysis carried out.

The main conclusion obtained from the internal analysis was that the

complexity of the resulting SRIA architecture notably increased the cost

of development and maintenance (comparing to RIA or traditional Web

applications), which is a risk factor that threatens the viability of this

type of applications and their future success, especially when working in

business scenarios. SRIAs require complex software modules combined

in a single architecture in order to deal with issues of knowledge

management and visualisation.

82
Chapter 4. A Methodology for the Development of Semantic Rich Internet

Applications

Model-driven Web engineering methodologies facilitate the

development and maintenance of complex Web applications such as

SRIAs. As an example of such a methodology, the thesis introduces the

second contribution, i.e., the Sm4RIA methodology, which offers a set of

models that can represent the structure and behaviour of their software

components, and the processes that transform these models into the

final code. Thus, Sm4RIA, as a model-driven methodology, can minimise

the identified risks and can bring many benefits to the development of

complex RIA (in the Social Web, for Business Intelligence or in

modernisation processes). As shown in this chapter, the proposal is

sufficiently flexible to cover the different case studies, each with their

own requirements.

The following chapters will explain the three activities of the Sm4RIA

process and its variations in depth using the SNS case study as example.

Each chapter will describe the tasks of the activity, the Sm4RIA

metamodels and models involved, the transformation processes (model-

to-model, model-to-text, or text-to-model) and the different decisions

taken during the design of Sm4RIA. Further on, they will explain the

possible Sm4RIA extensions or variations presented in Section 4.2.5.

Chapter 5. DESIGNING THE SERVER

COMPONENTS OF A SEMANTIC RICH

INTERNET APPLICATION

In the development of applications with a client-server architecture,

such as Web applications, the application server is usually the first

element that is developed. The server components normally store and

manage the application data that is employed by the client components,

which directly interact with the final users. Following the same

motivation, the first activity of the Sm4RIA development process is the

development of the SRIA server.

Specifically, this activity is composed of three tasks performed by

two actors (please see the SPEM2 diagram in Figure 4.2, page 70), i.e.,

the server designer and the ontology designer. The output artefacts of

the first activity are the first three Sm4RIA models: the Domain Model, the

Extended Domain Model and the Extended Navigational Model. The main

aims of this activity are the following:

a) To design the data structures and the operations that can be

performed over them.

b) To build the domain ontology of the application, importing

external ontologies, if necessary.

c) To specify the main operations over ontology instances.

d) To specify the external sources of Linked Data that can be used

by the SRIA.

84
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

e) To design the main navigational paths through the application

data that can be followed using the SRIA client, thus specifying

the service interface that will provide data to the SRIA client(s).

f) To design the object-relational and ontology-relational mappings.

g) To specify the service interface that will provide data to the SRIA

client and ontology instances to external clients.

This chapter describes in detail the three tasks of the first activity in

separate sections using the case study explained in Section 3.4.1 (page

54): the development of a social network site. The following sections will

explain the process followed in each of the tasks, including a detailed

description of the models and metamodels employed. The models

resulting from the design of the rest of the case studies proposed are

included in Annex D (page 267).

5.1 DESIGN THE STRATEGIES OF DATA PERSISTENCE

In the first task, from a list of requirements from the stakeholders,

the server designer defines a) the main data structures using an Object-

oriented paradigm, which will be managed by the application and

stored in the database; and b) the operations over these structures,

which will be invoked by other server or client components.

As a result of this process, the designer creates the Domain model of

the application. This model is conformant to the OOH4RIA Domain

metamodel, which extends the UML metamodel for class diagrams with

new modelling elements for the definition of collection types, operation

types and object-relational mappings. The decisions taken during the

design of the Domain model will strongly influence the rest of the

process, since it is, directly or indirectly, the input of all the tasks of the

process. This model does not contain technical or implementation

details.

5.1.1 THE DOMAIN METAMODEL

The Domain metamodel extends the UML metamodel for class

diagrams (abstract and concrete syntaxes) introducing several

modifications in order to remove ambiguous aspects in the creation of

Model-Driven Development of Rich Internet Applications on the Semantic Web 85

Object-Relational mappings (mapping rules that transform the data

structures into registers of a relational database and vice versa):

(i) this metamodel defines a topology of operation types, such as

create, delete, relate, unrelate, modify, readAll, etc., each of which

is related to a specific function in the final implementation

(e.g., to create an object, to delete an object, etc.);

(ii) it represents the main collection types, e.g., set, bag, list, etc.;

(iii) the metamodel defines the concept of object identifier as a

metaproperty of those class attributes that will be generated

as primary keys, and the metaproperty “database alias”

within classes, attributes and association roles for naming

tables, columns and foreign keys, respectively.

Figure 5.1 depicts an UML class diagram with the abstract syntax of

the Domain metamodel. The concrete syntax of the Domain metamodel

was reused from the UML class metamodel. The abstract syntax shown

in this figure was created using the EMOF metamodel, which facilitates

the implementation of the model in a CASE tool. This metamodel is

similar to the domain models of other model-driven methodologies such

as OO-H, UWE or WebSA.

The main metaclasses of the Domain metamodel can be described as

follows:

 ConceptualModel. This metaclass represents a complete

model or a package (submodel) within the main model. A

conceptual model contains a set of ConceptualElement

elements even new ConceptualModel elements. It is illustrated

using the concrete syntax of UML Package.

 ConceptualElement. This abstract metaclass represents any

possible element contained in a Domain model (or

ConceptualModel element).

 Class. This metaclass represents a type of data object

characterised by its name. Similarly to the UML metamodel, a

class contains a set of attributes and operations. It is depicted

using the concrete syntax of the UML Class.

 Attribute. This metaclass represents a feature of a class or an

association role, in both cases, characterised by its name and

its primitive type (and collection type). It is depicted using

the concrete syntax of the UML Attribute or the association

86
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

role, depending on which object is linked to. In this

metamodel, the visibility of the class attribute (public, private

or protected) is represented using a coloured circle on the left

side of the attribute name. Those class attributes that are

object identifiers (OID), whose isOID property is set true, are

represented with the icon of a key.

Figure 5.1. Schema of the Domain EMOF Metamodel.

 Operation. This metaclass represents an action that can be

performed over the class objects. Each operation is identified

by its name the return type and the number, names and types

of the arguments it contains (Argument metaclass). In this

Model-Driven Development of Rich Internet Applications on the Semantic Web 87

metamodel, each operation has an operation type

(OperationType enumeration) that indicates if it is a CRUD

operation or a custom operation. It is represented using the

concrete syntax of the UML operations (including the

modification of the representation of the visibility property).

 Association. This metaclass captures the semantics of a

relationship between two classes in the same manner as the

UML metamodel. It contains two attributes that establish two

different relationships the direct one (from class A to B) and

the inverse one (from B to A). It is depicted using the concrete

syntax of the UML Association.

 Inheritance. This metaclass captures and represents the

semantics of the UML class inheritance using the same

concrete syntax. Multiple inheritance is not supported by this

metamodel.

The following section presents the Domain model of the SNS case

study as an example. This example contains all the elements of the

Domain metamodel described in this section.

5.1.2 AN EXAMPLE OF DOMAIN MODEL: SOCIAL NETWORK

SITE

This section commences the explanation of the manner in which

Sm4RIA should be applied to develop a SRIA application with a specific

case study: the Social Network site. It will deeply describe the

functionalities and components of the case study, including some

aspects not explicitly mentioned in the initial description (see Section

3.4.1, page 54).

In this case, after obtaining all the requirements from the

stakeholders, the server designer(s) created the Domain model

illustrated in Figure 5.2. In this model, there are two types of possible

members: community members (or simply, users, class UserAccount) and

corporative members (artists, i.e. users with a profile of the class Artist).

The first ones are the main contributors of the SNS, i.e., those who

interact, create and consume the contents of the SNS. Corporative users

also have the possibility to manage an official profile to interact with

88
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

their fans or followers. This profile can only be created by the

administrator of the application.

Figure 5.2. Diagram of the Domain Model of the Social Network Site case study.

Users can be connected by a relationship of friendship, which is

established by a mechanism based on invitations (class Invitation). All

the members own a wall where they can publish their own stories (class

Story) and can read their friends’ stories. Moreover, they can write

comments about their stories, their friends’ stories or replying other

comment (class Comment). Users can also send private messages (class

Message) to their friends.

As this SNS is focused on the music domain, artists can publish their

own albums (class Album), containing a list of tracks (class MusicTrack).

Model-Driven Development of Rich Internet Applications on the Semantic Web 89

User can create his/her own personal playlists from the albums

published by the artists. Albums, music tracks, stories and comments

can be tagged by any user (class Tag) in such a way that the tags will

facilitate the retrieval of elements with similar content.

As can be appreciated from the diagram, each class includes a

collection of attributes that characterise them and also defines the main

CRUD operations (new, modify, destroy, readAll and readOID). It is also

worth highlighting that the sharing attribute (UserAccount classes) will

allow the application to store the user’s privacy preferences regarding

the exportation of the data as ontology instances in further stages of the

Sm4RIA process.

5.2 BUILD THE DOMAIN ONTOLOGY AND THE ONTOLOGY-

DATABASE MAPPING RULES

Once the Domain model is completed, the ontology designer

addresses the development of the domain ontology of the application

with the Extended Domain Model, which captures and represents the

domain knowledge as a lightweight ontology and specifies the reuse of

external ontologies and knowledge bases within the SRIA. Thus, this

model could be partially considered as an ontology representation

language.

The model, based on the Extended Domain metamodel, is aimed at

linking the domain knowledge with other sources of knowledge. The

Sm4RIA methodology does not propose a new ontology design

methodology but leaves this decision to the ontology designer, who can

use the one that better fits with their background and the model.

The EDM can be built in two stages that can be carried out

iteratively. In the first one, the designer defines the local ontology and

establishes a relationship between the local ontology and the external

ontologies that will be imported (if necessary). Furthermore, they define

the manner in which the instances of each ontology (local or external)

are stored, i.e., they define the available knowledge bases and the

manner of access to them (type of service, URI, etc.)

Designers can import an ontology for three main reasons: a) because

they need to reuse some of the elements (concepts or properties), thus

90
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

reducing the effort of building a new ontology; b) because they need to

export the information contained in the SRIA as instances of the

imported ontologies or c) because they need to access to new

information stored in an external repository as linked data. In any case,

the ontology designers need to link the external elements to elements of

the local ontology. The elements of the imported ontologies cannot be

modified, just extended, since the definition is managed by other

organisations. Despite this, it is possible to link elements of imported

ontologies to elements of the Domain Model of the application.

In a second stage, the designer builds the actual domain ontology

creating new elements or reusing elements from the ontologies already

imported (concepts from each source can be aligned using different

mechanisms, e.g., inheritance or equivalency, among others).

5.2.1 THE EXTENDED DOMAIN METAMODEL: ABSTRACT AND

CONCRETE SYNTAXES

The Extended Domain metamodel, whose abstract syntax is depicted

in the diagram of Figure 5.3, represents the elements needed for the

representation of lightweight ontologies and mapping the elements of

the ontology to the elements of the Domain Model.

This metamodel extends the ODM into three directions:

(i) it defines the concept of “knowledge source” in order to allow

the specification of the repositories of ontology instances (or

knowledge bases) that are related to any ontology;

(ii) the metamodel includes the elements required to define

relations between the ontology elements and the elements

from the Domain Model, thus manually specifying the

ontology-database mapping rules;

(iii) It defines a collection of operations that can be performed

over the ontology instances (mainly query operations such as

readAll, filter, etc.)

The diagram depicted in Figure 5.3 shows the main elements of the

Extended Domain metamodel and the connections to the elements of the

Domain metamodel (coloured in blue) and OWLBase metamodel

(coloured in red). Table 5.1 describes each of the elements of the ED

Model-Driven Development of Rich Internet Applications on the Semantic Web 91

metamodel contained in the diagram and presents their concrete syntax

(or graphical notation).

Figure 5.3. Diagram of the main elements of the Extended Domain metamodel.

Table 5.1. Description of the main elements of the Extended Domain metamodel.

Metaelement Description Graphical Notation

EDModel This metaclass represents the whole

model and can contain elements of the

OntologyModel and ModelRelation

metaclasses.

No graphical

representation.

OntologyModel This metaclass extends the

OWLBase::OWLOntology metaclass and

represents an ontology. OntologyModel

elements contain a collection of

 OntologyModel

92
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

Metaelement Description Graphical Notation

OntologyElement elements and can be

related to a list of Source elements, i.e.,

knowledge bases, by means of the

Instance metaelement. An

OntologyModel element can be linked to

one conceptualView::ConceptualModel

element (from the Domain model) at

most.

Source This metaclass represents a knowledge

base (generally speaking, a

“knowledge source”), i.e. a collection

of ontology instances. A Source element

must be related to at least one

OntologyModel element, in the same

way that ontology instances must be

related to their ontology classes.

Instance Association between a Source element

with its corresponding OntologyModel

elements. The Individual elements of a

OntologyModel element can be stored in

several Source elements.

Import Association between two

OntologyModel elements that represents

the mechanism for ontology import. A

DOM can import elements from other

DOMs.

OntologyElement Abstract metaclass that represents all

the types of elements that can be

included in a knowledge definition.

No graphical

representation.

Concept This metaclass extends the

OWLBase::OWLClass and represents a

concept of an ontology. Each Concept

element can be related to a single

Domain Class element (or

conceptualView::Class). The graphical

notation is similar to the Domain Class

notation. It is depicted as a box with

three compartments: concept

information, attributes and operations.

 Source

Model-Driven Development of Rich Internet Applications on the Semantic Web 93

Metaelement Description Graphical Notation

Property Abstract metaclass that represents all

the possible features of a Concept

element.

No graphical

representation.

Attribute This metaclass represents a feature of a

concept. It extends the

OWLBase::OWLDatatypeProperty. Each

Attribute element can be related to at

least a Domain Attribute element (or

conceptualView::Attribute).

See the Concept

metaelement.

Relationship This metaclass extends the

OWLBase::OWLObjectProperty and

represents a relationship between two

Concept elements. Each Relationship

element can be related to at least a

conceptualView::Attribute element (from

the Domain model). The end of the

arrow points to the

Inheritance This metaclass represents a special

type of relationship between Concept

elements or between Property

elements. Relationship elements

connect elements related by a

generalisation/specialisation

relationship

Operation This metaclass represents an action

that can be performed over ontology

instances.

See the Concept

metaelement.

As can be noticed, the concrete syntax of the Extended Domain

model is similar to the notation of the Domain model in order to

facilitate the process of modelling to the back-end designers.

Finally, Table 5.2 introduces a collection of the main OCL constrains

defined over the Extended Domain metamodel, which aim at preserving

the consistency of the information stored in the model.

Relationship

94
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

Table 5.2. Summary of the OCL constraints for the Extended Domain metamodel.

Name Description / OCL Statement

DifferentModelUris Two OntologyModel elements cannot refer to the same URI.

context EDModel

inv:

self.models->forEach(m |

self.models.uriBase->select(n | n =

m.uriBase)->size() = 1)

LocalModelWithCM Local OntologyModel elements must be associated to a

ConceptualModel element.

context OntologyModel

inv:

!self.isLocal || (self.isLocal && self.cm <>

null)
ImportModel The model imported and the base model must be different.

context Import

inv:

self.base <> self.target
AllPropertiesDifferent All the properties of a Concept element must be different.

context Concept

inv:

self.properties->forAll(p | self.properties-

>select(p2 | p.uri = p2.uri && p.name =

p2.name)->size() = 1)
InverseRelationship A Relationship element cannot be its own inverse.

context Relationship

inv:

self.inverse <> self
Generalisation Ascendant and descendant Concept elements must be

different.

context Inheritance

inv:

self.ascendant <> self.descendant

The next section presents an example of Extended Domain Model

following the development of the SNS case study.

5.2.2 THE EXTENDED DOMAIN MODEL FOR THE SOCIAL

NETWORK SITE

The ontology designer continues the design of the SNS case study by

creating the Extended Domain Model. As mentioned before, this model

can be built in two stages. In the first one, the designer defines the local

ontology, the ontologies that are imported and the knowledge sources

available, which contain the ontology instances of the external

Model-Driven Development of Rich Internet Applications on the Semantic Web 95

ontologies. Figure 5.4 illustrates the Package view of the EDM of the

SNS resulting from the first stage of this task.

Figure 5.4. Extended Domain Model of the SNS case study (Package view).

The Local OntologyModel element represents the domain ontology of

the application, while the LocalSource Source element indicates where

their instances are stored in. Both elements must be included in any

EDM by default. The properties of each element are included within the

annotation elements attached to them. In this example, the Local

OntologyModel element imports three ontologies:

 the FOAF ontology (OntologyModel FOAF), which represents

people, documents and their relationships;

 SIOC (OntologyModel SIOC), which represents concepts related

to social sites and the Social Web;

 the MusicOntology ontology (OntologyModel MusicOntology),

which represents concepts about the music domain; and

 the Dublin Core ontology (OntologyModel DublinCore), which is

not directly imported but is required by the MusicOntology

OntologyModel element in order to represent some of the

properties of their concepts. The ontology designer should also

MusicBrainzMusicOntology

Local

FOAF

‹‹OntologyModel››

namespacePrefix = sns

namespaceURI = http://www.dlsi.ua.es/sm4ria/sns/

‹‹OntologyModel››

namespacePrefix = mo

namespaceURI = http://purl.org/ontology/mo/

‹‹Source››

sourceType = SourceType::SPARQL

namespaceURI = http://dbtune.org/musicbrainz/sparql

LocalSource

‹‹Source››

sourceType = SourceType::SPARQL

namespaceURI = http://www.dlsi.ua.es/sm4ria/sns/sparql

‹‹OntologyModel››

namespacePrefix = foaf

namespaceURI = http://xmlns.com/foaf/spec/

SNS_FaceRIA

‹‹Source››

sourceType = SourceType::SPARQL

namespaceURI = http://www.faceria.com/kb/sparql

SIOC

‹‹OntologyModel››

namespacePrefix = sioc

namespaceURI = http://rdfs.org/sioc/ns#

DublinCore

‹‹OntologyModel››

namespacePrefix = dc

namespaceURI = http://purl.org/dc/elements/1.1/

96
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

analyse and choose which ontologies are also needed by the ones

imported.

The designed SNS aims to reuse the information about the users of

another existing SNS called FaceRIA using its SPARQL service in order

to facilitate the interconnection of both SNS. Furthermore, the

stakeholders need to retrieve information from the MusicBrainz

repository. As a consequence, the designer included the MusicBrainz

Source element, which specifies the service that provides access to the

MusicBrainz ontology instances, represented by the MusicOntology. By

importing the MusicOntology ontology, the designer aims at reusing the

elements for the local ontology, publishing the application data as

instances of this ontology (in this way, the information could be reused

by MusicBrainz for instance) and accessing to the information stored in

MusicBrainz.

Once this first stage is completed, the designer builds the domain

ontology (i.e., specifies the content of the Local OntologyModel element),

creating new ontology elements, reusing elements from the ontologies

already imported or mapping local concepts to the concepts from

external ontologies. Figure 5.5 depicts a fragment of the final domain

ontology for the SNS case study. The names of the elements imported

from other ontologies include a prefix corresponding with the

namespace of its OntologyModel element. For instance, prefixes “sioc::”

(for concepts), “sioc__” (for properties) and “foaf__” correspond to the

namespaces of the SIOC and FOAF OntologyModel elements

respectively, defined in the first stage.

Following the example, the elements of the domain ontology can be

classified into two groups (in the same way that the Domain model

elements):

 a group with the elements that represent the social entities (with

the classes sioc__UserAccount, foaf__Person, Story, Comment, Tag;

and their properties), which would be similar for any SNS and

contains those elements required for the representation of the

social interaction of a community of users; and

 another group dependent from the application domain, which is,

in this case, associated to the music domain (classes

mo::MusicArtist, mo::Track, mo::Record and PlayList) and

determines the main aim of the application.

Model-Driven Development of Rich Internet Applications on the Semantic Web 97

In this example, the designer reused elements from FOAF and SIOC

in order to represent the users of the SNS (concept foaf::Person) and their

accounts within the application (concept sioc::UserAccount), which can

facilitate the interchange of the knowledge contained in this SNS with

other social sites. Furthermore, they employed elements of

MusicOntology and DublinCore for the representation of the artists

(concept mo::Artist), albums (concept mo::Record) and tracks (concept

mo::Track) managed by the application. The concepts that represent the

stories (concept Story), comments (concept Comment), playlists (concept

PlayList) and tags (concept Tag) were created by the designer within the

context of the Local OntologyModel element.

Figure 5.5. Diagram of the content of Local Ontology Model element for the SNS case study.

This model does not contain the concepts of message or invitation

that were included in the Domain model. Not all the concepts captured

by the Domain model should be included in the EDM. The elements of

this last model might be linked to elements of the Domain model but,

depending on the requirements, the ontology designer could also use

new concepts from an external source, which might not be associated to

any element of the Domain model. The link between the elements of the

two diagrams (at any level: concept or property) creates a mapping rule

that could be used in order to generate the information contained in the

98
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

SRIA as instances of a certain ontology or to manage external

information as if it were local, i.e., mapping the external data structures

into the local representation.

The attributes of each concept are represented within its

compartment. For each attribute, the diagram depicts its name, type

(XML data type) and visibility. The semantics of the visibility in the

EDM differs from the Domain model. In the EDM, it indicates whether

the values of the attribute can be shared to external clients (value

Visibility::Public, depicted as a green square) or not (value

Visibility::Private, depicted as a red circle).

Moreover, in the concepts mo::Record and mo::Track, the designer

defined three operations in order to retrieve instances of these concepts

from a certain source and filter them according to a predefined

condition. As an example, the getAllRecordsByName operation aims at

searching the records whose name is similar to the name provided by

the user. The type of this operation is OperationType::ReadFilter and the

search condition is introduced by the designer. The name of the record

to be found is provided as a parameter of the operation. In the same

way, the designer defined the getAllRecordsByDate and

getAllTracksByName operations, which aim at searching those records

and tracks whose initial date and name are given by the users,

respectively.

5.2.3 TWO MODELS, ONE DOMAIN

Given the characteristics of the Domain model and the EDM and the

actions performed in each of the two initial tasks, the necessity of two

models for the representation of the domain of the application might not

seem appropriate. The Domain ontology and the EDM represent the

domain knowledge using two domain specific languages whose abstract

and concrete syntaxes might be similar. During the design of the Sm4RIA

methodology, it could have been possible to address the design of these

aspects of the application from other perspectives, e.g., creating only a

model with the domain ontology (combining both models into one

single model), creating the EDM first, etc.

It is possible to create the database structures from the domain

ontology in the same manner as other methodologies such as SHDM

Model-Driven Development of Rich Internet Applications on the Semantic Web 99

propose (thus, transforming the model-driven methodology into an

ontology-driven methodology, at least partially. Ontologies contain the

knowledge of the domain needed to create a database schema from

which the actual relational database, which is the most common type of

database for Web applications, could be created. Taking into

consideration this possibility, the ontology, or the EDM (and Extended

Domain metamodel) in this case, would need to include some

mechanisms in order to specify some features of the database, e.g.,

primary keys or type conversion mechanisms, among others. This could

be achieved by extending the EDM or by modifying the Sm4RIA process

in such a way that the Domain model could be created from the EDM

(manually or automatically). With the modification of the process, the

designer could reuse the efforts spent in the design of the Domain model

and the transformation rules. Nevertheless, by applying this last

solution the application would be bound to the ontology designed while

the complexity of the resulting design process would not be affected

drastically, since the actions performed would remain the same

independently from the number of tasks or models.

The solution adopted separates the representation of the data objects

in the database from the representation of the ontology, thus increasing

the flexibility of the process. The current Sm4RIA process facilitates the

definition of different domain ontologies (EDM) and the establishment

of different mapping rules between the Domain model and them, which

would lead to different views of the same data repository (different sets

of ontology instances created from the same dataset). Moreover, it is

totally compatible with the OOH4RIA design process, which also

facilitates the adaptation of existing RIA applications to the SRIA

approach or the transformation of legacy RIA applications into Linked

Data repositories.

This solution is especially useful and recommendable in the

development processes in which the stakeholders need to create a SRIA

from their own legacy Web application (or from a legacy database) or

need to develop a certain database structure (because it will be used by

other applications). In other cases, model-to-model transformations can

be applied to speed up this process.

100
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

5.3 SPECIFICATION OF THE NAVIGATIONAL CONCERNS

After the specification of the EDM, in the following task of the

Sm4RIA process (see Section 4.2.3, page 69), the server designer carries

out the design of the Extended Navigation model (ENM). In this task,

they establish the navigational paths through the application data, thus

filtering the domain elements managed by the SRIA client components

or external clients.

This model is conformant to the Sm4RIA Extended Navigation

metamodel, which extends the OOH4RIA Navigation metamodel (see

Section 4.2.4, page 71). The ENM, in the same manner as the OOH4RIA

Navigational model, defines the navigation of the users from the

designer’s perspective in terms of two basic elements:

 Navigational classes, which are views of the data instances and

operations associated to a class of the Domain model or a concept

of the EDM. Navigational classes (depicted by three-

compartment boxes in the OOH4RIA Navigational metamodel)

can offer certain navigational attributes, which are views of

attributes of the domain class or concept; and navigational

operations, corresponding to operations of the domain class or

concept. The initial navigation class is denoted by a small arrow

on the top left corner of the box.

 Navigational links, which define the manner in which users can

explore the data (moving from one navigational class to another)

and invoke the operations offered. Navigational links, depicted

as arrows in the OOH4RIA Navigational metamodel, can be

classified into traversal links, which represent the transition

between navigational classes, or service links, which represent

the invocation of a navigational operation and whose origin is

drawn as a square.

The OOH4RIA Navigational metamodel organises the

navigational classes into contexts, which are clusters of classes

whose data can be visualised in the same client screenshot. A

transition does not imply a change of context. Navigational links

that do change the context are coloured in black. Otherwise, the

arrows are depicted in white. Finally, transitions can be also

Model-Driven Development of Rich Internet Applications on the Semantic Web 101

activated automatically, in which case the metamodel illustrates

them as dashed lines.

Sm4RIA includes new types of mechanisms in order to represent the

retrieval of ontology instances from external sources and the navigation

of the user through these data. Both aspects are closely related to the

elements defined in the domain ontology and the ontologies imported in

the EDM.

The ENM can be organised into different views, each for a different

client role (e.g., SRIA client, Semantic Web agent, B2B agent, etc.) In this

way, the application will offer service interfaces specialised for each type

of client. For the development of SRIAs the designer must include two

diagrams: one for the SRIA client, which will be used by the human

users, and another for Semantic Web agents. The first one defines the

manner in which users will interact with the application data and

operations, while the second one specifies which ontology instances will

be available for the Semantic Web agents through the SRIA Linked Data

interface.

5.3.1 THE EXTENDED NAVIGATIONAL META-MODEL

The Sm4RIA Extended Navigation metamodel, which extends the

OOH4RIA Navigation metamodel, described by Cachero et al. (Cachero

et al., 2007), describes the abstract and concrete syntaxes of the ENM. It

defines a collection of elements that facilitate the access to the content of

external repositories of ontology instances and the process of sharing the

data of the application as ontology instances.

In order to contextualise the contribution of the Extended Navigation

metamodel, Figure 5.6 illustrates a diagram with the main components

of the abstract syntax of the OOH4RIA EMOF Navigational metamodel

as a class diagram. The metaclasses of this metamodel are coloured in

dark grey, while the metaclasses of the OOH4RIA Domain model are

coloured in red and their name include the package name

(conceptualView).

102
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

Figure 5.6. Diagram of the OOH4RIA Navigational metamodel.

The Sm4RIA metamodel includes new types of external elements

such as the External Navigational Class, which represents a view of data

obtained from concepts and properties of the EDM. Moreover, it extends

the OOH4RIA Navigational model with two new types of external links,

which facilitate the combination of local and external knowledge. In the

same way that Figure 5.6, Figure 5.7 depicts a class diagram with the

abstract syntax of the Sm4RIA EMOF Extended Navigational Model. The

figure shows the main elements of the metamodel and the connections

to the Extended Domain metamodel (package ExtendedDomainModel)

and OOH4RIA Navigational metamodel (package NavigationalView).

Model-Driven Development of Rich Internet Applications on the Semantic Web 103

Figure 5.7. Diagram of the Extended Navigational Metamodel.

In order to facilitate the understanding of the diagram content, the

metaclasses of the Extended Domain metamodel have been coloured in

red while the ones of the Navigational metamodel in blue. Each of the

elements defined in the metamodel (coloured in dark grey) is described

in Table 5.3 with its graphical representation.

Table 5.3. Description of the new elements of the Extended Navigation Metamodel.

Metaelement Description Graphical Notation

ExternalNavigational-

Class
This metaclass extends the

NavigationalClass concept

representing those classes whose

data is obtained from ontology

instances. The word “external” is

introduced in order to highlight that

the data of these classes will be

104
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

Metaelement Description Graphical Notation

normally obtained from an external

source. If the design needs to use

local data, they can employ

OOH4RIA navigational classes and

retrieve these data from the

database.

Each ExternalNavigationalClass

element must be associated to a

concept and a source of the EDM.

The Source element indicates the

repository which the instances will

be retrieved from and must be

related to the OntologyModel

element that contained the Concept

element.

The metaclass is depicted as a

dashed box with three

compartments: a) class name; b)

navigational attributes; and c)

navigational operations.
ExternalNavigational-

Attribute
This metaclass extends the concept

of NavigationalAttribute representing

those features of an

ExternalNavigationalClass element

that can be obtained.

Each ExternalNavigationalAttribute

element must be related to an

Attribute element from the EDM,

which, at the same time, must be

contained in the concept associated

to the container (i.e., the

navigational class).

See the

ExternalNavigationalClass

metaelement

ExternalNavigational-

Operation
This metaclass extends the concept

of NavigationalOperation

representing those operations of an

ExternalNavigationalClass element

that can be invoked as a service.

Each ExternalNavigationalAttribute

element must be related to an

Attribute element from the EDM,

which, at the same time, must be

contained in the concept associated

to the container (i.e., an external

See the

ExternalNavigationalClass

metaelement

Model-Driven Development of Rich Internet Applications on the Semantic Web 105

Metaelement Description Graphical Notation

navigational class).

ExternalTraversalLink This metaclass is an extension of the

TraversalLink metaclass and

represents a link between a

NavigationalClass element and an

ExtendedNavigationalClass element,

or between two

ExtendedNavigationalClass elements.

In those cases where the two

ExtendedNavigationalClass elements

connected by a link are associated to

Source elements of different

OntologyModel elements, it is needed

to manually define a rule that

transform the origin object into an

equivalent object using the second

OntologyModel element. In this way,

it will be possible to navigate

through the instances of the second

Source element or to extend the

information of the object.

The concrete syntax of these

elements is similar to the one of the

TraversalLink elements. In this case,

the traversal link is depicted as a

double arrow in which the internal

arrow is always grey and the

external one depends on whether

the user navigates between contexts

(black arrow) or stays in the same

context (white arrow). Automatic

links, i.e., those whose invocation

does not require the interaction of

the users, are represented using

dashed lines. If the traversal link is

associated to a relationship of the

EDM the origin of the link is

depicted as a white circle.

ExternalServiceLink This metaclass extends the

ServiceLink metaclass and represents

the invocation of an

ExternalNavigationalOperation

element and the transition between

106
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

Metaelement Description Graphical Notation

one class and another.

ExternalServiceLink elements can

only be established between

ExternalNavigationalClass elements.

The concrete syntax of the

ExternalServiceLink elements is

similar to the ExternalTraversalLink

ones. The main difference is the

origin of the arrow, which, in this

case, is depicted as a white square.

ExtendedNavigational-
Model

This metaclass extends the

NavigationalModel metaclass

including new Sm4RIA metaclasses

already described.

An ExternalNavigationalModel

element can contain other

submodels of the same type.

The graphical notation of this

element is similar to the UML

Package.

The constraints required to maintain the consistency of the model

and the relationship between models (e.g., avoid that navigational

classes include navigational attributes from different concepts) are

defined in a collection of OCL constrains. Table 5.4 introduces a

summary of the OCL constrains defined over the metamodel.

Table 5.4. Summary of the OCL constraints of the Extended Navigational metamodel.

Name Description / OCL Contraint

Source&Model The Source and the OntologyModel elements of an

ExternalNavigationalClass element must be also associated.
context ExternalNavigationalClass

inv:

self.concept.model.sources->target->

contains(self.source)

OnlyValidOpAttr All the navigational attributes and operations of an

ExternalNavigationalClass element must be of types Extended-

NavigationalAttribute and ExtendedNavigationalOperation,

respectively.

Model-Driven Development of Rich Internet Applications on the Semantic Web 107

Name Description / OCL Contraint

context ExternalNavigationalClass

inv:

self.navAttribute->forAll(a | a.OclIsTypeOf(

ExtendedNavigationalAttribute))

inv:

self.navOperation->forAll(o | o.OclIsTypeOf(

ExtendedNavigationalOperation))

AttrConsistency The attribute of the Domain model and the attribute of the

Extended Domain Model to which is related an

ExternalNavigationalAttribute element must be related each

other.

context ExternalNavigationalAttribute

inv:

self.domAttribute = null ||

self.domAttribute =

self.attribute.domAttribute

OnlyRelatedAttr An ExternalNavigationalClass element can only contain

ExternalNavigationalAttribute elements created from the

attributes of the concept (from the Extended Domain Model)

to which is related.

context ExternalNavigationalAttribute

inv:

self.attribute.concept =

self.navClass.OclAsType(ExtendedNavigational

Class).concept

ValidExternalTraversalL

ink

An ExternalTraversalLink element can only be created from a

relationship existing between the concepts associated to two

ExternalNavigationalClass elements.

context ExternalTraversalLink

inv:

self.relationship.target =

self.nodeTarget.OclAsType(ExtendedNavigation

alClass).concept

&&

self.relationship.concept =

self.nodeOrigin.OclAsType(ExtendedNavigation

alClass).concept

5.3.2 THE EXTENDED NAVIGATIONAL MODEL OF THE SNS

CASE STUDY

Following the development of the case study, in this task, the server

designer creates the Extended Navigational Model. As mentioned in the

beginning of this section, the designer needs to define one navigational

108
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

diagram per type of client. In this case, they need two diagrams: one for

the users that access through the SRIA client and another for the

software agents that employ the Linked Data interface and the HTML

interface.

The diagram for the SRIA client of the Extended Navigational Model

is depicted in Figure 5.8.

Figure 5.8. Diagram of the Extended Navigational Model for the SNS case study.

In this model, the initial class is the AnonymousUser navigational

class, which offers the login navigational operation that can be used in

order to authenticate users using the name of their user account and a

password. The UserAccount_login service link represents the manual

invocation of the login operation (e.g., using a form) and the transition

to the user wall (class User, which also implies a change of context) if the

result of the operation is set to true. During the process of authentication,

the application also needs to retrieve the data of the user, which is the

target of the service link, since the login operation only returns a boolean

value indicating whether the password corresponds to the user account

or not. In order to solve this issue, the designer defines an Alternative

Target Getter (ATG) operation in the UserAccount_login service link. This

operation can be defined when the main operation invoked does not

return an object (instantiation of a Domain Model class) and it is not

represented graphically. In this case, the designer specifies the

invocation of the ReadOID operation from the User domain class, which,

Model-Driven Development of Rich Internet Applications on the Semantic Web 109

given a valid Object Identification (OID) value, returns all the data of the

object of the User class identified by that value.

After the process of authentication, the user can visualise their

personal information in the wall. Moreover, with the automatic

invocation of the get5Friends, get5Albums and get5Tracks traversal links,

the user can explore three five-element random lists with their friends,

albums and tracks of the application, respectively. The number of

elements returned by a traversal link can be set with the Chunk

metaproperty. With the getAllCreatesOfOwner automatic link, users can

obtain with no change of context their corresponding walls, with a list of

stories and comments (class Comment), as well as the information of the

user who created the comment (class UserAccount_1) which are retrieved

with the getAllCommentOfStory and getAllUserAccountOfComment

automatic traversal links. The designer also offered the possibility to

create and delete stories and comments using the New and Destroy

operations of the Story and Comment classes. The New methods create

new objects of the same type that the navigational class using the

navigational attributes as parameters. The Destroy methods delete an

object from the system based on its OID value.

Furthermore, users can visualise a complete list of their friends and

albums using the getAllFriends and getAllRecordOfUserAccount traversal

links. These links are associated to two association roles and represent

the retrieval of all the users and albums associated to the first user.

Retrieving all the possible objects of a class might result in a loss of

performance in the application. Therefore, the OOH4RIA Navigational

metamodel includes a property in order to indicate that the objects will

be retrieved following a process of pagination (adding two extra

parameters to the operation: the offset and the number of objects).

All the local elements of the SNS are related to a tag (Tag

navigational class), which is a word or collection of words that

characterise the content of an object and can be used to search similar

elements. The tags of each element are automatically retrieved when the

user obtains the information about each object.

Moreover, users will be able to search information about artists,

albums and tracks stored on MusicBrainz using the getAllAlbum and

getAlbumInfo external traversal links. The Record external navigational

class is a view of the Record concept from the MusicOntology ontology

110
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

model and it specifies which information from the record (or album)

must be retrieved from the MusicBrainz source (see the EDM). The

relation between the navigational class and the source is not depicted in

the diagram.

Using the getAllAlbum external link, the designer specifies the

retrieval of all the instances of the Record concept and their title

(associated to the title property from Dublin Core) using the strategy of

pagination. The designer also defined the getAllTrackOfRecord external

link that facilitates the navigation from the data of the Record to the data

of the Track (Track external navigational class, defined from the Track

concept of the MusicOntology ontology model and the MusicBrainz

source). This link is associated to the tracks property of the

MusicOntology ontology model.

With the getAlbumInfo external link, the designer specified a link that

shows the information of an album stored in MusicBrainz. In order to do

so, the designer defined a rule that map the name of the album into the

name of the record using OCL. Although the Album and Record

navigational classes could be associated (directly or indirectly) to the

Record concept from the MusicOntology model, the objects from two

different repositories do not usually share the same method for the

creation of identifiers (e.g., URIs). As a consequence, it is not possible to

know beforehand whether two objects are equivalent only by checking

their URIs (they might not contain any axiom of equivalency as well).

Designers need to specify the manner in which the application should

seek equivalent objects. In this link, the designer included a condition in

order to ensure that the titles of the origin and target objects are equal.

This condition varies depending on the Concept and Source elements.

The navigational elements used for the management and

administration of the application are modelled in different packages

(ExtendedNavigationalModel elements). For instance, the classes for the

management of the artists’ profiles are included in the ArtistManagement

package.

Once the first diagram is completed, the server designer specifies a

new diagram in the Extended Navigational Model for those software

agents that will access the data through the Linked Data service or the

HTML view of the SRIA (see Figure 3.2, page 50). This second diagram

employs the elements of the Extended Navigational metamodel in order

Model-Driven Development of Rich Internet Applications on the Semantic Web 111

to constrain the domain ontology instances that will be generated for

each navigational class by the final software modules. Figure 5.9

illustrates a fragment of the navigational diagram for software agents.

Figure 5.9. Diagram (partial) of the Extended Navigational Model for Semantic Web agents.

In this model, the designer employs a collection of External

Navigational classes related to the LocalSource Source element of the

EDM. According to this model, the system will grant access to part of

the information stored in the user profiles as FOAF instances by means

of the Person navigational class, associated to the FOAF Person concept,

and the getAllPerson traversal link. However, in order to protect the

privacy of the users, the access to the data is limited by an OCL

constraint in the link:
Context Home::get_users

pre:

 self.target.sharing = “open”;

With this constraint, the generation of ontology instances will be

performed only from those user accounts whose sharing property was

set to “open”. The sharing property was included as a private property

in the EDM, indicating that the content of this property will not be

shared but the property can be used for other purposes during the

design process. The values of this property can be managed by human

users in the other view of the model depending on their preferences

using custom operations.

Furthermore, the application will share information about the artists,

albums and tracks it contains as MusicOntology instances using the

Artist, Record and Track external navigational classes respectively,

112
Chapter 5. Designing the Server Components of a Semantic Rich Internet

Application

which are associated to the MusicOntology’s Artist, Record and Track

concepts and related to the LocalSource element.

Using concepts from external ontologies, instead of local ones, for the

generation of ontology instances, the opportunities of reutilisation of

these instances notably increase. They could be assimilated by

MusicBrainz or by other social network. Although there is no standard

in this field, the use of an ontology widely instantiated in the Linked

Data cloud can obviously increase the adoption of the instances

produced.

5.4 CONCLUSIONS

This chapter described in detail the first activity of the Sm4RIA

process “Design the SRIA server”, in which the server and the ontology

designer capture (from the stakeholders’ requirements) and represent

the main information needed for the development of the SRIA server in

three models.

The activity groups all actions into three tasks in which, as a result, a

new model is obtained: the Domain model, the Extended Domain Model

and the Extended Navigation Model, respectively. Each section of the

chapter explained the actions performed, the information contained in

each of the models and the abstract and concrete syntaxes of each

metamodel. In order to facilitate the understanding of the process and

the models, the chapter explained the development of the SNS case

study using the Sm4RIA models.

The obtained models are the input resources for the next activity,

explained in detail in the following chapter. The next chapter addresses

all the issues concerning the design of the SRIA client.

Chapter 6. DESIGNING THE CLIENT

COMPONENTS OF A SEMANTIC RICH

INTERNET APPLICATION

SRIA clients visualise the data (local data structures and external

ontology instances) and invoke the operations offered by the RIA server

by means of asynchronous communication processes, i.e., clients do not

get blocked while waiting for a response from their servers. Unlike

traditional Web applications, RIAs follow a "simple page application"

strategy (Mesbah and Van Deursen, 2007), in which their user interface

(UI) consists of a single page with a set of stateful widgets, i.e. UI

structural components for the representation of data and the interaction

with the users. Moreover, (S)RIA UIs are driven by events. Users can

trigger a list of events specific for each type of widget and, depending on

the triggered events, the SRIA client performs different actions which

might involve the invocation of a server service or just a local

modification of the interface. As can be appreciated, there are complex

interaction dependencies between widgets and users, as well as between

the (S)RIA server and client widgets, which should be considered during

the design and development of the application.

The Sm4RIA methodology addresses these issues in the second

activity of the process (please, check the SPEM2 diagram in Figure 4.2,

page 70) reusing and extending the two OOH4RIA RIA-specific models

(PSM) for the representation of UIs:

(i) the Extended Presentation Model, created from the OOH4RIA

Presentation model, which represents the structure of the user

114
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

interface as a collection of different panels and widgets based on

a WYSWYG visualisation (What-You-See-is-What-You-Get), thus

allowing designers with no expertise in programming to define a

RIA UIs; and

(ii) the Extended Orchestration Model, based on the OOH4RIA

Orchestration model, which captures the interactions between

the UI widgets and the rest of the system by means of a collection

of Event-Condition-Action (ECA) rules.

Specifically, this activity is composed of six tasks performed by three

actors, i.e., the UI designer, the ontology designer and a M2M

transformation engine. The output artefacts of the second activity are the

two aforementioned models. The main aims of this activity are the

following:

a) To design the structure of the user interface in terms of

screenshots, panels and widgets and their properties (e.g., size

and position).

b) To specify the visual appearance of each widget (background

colour, foreground colour, font options, etc.)

c) To specify the behaviour of the user interface: event

management, widget modifications, panel modifications, etc.

d) To design the access to the local data of the application by means

of the invocation of the SRIA server services from the elements of

the user interface.

e) To design the access to external ontology instances from the

repositories of the Linked Data cloud by means of the invocation

of the SRIA server services.

f) To specify ontology-based annotations over static widgets or

panels.

The Sm4RIA methodology reuses the main tasks of this process from

the OOH4RIA process and includes two new tasks that associate the

SRIA UI models to the external knowledge sources defined in the EDM

and ENM: the “Enrich Presentation Model” and “Enrich Orchestration

Model” tasks. These tasks could be integrated in the “Design Presentation

Model” and “Design Orchestration model” tasks, respectively. However, in

this case, in order to distinguish between the actions already performed

in the OOH4RIA process and the new actions included in Sm4RIA, the

adopted solution was to create two new tasks. In these tasks, the

Model-Driven Development of Rich Internet Applications on the Semantic Web 115

ontology designer can specify ontology-based annotations to the UI

widgets by means of three patterns that were not considered in

OOH4RIA (see Figure 6.1):

1) To establish a relationship between the SRIA UI components and

the external navigational classes in order to gather information

from external ontology instances using the services provided by

the SRIA server;

2) To connect UI actions from the Extended Orchestration model to

external navigational links, which define the retrieval of ontology

instances (from external or internal sources) on demand; and

3) To define direct annotations from UI widgets to ontology

elements, thus allowing the retrieval of information about these

UI elements.

Figure 6.1. Patterns of extension of the Presentation and Orchestration models.

This chapter describes in detail the tasks of the second activity and

the models designed. The subsequent sections will explain the process

followed so as to create each of the resulting models, grouping the

actions of different tasks and including a detailed description of the

metamodels employed. In order to facilitate the understanding and

Extended Presentation Model

Extended Navigational Model

http://dbpedia.org/resource/
University_of_Alicante3

1

Event-Condition-Action (ECA)
rule from the Extended

Orchestation Model

2a

2b

116
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

analyse the performance of the process, the actions explained will be

applied to the case studies explained in Sections 3.4.1 and 3.5.2 (pages 54

and 60, respectively): the social network site and the RI@BI application.

6.1 DEFINING THE STRUCTURE OF THE USER INTERFACE

In the beginning of the second activity of the Sm4RIA process, the

ExtNav2Press M2M transformation can create a mock-up of the Extended

Presentation model from the Extended Navigational Model, which

should be subsequently completed by the UI designer. This is an

optional task since the Extended Presentation model can be also defined

from scratch. The transformation can create a presentation model with a

basic UI, which would contain the elements needed to manage the

information and the operations represented in the ENM (e.g., for a

navigational operation, it would create a new form). However, there

might be several valid presentation models (considering structure and

appearance) from a single navigational model depending on the needs

of the stakeholders, which might decelerate the process of design.

Moreover, there are some aspects such as the appearance that cannot be

inferred from the navigational models. The use of this transformation

can accelerate the design process of those clients whose requirements do

not change between applications considerably, such as the interfaces for

the administration of the application.

Another aspect that should be highlighted is the fact that the

structure and appearance of the user interface could be defined directly

from the stakeholders’ requirements before the ENM is completed, thus

partially removing the dependency between the ENM and the UI

models. However, this dependency cannot be totally removed since the

data contexts defined in the ENM model constrain the information

shown in a screenshot and the server operations invoked. Using this

strategy, both models could be specified at the same time, thus

increasing the flexibility of the process, but there is a risk of model

inconsistency that should be resolved by the server and UI designers.

This chapter explains the original activity considering that the design of

the Extended Presentation Model is performed from scratch (based on

the stakeholders’ needs) once the ENM model is completed.

Model-Driven Development of Rich Internet Applications on the Semantic Web 117

As mentioned before, the UI designer specifies the EPM from the

stakeholders’ requirements and the ENM. This process can be divided in

two stages: the creation of the interface and the establishment of

connections between the EPM and the ENM. In the first stage, the UI

designer actually builds the UI of the SRIA client, defining the structure

and the visual representation of the UI. The basic components of the

EPM are the following:

a) Widgets, which are the basic components in the user interface.

They can be classified into two groups: data representation

widgets, used to visualise data (e.g., a label), and interaction

widgets, employed for the interaction with the users (e.g., a

button).

b) Panels, which are groups of widgets arranged according to their

own rules (e.g., a stack panel or a canvas). The relationship of

containment in a panel is transitive.

c) Screenshots, which are representations of the complete view that

is shown to the users. These elements contain panels and widgets

arranged according to different criteria. RIAs usually contain one

single screenshot. However, it is also possible to create multi-

page RIA with several screenshots.

The design of the EPM commences with the definition of an initial

screenshot, in which the UI designer includes a collection of widgets or

panels, containing other widgets at the same time. The designer can

arrange the widgets within the panels or the screenshot depending on

their type. For instance, the stack panel constrains the position of the

widgets creating a stack while the canvas widget allows the designer to

include a widget where needed. The designer can create as many

screenshots as they need.

According to the Model-Driven Architecture (Object Management

Group, 2003), the Extended Presentation Model and the Extended

Orchestration Model are platform-specific models, which means that

they include elements specific for the design of a certain component of

the application taking into consideration the final implementation

technology. The EPM aims at representing a view of the final SRIA UI.

However, the EPM components (panels and widgets), the actions that

can be performed over them and the appearance options can change

among RIA technologies. Therefore, in order to obtain a reliable

118
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

representation of the UI, it is necessary to adapt the metamodel of the

EPM to the particularities of each technology. The OOH4RIA

Presentation and Orchestration models were adapted to the design of

Silverlight user interfaces. As a consequence, the EPM and the EOM, as

extensions of both models, are adapted to the same platform.

In the second stage, which might be performed in parallel to the first

one, the UI designer connects the UI components to the ENM elements,

thus establishing the areas for data visualisation and the type of objects

shown in each one. There are three types of relationship between the

EPM and the ENM models (see a schema of them in Figure 6.2):

1) Context relationship. The first relationship defines the type of

objects (or ontology instances) visualised in a screenshot or a

panel. While a panel can visualise a collection of objects, the

screenshot must be associated to a single object. Moreover, a

screenshot can be only related to an entry point or to the

destination (a navigational class) of a link that implies a change

of navigational context.

2) Navigation relationship. This relationship associates a panel to a

navigational link in such a way that it indicates that the context

of the panel is a subcontext of the container and the manner in

which the objects can be retrieved and visualised in case that the

link is traversal and automatic. For manual links and service

links, the invocation will be specified in the Extended

Orchestration Model.

3) Binding relationship. The Binding relationship establishes the data

of an object shown in a widget. It relates a widget to an attribute

of one of the contexts which the widget is contained in. Since the

property of containment in a panel is transitive, a widget can be

bound to any property of the contexts associated to the panels (or

the initial screenshot) it is contained in.

Figure 6.2 introduces a schema with different examples of the three

types of relationships between models. The schema illustrates a part of a

hypothetic EPM (left-hand side) and the links to a part of the ENM,

introduced in Section 5.3.2 (page 107). As can be appreciated, the EPM is

composed by two screenshots.

Model-Driven Development of Rich Internet Applications on the Semantic Web 119

Figure 6.2. Different types of relationship between the Extended Presentation Model and the

Extended Navigational Model.

The first screenshot is associated to the AnonymousUser navigational

class, which indicates that the operations of the navigational class will be

invoked from this screenshot. The UI designer should specify the

widgets needed to create a form that could invoke the operation and the

process of invocation will be defined in the EOM.

The second screenshot contains two panels, i.e., a canvas and a stack

panel (from Silverlight) and three widgets (TextBlock widgets from

Silverlight, similar to a label) included in the available containers. This

screenshot is linked to the UserAccount navigational class, which

facilitates that the TextBlock widget could be associated to any of the

navigational attributes of the mentioned class. The Canvas panel is

associated to the Record external navigational class and the getAllAlbum

external traversal link, thus indicating that the context of this class is

obtained by means of the link. The TextBlock widget included in the

Canvas panel could be bound to any navigational attribute of the Record

or UserAccount class.

Screenshot

Canvas

StackPanel

Screenshot

Extended Presentation

Model

Extended Navigation

Model

Context

Context

Binding

120
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

The mentioned elements and the relationships are formalised in the

Extended Presentation metamodel, whose abstract and concrete

syntaxes are introduced in the next subsection.

6.1.1 THE EXTENDED PRESENTATION METAMODEL: CONCRETE

AND ABSTRACT SYNTAXES

The Extended Presentation Model is conformant to the Extended

Presentation Metamodel, which extends the OOH4RIA Presentation

metamodel. This extension includes the following elements:

1. new links in order to associate the UI widgets with the external

navigational classes and external traversal and service links;

2. new types of widgets for the representation of aggregation of

data (e.g., maps, charts, etc.);

3. the concept of ontology-based annotation, which links a UI

element to a URI pointing at an ontology element or an element

of the EDM.

The Extended Presentation Metamodel contains the mechanisms for

the representation of the elements of the user interface (widgets,

containers and screenshots) in a platform-specific manner, i.e., including

elements specific for a RIA technology, in this case, Silverlight. In order

to facilitate the adaptation of the OOH4RIA Presentation model to

different technologies and the connections between the Presentation and

Orchestration models, this metamodel is divided in two parts:

1. Abstract components. These are the core elements of the

metamodel, which include the generic (or abstract) definition of

the screenshot, widget and container components and the

relationships with elements of other models. These part of the

metamodel also represent a collection of common widgets and

containers, i.e., found in several technologies, and their

properties.

2. Platform-specific components (in this case, Silverlight). These are

the elements of the metamodel that depend on the technology

chosen in the development process. This part of the metamodel is

composed of the Silverlight-specific widgets and containers and

the relationships between them.

Model-Driven Development of Rich Internet Applications on the Semantic Web 121

The diagram illustrated in Figure 6.3 represents the main elements of

the Extended Presentation metamodel. The platform-specific

metaclasses (in this case, Silverlight-specific metaclasses) are named

with the prefix “SL” (which stands for “Silverlight”). For a more detailed

representation of the metamodel, which includes all the possible

elements, please check the diagrams included in Annex E (page 273).

Figure 6.3. Main elements of the Extended Presentation Model.

122
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Figure 6.4 depicts a schema with the connections between the

elements of the Extended Presentation metamodel and the elements of

the Extended Domain metamodel (extendedDomainModel namespace)

and the Extended Navigational metamodel (navigationalView

namespace). This diagram introduces the elements needed to represent

the three relationships (Context, Navigation and Binding) that connect the

UI elements to the elements of the Extended Navigational Model as the

last section introduced. In the diagram, the navContext link corresponds

to the Context relationship, the navigation link to the Navigation

relationship and the WidgetPropertyBinding metaclass and the navType

link to the Binding relationship. It is worth noticing that the Container

metaclass is not considered in this diagram because it was created using

the Composite pattern as a subtype of the Widget metaclass that contains

other widgets.

Figure 6.4. Connections between the EMOF Extended Presentation metamodel

and other Sm4RIA metamodels.

It is also worth noticing that, since the EPM is a WYSIWYG model,

only the platform-specific elements of the metamodel have a graphical

notation, which will be dependent on the final technology as well. Table

Model-Driven Development of Rich Internet Applications on the Semantic Web 123

6.1 contains the graphical notation of each of the platform-specific

metaclasses represented in Figure 6.3 and Annex E .

Table 6.1. Graphical notation of the platform-specific metaclasses

of the Extended Presentation Model.

Metaclass Graphical Notation

SLAccordion

SLAccodionItem See SLAccordion metaclass

SLAutoCompleteBox

SLButton

SLCanvas

SLCheckBox

SLComboBox

SLDataGrid

SLDataGridColumn See SLDataGrid metaclass

SLDateBox

SLExpander

SLGrid

SLHyperlinkButton

124
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Metaclass Graphical Notation

SLImage

SLLabel

SLListBox

SLPasswordBox

SLPopup

SLProgressBar

SLRadioButton

SLScrollViewer

SLScrollBar

SLSlider

SLStackPanel

SLTabControl

SLTabItem See SLTabControl metaclass

SLTextBlock

SLTextBox

Model-Driven Development of Rich Internet Applications on the Semantic Web 125

In order to complete the description of the metamodel, Table 6.2

introduces some of the main OCL constraints specified, which address

issues related to the consistency of the information stored by the model.

Table 6.2. Summary of the OCL constraints of the Extended Presentation Model.

Name Description / OCL Contraint

DifferentAnnotations All the Annotation elements of a Widget element must be

different.
context Widget

inv:

self.annotations->forAll(a |

self.annotations->select(a2 | a.uri =

a2.uri)->size() = 1)

ConsistentAnnotation When the annotation is linked to an element of the Extended

Domain Model, the URI of the Annotation element and the

element of the EDM must be consistent.

context Annotation

inv:

self.element = null || self.uri =

self.element.uriBase + '/' +

self.element.name

NotBindingWithoutCon

text

The relationships of binding cannot be established unless the

widget or one of its containers has a context.

context Widget

inv:

((self.navContext = null ||

self.ascendants()->navContext->isEmpty())

&& self.properties-> binding->size() = 0))

|| self.navContext <> null

BindingAssociatedToCo

ntext

The relationships of binding between a navigational attribute

and a Widget element must be only established with the

navigational attributes of the context (navigational class) of

the Widget element or any of the widget containers

context Widget

inv:

self.navContext.navAttributes->union(

self.ascendants()->navContext->navAttributes

)->includesAll(self.properties->binding->

navType)

ExternalLinkTarget The target of an external link (i.e., ExternalTraversalLink or

ExternalServiceLink elements) must be an

ExtendedNavigationalClass element.

126
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Name Description / OCL Contraint

context Widget

inv:

self.navigation = null ||

(self.navigation.oclIsTypeOf(

ExternalLink)

&& self.navContext.oclIsTypeOf(

ExtendedNavigationalClass))

The next section will explain the design of the EPM using a real case

study, i.e., the design of the UI of a social network site, following the

example described in other sections.

6.1.2 AN EXTENDED PRESENTATION MODEL FOR THE SOCIAL

NETWORK SITE

In the beginning of the second activity, the UI designer creates the

EPM in order to represent the structure of the user interface of the SRIA

(including the main features of the UI widgets) and links the UI

components to the elements of the ENM, defined in the last activity. As a

result, the designer obtains a model that illustrates the manner in which

the final SRIA user interface will appear to any user. In this case study,

the UI designer created different screenshots for the representation of

different parts of the application, instead of creating a single screenshot.

The first screenshot of the EPM designed by the UI designer, shown

in Figure 6.5, contains the login form which will be used in the process

of user authentication. The login form, coloured in blue, was created

within a SLCanvas widget containing two input widgets, i.e., a

SLTextBox widget and a SLPasswordBox widget, and a SLButton widget

in order to invoke the process of authentication. The context of this

screenshot is the AnonymousUser navigational class from the ENM. The

authentication process is performed by the login operation of this

navigational class. However, this process and the navigation between

screenshots is managed by the Extended Orchestration model.

Model-Driven Development of Rich Internet Applications on the Semantic Web 127

Figure 6.5. Screenshot with the login form of the Social Network Site.

The main screenshot of the EPM, illustrated in Figure 6.6, shows the

main social information of the SNS. The widgets in this screenshot can

be grouped into three different areas:

a) the UI header, located at the top of the UI, which contains the

widgets for the visualisation of the main information about the

user (name, email, picture and status) and the widgets (SLButton

widgets) needed to navigate through the user interface;

b) the information summary, located on the left area of the UI,

which contains the widgets that show a summary of the users’

friends, albums and tracks using SLExpander and SLListBox

widgets; and

c) the story line, which groups the widgets that show the stories

and the comments of the user and their friends, and facilitates

their management (creation and deletion).

The schema contained in Figure 6.7 depicts part of the relationships

that the UI designer established between this model and the ENM.

Specifically, the schema is focused on the visualisation of the user

stories. The initial context of the screenshot is the User navigational class.

The area in which the stories are shown is represented as a SLStackPanel

widget highlighted with an orange border, and the pattern for the

creation of a single story is represented with the inner blue SLStackPanel

widget. The outer SLStackPanel widget is related to the Story

128
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

navigational class in order to indicate the type of the objects visualised

and to the getAllCreatesOfOwner traversal link in order to indicate the

manner in which the objects will be retrieved (in this case, using this

automatic link).

Figure 6.6. Main screenshot of the Social Network Site.

Figure 6.7. Example of the existing relationships between the Extended Presentation Model and

the Extended Navigational Model in the main screenshot of the SNS.

The last screenshot of the EPM introduced in this section is

illustrated in Figure 6.8, which can be used to visualise information

about local or external albums and tracks, depending on which ENM

Context

Binding

Navigation

Context

Binding

Model-Driven Development of Rich Internet Applications on the Semantic Web 129

elements is related to. It is supposed to be accessed using the “Albums”

SLButton widget located at the UI header (even though, the transition

between screenshots and the behaviour of this widget will be defined

with the EOM).

Figure 6.8. Screenshot showing the information of the albums and music tracks of

the Social Network Site.

In the same way that the previous screenshot, this is divided in three

areas: a) the UI header; b) the information summary, which, in this case,

only represents information about the users’ friends; and c) the central

area, which contains the panels and the widgets for showing the

information about the albums and the music tracks. In contrast to the

previous screenshot, this screenshot in its central area includes two

SLStackPanel widgets in order to visualise two lists of objects. The left-

hand list will show a list of albums and each of its elements will contain

a link to visualise the list of its corresponding tracks.

After completing the design of the screenshot, the designer

associated the UI widgets to the external navigational classes of the

ENM in order to retrieve and show albums and tracks from MusicBrainz

to the users. Figure 6.9 depicts a schema with the main relationships that

were established to this aim.

130
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Figure 6.9. Example of the existing relationships between the Extended Presentation Model and

the Extended Navigational Model in the “Albums” screenshot of the SNS.

According to the schema, the context of the whole screenshot is the

User navigational time again, while the contexts of the two SLStackPanel

widgets containing the lists of albums and tracks (highlighted with an

orange border) are the Record and the Track external navigational classes,

respectively. Since the links that connect these three navigational classes

are not automatic, the designer could not establish the Navigation

relationship in the containers. In order to populate the two lists of

widgets, the designer will define the behaviour of the “Refresh Albums”

and “See related tracks” SLHyperlinkButton widgets, with a blue border,

in the Extended Orchestration model.

6.2 SPECIFYING THE BEHAVIOUR OF THE USER INTERFACE

COMPONENTS

With the EPM, the UI designer could represent the structure of the

UI but, as shown in the last section, there were some behavioural aspects

related to the interaction with the server components that could not be

defined. Moreover, the EPM cannot manage the specification of client

actions, performed by the own widgets, e.g., to hide/show a container, to

resize a widget, etc. In the Sm4RIA development process, once the design

of the UI components is completed, in the subsequent group of tasks, the

UI designer focuses on the specification of the behaviour of the UI

Context

Binding

Context

Context

Binding

Model-Driven Development of Rich Internet Applications on the Semantic Web 131

components using the Extended Orchestration Model, which is a

platform-specific model composed by a collection of event-condition-

action (ECA) rules that manage the actions performed by the UI

components after an event has been triggered on a certain widget.

ECA rules contain three types of elements: a) events, which represent

the interaction between users and widgets; b) conditions, which control

the flow of actions performed after an event has been triggered; and c)

actions, which can be carried out by client (EPM widgets) or server

(ENM operations) components. For each widget, there are a fixed

collection of events that can be triggered on them and another collection

of (client) actions that can be performed, which mainly depend on the

technology of the implementation. Figure 6.10 illustrates a diagram with

a simple schema of an ECA rule defined over a SLButton widget from

the EPM, i.e., a button of a screenshot of the UI.

Figure 6.10. Representation of an Event-Condition-Action rule.

In this case, after a user clicks this widget, thus triggering the Click

event, a condition will be checked. This logic condition can check the

state of other UI widgets and, depending on the result, i.e., true or false

values, it would be possible to perform different actions. It is supposed

that the Story_new action is performed if the condition is satisfied. This

server action invokes the Story_new service link of the ENM, which

creates a new story (Story object) from a set of parameters. The

parameters for this action can be obtained from the contexts in which the

132
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

widget is contained or from input widgets such as SLTextBox widgets. In

the EOM, an action only has two possible return values: success or error,

which indicate whether the action was completed or there was an error

during the process.

As can be appreciated, the EOM facilitates the concatenation of

actions creating sequences. After an action has been completed and

depending on its return value, it is possible to invoke different actions

always if their corresponding conditions are satisfied. According to the

figure, in case of error, the client intends to delete the object, using the

Story_destroy client action, depending on the type of error (checked by

the condition). In case of success, the rule invokes two client actions: a) it

refreshes the content of the stack panel (SLStackPanel widget) that

contains the list of Story objects (StackPanel.refresh action); and b) it

shows a pop-up window (SLPopup widget) indicating that the action

finished successfully (Popup.show action). In this second level of actions,

the designer can also employ the actual result of the first operation as a

parameter using the keyword “Result”. If the service link invoked by the

action contains an alternative target getter, the designer can use the

keyword “ResultAlt” in order to access the data resulting of that

operation. Following the described pattern, the designer can continue

the specification of the ECA rules according to the requirements of the

application.

In Sm4RIA, the process of design of the EOM is similar to the EPM’s

(please, check the SPEM2 diagram in Figure 4.2, page 70). Using the

Nav&Pres2Orch M2M transformation and the ENM and EPM as inputs,

it is possible to generate a mock-up of the EOM which infers the

behaviour of the UI during the invocation of the predefined navigational

operations (i.e., those whose type not custom). However, given the

variability and complexity of the user interface, the result of the

transformation might not help the designer when addressing UIs

created from scratch. It is recommended that the Nav2Pres and

Nav&Pres2Orch transformations are used together in those cases in

which the variability of the user interface is reduced, i.e., in the design of

UIs for administrators. This section will not contemplate this scenario

and is focused on the manual specification of the UI behaviour using the

ECA rules of the Extended Orchestration Model. The process of the

specification of ECA rules does not follow any pattern and ECA rules

Model-Driven Development of Rich Internet Applications on the Semantic Web 133

are contained in a plain unordered list. Therefore, in the process of

creating the EOM, the designer specifies ECA rules for those widgets

and events they consider relevant (according to the stakeholders’

requirements) only ensuring that the rule structure is correct.

6.2.1 EXTENDED ORCHESTRATION METAMODEL: CONCRETE

AND ABSTRACT SYNTAXES

The structure of the ECA rules is formally described in the Extended

Orchestration metamodel, which the EOM is conformant to. This

metamodel captures the semantics of all the elements of the ECA rules

and provides a graphical representation based on the UML state

diagram. Figure 6.11 depicts a schema of the main elements of this

metamodel. Those elements with the EPM and navigationalView prefixes

are imported from the Extended Presentation metamodel and the

Extended Navigational metamodel, respectively.

The main element of this metamodel is the Widget element, which is

imported from the EPM, since the purpose of the EOM is to define the

behaviour of the structural elements of the EPM. The elements of the

metamodel can be classified into two groups:

a) Elements extending the concept of widget and screenshot (from

the EPM), which define the concept of widget event, widget

action and their properties. This group contains the following

elements: WEvent, WMethod, WEventProperty and

WMethodProperty. These are necessary for the specification of

ECA rules.

b) Elements for the specification of ECA rules, which define the

elements required for the association of a certain event with the

actions performed. The metaclass that represents the whole rule

is the EventCall metaclass.

In this metamodel, only the second group of elements, including the

Widget metaclass, has a graphical representation, which, as mentioned

before, is imported from the UML state diagram. This might seem a

contradiction taking into consideration the representation of the ECA

rule presented in the previous section, which showed the rule as a kind

of sequence of actions. However, given that RIA widgets are stateful

elements, the notation of the UML state diagram is more appropriate

134
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

than the one of UML sequence diagram. Table 6.3 introduces the

elements of the Extended Orchestration metamodel including the

description of each of element and its graphical notation.

Figure 6.11. Schema of the Extended Orchestration Metamodel.

Model-Driven Development of Rich Internet Applications on the Semantic Web 135

Table 6.3. Description of the main elements of the Extended Orchestration metamodel.

Metaelement Description Graphical notation

ExtendedOrchestra-
tionModel

This metaclass represents the whole

EOM model and contains all the

elements of the ECA rules.

Screenshot This metaclass, imported from the

EPM, represents the screenshots of

the UI.

Widget This metaclass, imported from the

EPM, represents the structural

elements of the UI. It is the central

metaclass for the EPM and the

EOM.

WidgetProperty It represents a property of a widget.

Each subtype of widget has

different properties according to its

characteristics, e.g., the textbox

widget has the text property, which

cannot be present in the stack panel.

No graphical representation.

WEvent It represents an event that can be

triggered on a certain widget.
No graphical representation.

WEventParameter This metaclass represents a

parameter of the event. For the

management of certain types of

interaction, such as the modification

of a textbox widget, it

No graphical representation.

WMethod It represents an action that can be

performed on a certain widget.
No graphical representation.

WMethodParameter This metaclass represents the

parameters of an action.
No graphical representation.

EventCall This metaclass captures the

semantics of an ECA rule
Condition It represents a condition of an ECA

rule. This condition must be

specified in OCL.

See the EventCall metaclass.

Action It represents an action of an ECA

rule.
No graphical representation.

ClientAction It represents an action of an ECA

rule performed by a widget of the

UI, i.e., the invocation of a WMethod

element. Each object of this

No graphical representation.

«ExtendedOrchestrationModel»

Model

«Screenshot»

Screenshot

«Orchestral Widget»

Widget

Event (parameter1, type1; p2, t2, ...)

[Condition]

/ActionCall(parameter1: type1, p2: t2, …)

136
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Metaelement Description Graphical notation

metaclass must be associated to an

object of the WMethod metaclass.

ServerAction It represents an action of an ECA

rule performed by a service of the

SRIA server, i.e., the invocation of a

navigational operation of the ENM.

The objects of this metaclass are

associated to the object of the

WMethod metaclass.

No graphical representation.

ActionCall This metaclass represents an

invocation of an action within an

ECA rule.

See the EventCall metaclass.

ActionParameter It represents the parameters of the

invocation of an ActionCall element.

Depending on the type of action

invoked, the parameters of the

ActionCall element must correspond

to the parameters of the WMethod

element or to the arguments of the

navigational operation.

See the EventCall metaclass.

Table 6.4 presents some of the most relevant OCL constraints of the

Extended Orchestration metamodel, which were reused from the

OOH4RIA Orchestration metamodel.

Table 6.4. Summary of the OCL constraints defined over the Extended Orchestration metamodel.

Name Description / OCL Contraint

ManageOwnEvents An EventCall element must only manage Event elements of its

own Widget element.
Context EventCall

inv:

self.widget.events->include(self.event)

CorrectBinding ActionArgumentModelBinding elements must be related to the

NavigationalAttribute elements associated to the context of the

Widget element that triggers the event and manages it.

Context EventCall

inv:

-- Ignoring the loop Condition–ActionCall–

-- Action–ServerAction.

self.conditions->trueActions->union(

self.conditions->falseActions)->arguments->

binding->select(b |

Model-Driven Development of Rich Internet Applications on the Semantic Web 137

Name Description / OCL Contraint

b.oclIsTypeOf(ActionArgumentModelBinding))->

forAll(b |

self.widget.navContext.navAttributes->

union(self.widget.containers()->

navAttributes)->include(b))

CorrectParametersInActi

onCall

ActionCall elements must assign a value to all the parameters

of the Action elements performed (either ClientAction or

ServerAction elements).

Context ActionCall

inv:

-- For Server actions

(self.action.oclIsTypeOf(ServerAction)

and self.action.oclAsType(ServerAction).

navigationalAssociation.oclIsTypeOf(ServiceLink)

and self.arguments->forAll(a | a.oclIsTypeOf(

ServerArgument))

and self.arguments->includesAll(self.action.

oclAsType(ServerAction).navigationalAssociation.oclA

sType(ServiceLink).argumentLink))

or

-- For client actions

(self.action.oclIsTypeOf(ClientAction)

and self.arguments->forAll(a | a.oclIsTypeOf(

ClientArgument))

and self.arguments.oclAsType(Set(ClientArgument))->

wMethodParameter->includesAll(

self.action.oclAsType(ClientAction).wMethod.paramete

rs)

In order to facilitate the understanding of the components of this

metamodel, the next section will introduce the EOM for the case study

of the development of the SNS and will show a set of the most

frequently used ECA rules.

6.2.2 AN EXTENDED ORCHESTRATION MODEL FOR THE SOCIAL

NETWORK SITE

Once the designer completes the EPM of the SNS case study, as

explained in the introduction of Section 6.2, they specify the behaviour

of the UI elements with a set of ECA rules creating a new Extended

Orchestration model.

Figure 6.12 depicts a fragment of the EOM resulting of this process,

which represents a subset of the ECA rules defined over the UI

elements. In this diagram, all the elements (from the model element to

the orchestral widgets) remain idle waiting until an event is triggered on

138
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

any of them. The state diagram shown in the figure contains examples of

the three main scenarios in which the designer might need to specify an

ECA rule:

a) Screenshot navigation. The designer can specify the navigation

between screenshots when designing multi-page (S)RIAs.

b) Service invocation. It is normally necessary to access data from the

SRIA server or to invoke an operation by means of the SRIA Web

services.

c) UI modification. Another frequent scenario is the modification of

the UI interface, i.e., the client components need to perform

operations that affect the visual appearance of the UI.

The first example involves the Screenshot elements of the EOM. In

this case, the designer specified the behaviour of three screenshots, i.e.,

Login, Main and PersonalInformation, corresponding to the ones designed

in Section 6.1.2 (page 126), and the navigation between them. According

to the model, the initial screenshot of the application is the Login

Screenshot element (the EPM does not specify a sequence of screenshots).

This model does not represent the behaviour of the widgets contained in

the Login screenshot but manages the onSubmitCompleted event, which

indicates that an action has been completed and, particularly, the login

action, which authenticates the users in the SRIA. This event contains

two parameters: the widget which the event was triggered from (which

is a parameter included in all the events), and the result of the action

performed. The condition of this ECA rule checks whether the result is

valid and, if so, the application navigates from Login to Main and

establishes the result of the login navigational operation as the context of

the Main screenshot (i.e., a User navigational object according to the

ENM of this application).

The designer also defined the log-out process by managing the

onClick event on the Main or PersonalInformation Screenshot elements. In

this case, the condition of these ECA rules check if the event was focused

on the SignOut SLButton element and invokes the signOut server action.

In order to exemplify the second scenario, the designer defined an

ECA rule that manages the creation of a new story from the user data

and subsequently refreshes the list of stories shown in the user wall

(SLStackPanel1 orchestral widget).

Model-Driven Development of Rich Internet Applications on the Semantic Web 139

Figure 6.12. Fragment of the Extended Orchestration Model for the SNS case study.

This ECA rule starts when the user triggers the onClick event of the

NewStoryButton SLButton widget, which is part of the “New story” form.

When users introduce the body of their story in the given text box and

click on this button, the application should create a new story by means

of the newStory server action. The diagram only shows one of the

«ExtendedOrchestrationModel»

SocialNetworkSite

«Screenshot»

Main

«Orchestral Widget»

NewStoryButton

«Orchestral Widget»

SLStackPanel1

onClick (sender: Widget)

[true]

/newStory(text:String)

[true]

«SignalBroadcast» onDataChanged

[return == null]

/error(msg: String)

onSubmitCompleted (sender: Widget; result: Object)

[result != null]

«Screenshot»

Login

«Orchestral Widget»

HideButton

onClick(sender: Widget)

[true]

«SignalBroadcast» onChangeVisilibity

«SignalHandler» onChangeVisibility (sender: Widget)

[context != null]

/setVisibility(!getVisibility())

onClick (sender: Widget)

[Focus(SignOutButton)]

/signOut()

«Screenshot»

PersonalInfo

onClick (sender: Widget)

[Focus(MenuButton3)]

onClick (sender: Widget)

[Focus(SignOutButton)]

/signOut()

[return != null]

/setContext(list: Story[])

«SignalHandler» onDataChanged

(sender: Widget)

[sender == NewStoryButton]

/getAllStories(offset: int, length: int)

[return == null]

/error(msg: String)

140
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

parameters of the newStory server action, i.e., the text of the story, but it

is also necessary to indicate the ID of the user who created it and the

date of creation. The assignation of value to these parameters is also

performed in the EOM but does not have any graphical representation.

The possible values of these parameters can be classified into three

groups:

 Context values. These values are obtained by associating the

properties (navigational attributes) of one of the contexts

(navigational classes) in which the widget is contained to the

parameter. For instance, the user identifier is obtained from the

User navigational class, which is the context of the screenshot.

 UI values. These values are obtained by associating the properties

of the widgets contained in the screenshot to the parameter. For

instance, the text of the story is obtained from the text property of

the SLTextBox widget, part of the “New story” form.

 Constant values. The third type of values is directly introduced by

the designer. Constant values can be specified in OCL, when

possible, or in the language of the implementation technology, in

this case, C#. For instance, in order to obtain the time and date

when the story is created, the designer could use the following

C# expression: “DateTime.Now”.

The new story is shown in the stack panel located just above the

input form (SLStackPanel1 Orchestral widget). If the server action is

successfully completed (return!=null), the NewStoryButton element

broadcasts a onDataChanged signal in order to notify the rest of the

widgets that the data has been modified. If there were an error in the

process, the application should show an error message (using the error

client action) using the default output method, which depends on the

technology (in this case, a message box will be used).

The onDataChanged signal previously emitted is managed by the

SLStackPanel1 widget, which retrieves an up-to-date list of stories from

the SRIA server using the getAllStories server action. If the new list is

successfully retrieved the setContext client action updates the context of

the stack panel and, as a consequence, the content is redrawn showing

the new story.

The third, and final, scenario is the modification of the appearance of

the UI using an ECA rule. In the example, the HideButton SLButton

Model-Driven Development of Rich Internet Applications on the Semantic Web 141

element manages the visibility of the list of stories in the user wall. The

designer created an ECA rule that manages this behaviour when the

onClick event of the HideButton widget is triggered. Subsequently, the

widget emits the onChangeVisibility signal, which is captured and

managed by SLStackPanel1 widget. This orchestral widget checks

whether it is empty (or its context is null), and if it contains elements, it

modifies its visibility property, showing or hiding the contents with the

setVisibility and getVisibility client actions.

Using the solutions proposed for these three scenarios, it is possible

to define the behaviour of the rest of the UI widgets.

6.3 GENERATING AN USER-ORIENTED, ONTOLOGY-BASED

REPRESENTATION OF THE USER INTERFACE

Once the Extended Presentation and Orchestration models have been

completed, using the Pres&Orch2Visu model-to-model transformation,

the transformation engine can automatically generate the Visualisation

Ontology Model (VOM) from the previous models. This model gathers

and combines information from the abstract presentation and

orchestration concepts, obtaining as a result an abstract representation of

the UI elements and their behaviour from the perspective of the final

users, which avoids implementation details. The transformation merges

information about the structure and behaviour of UIs hiding those

aspects that can affect the security of the application, which should only

be known by the designer.

6.3.1 THE ONTOVISU METAMODEL

The elements of the VOM are conformant to a new ODM-based

metamodel was created, called OntoVisu, which defines mechanisms to

describe the UI from the users’ perspective combining the structural

elements of a SRIA UI with the behavioural aspects. Figure 6.13 depicts

a schema with the main elements of the abstract syntax of this

metamodel and the relationships to elements of other metamodels, i.e.,

Extended Navigational metamodel (whose elements are coloured in

red), Extended Presentation and Orchestration metamodels (coloured in

blue and green, respectively) and the OWLBase metamodel (coloured in

142
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

orange). The main element of OntoVisu is the VisualElement metaclass,

which abstracts the semantics of any elements involved in the

visualisation of the UI. The elements of this metaclass can be classified

as structural or behavioural elements, which are related to the elements

of the EPM or the EOM, respectively.

The elements of the VOM are also associated to the elements of the

ENM by means of three different patterns (in a similar manner that the

EPM and the EOM):

a. ElementContainer components can be linked to a navigational

element;

b. Action elements can be associated to a service link from the

ENM;

c. The specification of the action parameters, their types and results

are optional and linked to the arguments of the navigational

operations.

The hierarchy of structural elements is similar to the EPM’s, since, in

this case, the perspective between the designer and the users does not

differ considerably. The main issue is the different perspective of the

behaviour of the UI that users and developers have. While designers can

specify the exact behaviour of the application with ECA rules, users

should only perceive a biased image of what is actually happening,

mainly due to security issues.

The OntoVisu metamodel captures the possible interactions between

users and the UI elements and the actions they finally notice in the user

interface. The transformation proposed generates a model representing

all the information that is possible to represent with this metamodel.

Depending on the security level of the target application, the

transformation should be adjusted in order to show different levels of

information.

Model-Driven Development of Rich Internet Applications on the Semantic Web 143

Figure 6.13. Main elements of the OntoVisu metamodel (abstract syntax).

Table 6.5 contains the description of the main elements of the

metamodel and their graphical notation. This table only describes the

most general elements and the ones with a graphical representation.

Table 6.5. Description of the main elements of the OntoVisu metamodel.

Metaelement Description
Graphical

Representation

VisualisationModel This metaclass represents the whole

model. A VisualisationModel element is

related to a PresentationModel element

and a ExtendedOrchestrationModel

element, which is created from.

No graphical

representation.

VisualElement This is an abstract metaclass that

represents all the elements contained

in a Visualisation element.

No graphical

representation.

144
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Metaelement Description
Graphical

Representation

Screenshot It represents a screenshot of the UI

containing a set of Component

elements in a certain state. There are

two graphical notations depending on

whether the screenshot is the initial

one or not.

StructuralElement Abstract metaclass that represents any

structural component of a Visualisation

element (e.g., screenshots, panels and

widgets). Visual elements can be

grouped into three categories:

components, properties and

annotations.

No graphical

representation.

SimpleElement This metaclass is a specialisation of the

Component metaclass and represents a

widget with a single functionality

which cannot contain other widgets.

ElementContainer This specialisation of the Component

metaclass represents complex widgets

that can contain other ones.

BehaviouralElement Abstract metaclass that represents the

elements involved in the interaction

between users and the structural

elements of the interface.

No graphical

representation.

Event This metaclass represents the events

that users can trigger on a certain

widget. The elements of this metaclass

can be related to Action elements

specifying which part of the SRIA

performs the action (server or client).

Action The Action metaclass represents those

actions that can be perfomed by a

Widget element. Actions must be

associated to, at least, one event.

Annotation This metaclass represents a static

semantic annotation over a certain

widget.

Table 6.6 introduces some of the main OCL constraints defined over

the OntoVisu metamodel in order to maintain the consistency of the

information stored in the model.

URI reference

Model-Driven Development of Rich Internet Applications on the Semantic Web 145

Table 6.6. Summary of the OCL constraints defined over the OntoVisu metamodel.

Name Description / OCL Contraint

DifferentComponentNa

me
Two Component elements cannot share the same name in the

same model.

context VisualisationModel

inv:

self.elements->select(e |

e.oclIsTypeOf(Component))

->forAll(c | self.elements->select(e2 |

e2.oclIsTypeOf(Component) and e2.name =

c.name)->size() = 1)

CompleteContainsRelati

onship

All the Contains elements must relate an ElementContainer

element to a SimpleElement element. (This OCL constraint

could be replicated for any of the subclasses of the

OWLObjectProperty metaclass)

context VisualisationModel

inv:

self.rels->select(r |

r.oclIsTypeOf(Contains))->forAll(c |

c.oclAsType(Contains).element <> null and

c.oclAsType(Contains).container <> null)

SameNameSimpleEleme

ntWidget

The name of the SimpleElement must be equal to the name of

the widget from the EPM to which it is associated. (This OCL

constraint could be replicated for any of the elements with a

relationship to elements of other models)

Context SimpleElement

inv:

self.name = self.widget.name

SameElementsSameScree

nshot

A ScreenShot element must contain the SimpleElement

elements created from the widgets associated to the screenshot

to which is linked (from the EPM).

Context ScreenShot

inv:

self.ss.referredWidgets->

includesAll(self.se->widget)

OnlySimpleElementsHa

veWidgetProperties

Only the Property elements associated to SimpleElement

elements can be associated to widget properties of the EPM.

Context StructuralElement

inv:

(self.oclIsTypeOf(SimpleElement) and

self.properties->wp->size() <> 0) or not

self.oclIsTypeOf(SimpleElement)

SameWidgetSameProper

ties

The widget properties associated to the Property elements of a

SimpleElement element must have been obtained from the

146
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

Name Description / OCL Contraint

properties of the widget (of the EPM) to which it is associated.

Context SimpleElement

inv:

self.widget.properties->

includesAll(self.properties->wp)

Using these elements the Pres&Orch2Visu M2M transformation rule

creates the VOM from the information contained in the model (see

Section 7.3.3, page 199). The use of a graphical notation for a model

generated automatically (and should not be updated according to the

Sm4RIA process) is motivated by the actual necessity of offering a

human-oriented visualisation in some cases when the designer needs to

manually constrain the output model (as mentioned before). The use of

a transformation rule also ensures that the OCL constraints are satisfied

from the creation of the model

The next section describes the model resulting from the

transformation of the Extended Presentation and Orchestration models

of the SNS case study. The transformation process proposed will be

described in Section 7.3.3 (page 199) with the rest of the model-2-model

transformations defined in the methodology.

6.3.2 THE VISUALISATION ONTOLOGY MODEL OF THE SOCIAL

NETWORK SITE

After completing the Extended Orchestration Model of the social

network site, the designer invokes the Pres&Orch2Visu transformation

process obtaining the VOM. Figure 6.14 illustrates a diagram showing

part of the VOM of the case study corresponding to the EPM and EOM

introduced in Section 5.2.2 and Section 5.3.2. The figure illustrates a

schema containing those visual elements involved in the process of user

authentication and the creation of a new story.

The initial element of this model is the Login ScreenShot element,

illustrated as an open eye, which represents the first screenshot of the

SRIA (see Figure 6.5). Each type of visual element (illustrated as jigsaw

pieces) is an instantiation of the subclasses of the VisualElement

metaclass, such as Grid or TextBox. These model elements are related to

Model-Driven Development of Rich Internet Applications on the Semantic Web 147

a set of properties, represented as model annotations, for the

representation of the aesthetic characteristics of each visual element,

such as the size, the relative position or colour. For instance, the size

property of this screenshot is set to “1024x768”.

Figure 6.14. Fragment of the Visualisation Ontology Model of the SRIA MediaPlayer.

According to the diagram (which represents a subset of all the

elements of the screenshot due to spacing constraints), the Login

screenshot contains the LoginButton Button element. The diagram

represents the process of user authentication, which is performed after

the OnClick1 event is triggered on that component and involves the

invocation of the Login and Show actions. The second screenshot

depicted in the model is the Main screenshot (see Figure 6.6), which

contains four components:

a. Menu1, which represent the menu panel located at the header of

the screenshot;

b. LogoUA, which represents an image with an ontology-based

annotation.

c. StackPanelList, which represents the component used for the

creation of the list of stories. The StackPanelElement component

MainMenu1

NewStoryFormMenuButton1

OnClick2

StackPanelList

Label1

Label2

UpdateContent

LogoUA

dbpedia:University_of_Alicante

« Event»

type = onClick

NewStory

C

S

«TextBox»

xsize = 30

ysize = 20
xpos = 0
ypos = 50
color = #a0a0a0
font = Times

content = “Advance
Search”
…

StackPanelElement

InputBox

Login

Show

LoginButtonOnClick1Login

C

S

SubmitButton

« Event»

type = onClick

« Screenshot»

size = “1024x768”

…

148
Chapter 6. Designing the Client Components of a Semantic Rich Internet

Application

represents the component used as a pattern for the creation of the

stories within the list. The information about the stories is located

within the Label1 and Label 2 components.

d. NewStoryForm, which represents the form designed for the

creation of stories. This form contains an input component, called

InputBox and conformant to the TextBox metaclass, and the

SubmitButton component that manages the process of creation by

means of the OnClick2 event.

As just mentioned, in this second screenshot, the LogoUA component

represents an image associated to an ontology-based association, mainly

characterised by a URI. This image, which illustrates the institutional

logo of the University of Alicante, is associated to the resource identified

by http://dbpedia.org/resource/University_of_Alicante, which refers to the

University_of_Alicante entity of the DBpedia Linked Data repository. This

type of annotations can be used to retrieve extra information associated

to the content of the image.

This is the last model of the Sm4RIA process for the SNS case study.

With the information contained in the collection of models described,

the model-2-text transformation engines automatically generate the

software modules of the application.

6.4 CONCLUSIONS

This chapter has explained the tasks and models of the second

activity of the Sm4RIA process, i.e., the design of the UI, in which the UI

designer specifies all the elements needed for the generation of the SRIA

client for human users taking into consideration the stakeholders’

requirements and the models of the previous activities.

The tasks in this activity can be grouped into two main sequences,

depending on the aspects of the user interface they address: a) the

design of the UI structure and visual appearance using the Extended

Presentation Model or b) the design of the behaviour of the UI structural

components with the Extended Orchestration Model. Although, in some

cases, these models can be created using a model-2-model

transformation process, this chapter described the process of manual

specification of the models, which can be employed in the development

of any case study.

Model-Driven Development of Rich Internet Applications on the Semantic Web 149

Both models are platform-specific and are adapted to the

development of Silverlight (S)RIAs. In order to facilitate the adaptation

of these models to any other technology, the Extended Presentation and

Extended Orchestration metamodels contain groups of abstract

elements, independent from the platform, which create the most general

elements that are specialised by the platform-dependent elements and

establish the main relationships between these models and the ones

explained in the previous chapter.

The information contained in both models was subsequently merged

and transformed into the elements of the Visualisation Ontology Model,

which provides an overview of the UI from the users’ viewpoint. This

process is performed by means of a M2M transformation.

In order to clarify the concepts described and assess the proposal in a

qualitative manner, the chapter presented the design of the EPM, the

EOM and the VOM for a social network site, following the example of

the previous chapter.

Chapter 7. GENERATING THE SOFTWARE

MODULES OF A SEMANTIC RIA

THROUGH MODEL TRANSFORMATIONS

In the first two activities of the Sm4RIA process, designers with the

help of a set of model-to-model transformation capture and represent all

the design information of the SRIA. The Sm4RIA models contain the

details required for the development of a SRIA in an automatic manner.

Using this information, in the last Sm4RIA activity, the model-2-text

transformation engines obtain the components of the final SRIA by

means of a set of model-to-text transformations.

Model-to-text transformations define a set of rules that transform the

objects of a collection of input models into the final code of the

application. These transformations can generate any detail of the

application taking into consideration the needs of the target application

(technology, architecture, platform, etc.) and the ones of the developers

(development environment, coding standard, etc.) Therefore, they are

adapted to each specific case and should be modified whenever the

needs (or non-functional requirements) change. The first step before

defining the transformation rules is to specify the detailed architecture

of the target application, which facilitates the modularisation of the rules

and improves their maintainability. For each of the software

components, the designer can subsequently specify a collection of rules

that fits the requirements.

This chapter introduces the transformation processes required to

generate the software modules contained in SRIAs (see Figure 3.3, page

152
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

49). Firstly, it will introduce the model-2-text transformations that

generate the code of the SRIA server and, subsequently, the model-2-

model transformations that can speed up the development process by

creating mock-ups of some of the Sm4RIA models. While M2M

transformations are independent from the implementation, M2M

depend on the implementation of the SRIA proposed. Therefore this

chapter introduces the general architecture proposed for a SRIA based

on a set of well-known architectural design patterns. Subsequently, it

presents the adaptation of the general architecture to the development of

Silverlight SRIAs and the M2T transformations that generate each

software component. Finally, these transformations are implemented in

the Sm4RIA extension for OIDE, which is an extension for the OIDE CASE

tool that implements the Sm4RIA model editors and code generators.

In this way, this chapter completes the Sm4RIA proposal, by

describing the last of its activities and the implementation of the models

and transformations in a case tool. The example of SRIA architecture

introduced could be used as a reference for future implementations.

7.1 THE ARCHITECTURE OF A SEMANTIC RIA

The SRIA structure of the SRIA described in Section 3.3 contains the

main software modules that a SRIA must implement. However, the

description does not contain the details required for the implementation

of a prototype. During the development of the SRIA case studies,

different architectures were tested for the Web application. Using the

experience gained from that process, this section presents one of the

possible SRIA architectures, which specify the components of the

application and their organisation. This proposal is based on a set of

mature architectural design patterns, which facilitate the design of the

components and, at the same time, qualitatively validate the resulting

application. Architectural patterns do not ensure that the resulting

application is well developed but they represent solutions proved to be

successful in several scenarios.

Before starting the description of the architecture proposed, Figure

7.1 illustrates the schema shown in Figure 3.3 (page 49) with a different

colour scheme.

Model-Driven Development of Rich Internet Applications on the Semantic Web 153

Figure 7.1. Structure of a Semantic RIA.

Taking this diagram as a reference, the following subsections will

describe the components of each SRIA module, starting from the

description of the architecture of the SRIA server. The system

architecture will be specified as a collection of WebSA Configuration

models (Meliá, 2007), which extend the UML component models with a

new profile for the specification of architectural patterns and the

interaction between the components and users or legacy systems.

7.1.1 THE ARCHITECTURE OF THE SRIA SERVER

Figure 7.2 shows the WebSA Configuration model of the architecture

proposed for a SRIA server. In this case, the diagram introduces a

general architecture, which avoids technological details and could be

therefore applied to any case study. The colour scheme chosen

corresponds to the one of Figure 7.1 and the component names are

coherent with the names of the SRIA modules.

Semantic Web
agent

Web infrastructure

Web of Linked Data

Browser-oriented client

AJAX Client

Semantic annotation
generatorSRIA client

SRIA server

A
sy

nc
hr

on
ou

s
co

m
m

u
ni

ca
ti

on

SRIA- 2

Linked Data service

Plugin-oriented client

Web Service
Interface

HTML interface
generator

Business Logic

Database Knowledge base

RDF-DB
conversor

Linked Data
service

Semantic Web
Service Gateway

Silverlight/Flex Client HTML + RDFa View

SRIA server

SRIA client

base

Semantic RIA

Semantic Web
modules

S
yn

ch
ro

n
ou

s
co

m
m

u
n

ic
at

io
n

A
sy

n
ch

ro
n

ou
s

co
m

m
u

n
ic

at
io

n

154
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Figure 7.2. Configuration model for the general architecture of the SRIA server.

Table 7.1 shows the components included in all the SRIA server

modules, which links the SRIA structure to the components of the

Configuration model.

Table 7.1. Mapping between the SRIA server modules and architectural components.

SRIA server modules Architectural components

Database, knowledge base

DataAccessComponent (interface

and component),

DataTransferObject

Semantic Web Gateway

ServiceGateway,

Gateway,

OntologyDataTransferObject,

DTOAssembler2

Business Logic BusinessEntityComponent

Web Service Interface

AppServiceInterface,

AppServiceComponent,

AppDataTransferObject,

DTOAssembler

Model-Driven Development of Rich Internet Applications on the Semantic Web 155

SRIA server modules Architectural components

HTML interface generator

RDFApplicationService,

ServiceComponent,

RDFDataAccessComponent

Linked Data Service
LinkedDataService (interface and

component)

As mentioned before, WebSA Configuration models allow designers

to specify the architectural components, interfaces and the relationship

between them. The WebSA profile includes a collection of stereotypes

that represent well-known architectural patterns (obtained from

different authors) that can be applied on the components. In this case,

the following patterns were employed during the design of the server

architecture (described by Meliá, 2007):

 Data Access Object (Alur et al., 2003). It defines the components

that manage the application data in such a way that business-

logic processes are separated from data management processes.

The WebSA Configuration model defines four stereotypes to

define this pattern:

o IDataAccessComponent: Interface of the component that

manages the application data. It defines the methods that

o DataAccessComponent: Component that manages the

application data.

o DataTransferObject: Data object managed.

o BusinessEntityComponent: Component that manages the

business-logic processes.

 Data Transfer Object (Fowler, 2002). This pattern establishes a

coarse-grain interface between distributed components that

facilities the transfer of complete objects as values, thus reducing

the number of remote invocations. The WebSA profile includes

two stereotypes to define this pattern:

o DataTransferObject: Component that manages the data

object.

o Assembler: Component that transform one

DataTransferObject component into another.

 Distributed Façade (Gamma et al., 1995). It establishes a scalable

interface between the business logic components and the user

interface components, which reduces the coupling degree

156
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

between server and client components. The WebSA

Configuration model defines two stereotypes for this pattern:

o IApplicationFaçade: Interface that contains the methods

offered to the application client.

o ApplicationFaçade: Component that provides access to the

business logic processes to the application client.

o ApplicationFaçadeProxy: Component that implements the

client to the ApplicationService component.

 Service Gateway (Trowbridge et al., 2003). This pattern defines a

set of components that connect the application to other remote

applications, which implement part of the features required. The

WebSA Configuration model defines two stereotypes for this

pattern:

o IServiceGateway: Interface that defines the methods

offered by an external service.

o ServiceGateway: Component that represents a client of an

external service.

 Service Interface (Trowbridge et al., 2003). It provides an

interface to part of the application features that can be used by

external clients.

o IServiceInterface: Interface that defines the methods offered

to external clients.

o ServiceInterface: Component that provides access to the

business logic processes to external clients.

Figure 7.3 illustrates part of the detailed Component model for the

SNS SRIA case study (Section 3.4.1, page 54). This example of SRIA

architecture is based on the assumption that the SRIA server will be

implemented using .NET technologies and, more specifically, the

Windows Communication Foundation framework (WCF) and the

NHibernate Object-Relational mapping library.

The SRIA server offers three different services to three types of

clients, represented by three components with access to the application

data and the business-logic processes:

 The WCFApplicationService component (ApplicationFaçade

stereotype, coloured in blue) is the service that provides the

access methods for browser or plug-in-oriented RIA user

interfaces. This service provides the methods User_get5tracks,

Model-Driven Development of Rich Internet Applications on the Semantic Web 157

which retrieves five tracks created by a certain user;

MusicTrack_newTrack, which creates a new track from the user’s

data; and Record_getAllTrackOfRecord, which retrieves the tracks

associated to a certain record. This service uses the

MusicTrackDTO component as data container, which is created

using the Entity2DTOAssembler component from the internal

MusicTrackEntity component. The MusicTrackDTO component

contains methods for the management of its attributes (get and

set) even though this diagram only shows three of them

(DataTransferObject components should not modify ID attributes).

Figure 7.3. Detailed architecture of the SRIA server for the Social Network Site case study.

158
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

 The PHPApplicationService component (ApplicationFaçade

stereotype, coloured in yellow) is the service that provides the

application data to the HTML+RDF view. In this diagram, the

service provides two methods: getAllTrack, which retrieves all the

tracks stored in the database; and tracks, which obtains the list of

tracks contained in a record.

 The SparqlEndpoint component (ServiceInterface stereotype,

coloured in red) is the service that provides access to the RDF

instances of the application to external clients. This service

provides a single method called query, which obtains the

ontology instances that fulfil the user’s query string.

The WCFApplicationService and SparqlEndpoint components employ

several BusinessEntity components, which encapsulate the business logic

of the application in separate components managing a single data object

each. The diagram of the case study only shows the MusicTrackBEC

BusinessEntity component, which manages the MusicTrack objects by

means a collection of CRUD methods (newMusicTrack, modifyMusicTrack,

destroyMusicTrack, readOID, readAll, getAllTrackOfRecord) and custom

methods (read5Elements).

BusinessEntity components can employ DataAccessComponent

components to retrieve or store local data objects from/in the database,

and ServiceAgent components to retrieve or modify external data objects

and invoke external methods. The data objects retrieved are managed as

internal DataTransferObject components. In the case study, the

MusicTrackBEC component can use the MusicTrackNHibernateDAC

component, which manages the MusicTrack objects in the database, and

the MusicBrainzGateway component, which manages the ontology

instances stored in the MusicBrainz external repository. ServiceAgent

components work with their own types of DataTransferObject

components (e.g., TrackDTO), which must be converted into internal

DataTransferObject components before the BusinessEntity component use

them. This process is performed by an Assembler component (e.g.,

Track2MusicTrackAssembler).

The PHPApplicationService component employs the

RDFDataAccessComponent component to access the contents of the local

data base and retrieve them as ontology instances.

Model-Driven Development of Rich Internet Applications on the Semantic Web 159

The implementation of some of the components of the SRIA server

could be reused from other applications in order to speed up the

development of the server. For instance, at present, some applications,

such as the OpenLink Virtuoso server or the D2RQ server, can already

offer a SPARQL interface and a HTML view of the data contained in a

database from the specification of a set of database-to-ontology mapping

rules.

To complete the description of the server architecture, Figure 7.4 and

Figure 7.5 show two UML sequence diagrams that describe the process

performed after the invocation of two methods of the

WCFApplicationService component: User_get5Tracks and

Record_getAllTrackOfRecord, respectively. These methods are descriptive

examples of the manner in which the SRIA server components work.

The first method accesses local data by means of the

MusicTrackNHibernateDAC component. The process shown in the first

diagram could be also performed in traditional RIAs.

160
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Figure 7.4. UML Sequence diagram of the invocation of the User_get5Tracks method of the

WCFApplicationService component.

The second diagram shows how the service can employ the

MusicBrainzGateway component in order to retrieve external information

about the music tracks stored in the MusicBrainz repository.

Model-Driven Development of Rich Internet Applications on the Semantic Web 161

Figure 7.5. UML Sequence diagram of the invocation of the Record_getAllTrackOfRecord method

of the WCFApplicationService component.

162
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

7.1.2 THE ARCHITECTURE OF THE SRIA CLIENT

Figure 7.6 shows the Configuration model of the architecture

proposed for the two possible types of SRIA clients. The diagram

introduces a general architecture for each of the clients, which could be

applied to any case study. The colour scheme chosen corresponds to the

one of Figure 7.1 and the component names are coherent with the names

of the SRIA modules.

As can be noticed, this diagram contains details about the technology

of the client given that the main difference between RIA clients is the

technology they are developed on. The diagram represents the

components of an AJAX SRIA client (HTML5 and Javascript), as an

example of browser-oriented client, and the components of a Silverlight

SRIA client, as an example of plug-in-oriented client.

Figure 7.6. Configuration model of the general architecture of two SRIA clients

(browser and plug-in oriented).

Table 7.2 shows the components included in all the SRIA server

modules, which links the SRIA structure to the components of the

Configuration model.

In the same manner than the SRIA server architecture, the following

patterns were applied during the design of their architecture in the

Configuration model (described by Meliá, 2007):

Model-Driven Development of Rich Internet Applications on the Semantic Web 163

Table 7.2. Mapping between the SRIA client modules and architectural components.

SRIA client modules Architectural component

Plug-in-oriented

client

Silverlight client

SilverlightView,

SilverlightViewModel,

SilverlightUserInterfaceEntity

HTML + RDF

view

HTMLView,

Controller,

Model

Browser-oriented client (AJAX)

HTML5View,

JavascriptViewModel,

JavascriptUserInterfaceEntity

 Model-View-Controller (Buschmann et al., 1996). This pattern

divides the UI interface in three main components:

o Model (stereotyped as DataTransferObject in the

Configuration model. It manages the domain data as the

View component requires.

o View (UserInterfaceComponent stereotype). It contains the

visualisation elements and depicts the information of the

application.

o Controller (UserProcessComponent stereotype). It manages

the user input, the communication between client and

server components and notifies the View and Model

components when they need to change.

 Model-View-ViewModel (Gossman, 2005; Smith, 2009). It

specialises the Model Presentation pattern (Fowler, 2004) for the

.NET platform. However, its terminology and structure has been

adopted by other technological solutions, such as iOS or HTML5.

In a similar manner than the MVC pattern, it divides the UI in

three types of components:

o Model (stereotyped as UIEntity in the Configuration

model). It manages the communication with the server

components and the local storage of the application data

in the UI.

164
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

o View (UserInterfaceComponent stereotype). It contains the

visualisation elements and depicts the information of the

application.

o ViewModel (UserProcessComponent stereotype). It

manages the interaction between users and the View

component and the communication between the View

and Model components.

The MVVM pattern separates the design from the management

of view in two components (view and view model) in such a way

that designers can create the view of the application

independently from its behaviour and the application data.

Moreover, this pattern facilitates the use of processes of lazy

synchronisation in the SRIA client for the management of the

application data.

The next paragraphs explain in depth two examples of the

mentioned architectural patterns for the SNS case study. The first

example, representing the MVVM pattern, is illustrated in Figure 7.7,

which depicts the WebSA Configuration model of the Silverlight client

of the SRIA. In this type of clients, users directly interact with the

UserInterfaceComponent components (the view), which represent a

screenshot of the rich user interface, contain all the widgets of the UI as

component attributes, and manage their visualisation (aesthetic features)

with the component methods. However, it does not control the

information shown. In this example, the XAMLView component contains

the application widgets, e.g., the SLStackPanel_MTList or

SLStackPanel_MTElement elements of type StackPanel (from the

Silverlight framework). It also offers a method called

CloneSLStackPanel_MTList that builds the view of the

SLStackPanel_MTList (MusicTrackList) and populates the element using

SLStackPanel_MTElement as pattern.

Model-Driven Development of Rich Internet Applications on the Semantic Web 165

Figure 7.7. Detailed architecture of the plug-in-oriented SRIA client (Silverlight client) for the

SNS case study.

Each UserInterfaceComponent component is associated to a single

UserProcessComponent component (the view-model), which actually

manages the information shown by the view, the events triggered by the

user and the synchronisation processes between SRIA client and server.

Each attribute of the UserInterfaceComponent component can be bound to

an attribute or a relationship of its corresponding UserProcessComponent

component. UserProcessComponent components manage a collection of

UIEntity components, which actually store the information of the data

objects used by the view (the model) and the communication processes

between SRIA client and server using an ApplicationFaçadeProxy

component. The proxy component is created from the specification of

166
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

the interface of the ApplicationService component provided by the SRIA

server.

In the diagram, the XAMLView component is associated to the

SilverlightViewModel component, which contains two types of attributes:

 Attributes with a simple data type, which are bound to the

properties of the attributes of the XAMLView component. For

instance, the SLCanvas_NewMusicTrack_form_title String attribute

is bound to the Text property of the

SLCanvas_NewMusicTrack_form_title TextBlock element.

 Command attributes, which manage the actions performed after

an event is triggered. For instance, the

SLCanvas_NewMusicTrack_form_button_Command attribute is

bound to the Click event of the

SLCanvas_NewMusicTrack_form_button attribute.

The SilverlightViewModel component employs a collection of UIEntity

components that manage the communication with the SRIA server and

the data objects obtained. Each UIEntity component defines a data

context, whose data can be visualised by a widget or panel of the

XAMLView component. In this case, the SilverlightViewModel component

is associated to the MusicTrackUIEntity, AlbumUIEntity and

UserAccountUIEntity components by means of the

SLStackPanel_MTList_Context, SLStackPanel_AlbumList_Context and

Context relationships. The first two relationships are bound to the

SLStackPanel_MTList and SLStackPanel_AlbumList attributes of the

XAMLView component, respectively, while the third one is linked to the

whole component.

The methods NotifyPropertyChanged of the SilvelightViewModel

component and RaisePropertyChanged of the XAMLView component are

employed to notify the changes in lower layers of the architecture, i.e.,

the UIEntity components and the SilverlightViewModel respectively. In

this way, the application can perform asynchronous server invocations

and maintain the coherence of the data presented to the users.

To complete the description of the architecture of the Silverlight

client, Figure 7.8 and Figure 7.9 depict two UML sequence diagrams that

represent the behaviour of the client during the invocation of the

Record_getAllTrackOfRecord and MusicTrack_newTrack server methods,

Model-Driven Development of Rich Internet Applications on the Semantic Web 167

respectively. In these diagrams, the SRIA server is considered as another

user role.

Figure 7.8. UML Sequence diagram of the invocation of the Record_getAllTrackOfRecord

method from the SRIA client.

168
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Figure 7.9. UML Sequence diagram of the invocation of the MusicTrack_newTrack method

from the SRIA client.

The second example of client, which applies the MVC pattern, is

illustrated in Figure 7.10. This figure depicts the WebSA Configuration

model of the HTML+RDFView client of the SRIA. This second client

Model-Driven Development of Rich Internet Applications on the Semantic Web 169

follows the same architectural pattern than most of the traditional user

interfaces on the Web. The UI client is composed of several

UserInterfaceComponents components, i.e., the Web pages, which interact

with the users. The UserProcessComponent components (the controllers)

manage the data visualised by the UserInterfaceComponent components

and the communication between SRIA server and client. This PHP client

uses internal DataTransferObject components in order to locally store and

manage the data objects obtained from the server

Figure 7.10. Detailed architecture of the plug-in-oriented SRIA client (Silverlight client) for the

SNS case study.

As mentioned before, the SRIA architecture is not unique. The one

proposed in this section was specified based on the experience gained

during the development of the case studies. Using the description of the

architecture as a reference, the following subsection describes the

transformation rules applied during the third activity of the Sm4RIA

process.

7.2 MODEL-2-TEXT TRANSFORMATIONS TO OBTAIN A

SEMANTIC RIA

In the third activity of the Sm4RIA process, model-to-text

transformations generate the application code from the information

contained in the models. By means of the Sm4RIA transformation rules

170
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

developers can obtain the SRIA software components and resources

(mainly ontologies), based on the proposed SRIA architecture. This

section addresses the generation of a plug-in-oriented SRIA using

technologies from the .NET framework and C# as code language. In

particular, the code generated will use the NHibernate framework for

the mapping of the database registers into data objects, managed by the

application. The Windows Communication Foundation (WCF)

framework for the creation of Web services and the Silverlight

framework for the development of rich user interfaces.

The schema illustrated in Figure 7.11 specifically shows the SRIA

software modules (from Figure 3.2, page 50) and the resources generated

from each of the models, which offer an overview of the information

captured by each of the models in the previous activities of the Sm4RIA

process.

Figure 7.11. SRIA modules and resources obtained from each Sm4RIA model.

The Domain model, the Extended Domain Model and the Extended

Navigational Model contain the information for generating all the

server-side modules, while the Extended Presentation and Orchestration

Models generate the client modules.

Knowledge base

Extended
Domain
Model

Extended
Navigation

Model

Visualisation
Ontology

Model

OWL Navigation
Ontology + instances

Sm4RIA models

Semantic Web
Service

Gateway

Web Service
Interface

Business Logic

Domain
Model

Database

Linked Data
service

Extended
Presentation

Model

Extended
Orchestration

Model

AJAX Client
Silverlight/Flex

Client

HTML interface
generator

HTML + RDFa
View

Knowledge base
OWL Domain

Ontology

Knowledge base
OWL Visualisation

Ontology + instances

RDF-DB
conversor

SRIA Modules

Database2Object
mapping rules

Model-Driven Development of Rich Internet Applications on the Semantic Web 171

 The Domain Model contains the information needed to generate

application database, the data objects and the object-relational

mapping rules, which turn the data objects into database

registers and vice-versa.

 The Extended Domain Model represents the domain ontology,

which can be generated in any ontology representation language.

 The Extended Navigational Model is the main server model. As

explained before, it represents the information that any type of

user can access and the operations that can be invoked by the

server client or external agents. From this model, the

transformation engines can generate the business logic

components, the service interface to the SRIA client and the

clients to external Web services. Moreover, they can also obtain

the Semantic Web gateway module and the linked data service.

The HTML interface generator is also generated from this model

since the aesthetic features of this interface are not designed. The

HTML interface is oriented to software agents that cannot access

the information on the rich user interface (i.e., the Silverlight

interface). To this aim, the aspect of the interface is not relevant.

The integration of an existing Database-to-RDF mapping tool,

e.g., D2RQ or OpenLink Virtuoso server, can simplify the

implementation of the SRIA server architecture and, thus, the

definition of the transformation processes and rules. These tools

can provide some of the planned functionalities and simplify the

resulting applications. For instance, D2RQ (http://www4.wiwiss.fu-

berlin.de/bizer/d2rq/) can generate a Linked Data service (based on

the SPARQL protocol) and a HTML interface for the visualisation

of the ontology instances from the database and a collection of

database-2-RDF mapping rules. As illustrated in Figure 7.12, the

number of modules to be generated and, in the same manner, the

number of transformation rules, can be reduced to a single

resource, i.e., a file with the collection of mapping rules

mentioned. These rules can be expressed in different languages

depending on the tool, e.g., the D2RQ language for the system

with the same name. As part of an effort of standardisation of the

task, the W3C has recently released the R2RML standard

language, which is being adopted by the existing tools.

172
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Figure 7.12. Modification of the SRIA modules and resources obtained

from the Extended Navigational Model.

 The Extended Presentation Model and the Extended

Orchestration model can generate a browser-oriented (e.g., Ajax

client in the figure) or a plug-in-oriented SRIA client (e.g.,

Silverlight client in the figure).

 The Visualisation Ontology Model merges the information from

the structure and behaviour of the user interface. The

Visualisation Ontology and its instances are obtained from this

model.

The transformation process defined in the third Sm4RIA activity

specifies a transformation rule for each of the SRIA modules (e.g.,

Business Logic) and resources (e.g., ontologies or mapping rules).

However, in order to compile the resulting code and deploy the final

application, the outcome of the transformation rules must be

hierarchically organised in a collection of projects. In this case, the code

is organised in a Visual Studio solution, containing several projects that

store the architectural components of the application, each in a single

file. The solution and the projects also contain a set of configuration files

(sln, cproj or config files), external libraries (dll files) and auxiliary

components, which are also generated during the transformation

process and are shared by any application obtained. The chosen file

organisation was reused and extended from the OOH4RIA proposal.

The description of the structure of the solution generated is introduced

in Section G.1 (page 301).

As just mentioned, each transformation rule generates a specific

architectural SRIA component in a separate file. Table 7.3 summarises

the main model-to-text transformations of the Sm4RIA process, the

models used as input and the architectural components obtained. The

colour scheme used in the second column of the table establishes a

Knowledge base

Extended
Navigation

Model

OWL Navigation
Ontology + instances

Sm4RIA models

Semantic Web
Service

Gateway

Web Service
Interface

Business Logic

SRIA Modules

Database2RDF
Mapping rules

Model-Driven Development of Rich Internet Applications on the Semantic Web 173

relationship between the transformation rules and the SRIA modules

and architectural components, depicted in previous figures. The

examples of resulting components are obtained from the Configuration

models of Figure 7.3 and Figure 7.7. In the same manner, Table 7.4

illustrates a summary of the transformation rules that obtain the main

resources of the application.

Table 7.3. Summary of the Sm4RIA M2T transformation rules, their input models

and the resulting architectural components.

Input Model
Model-to-text

transformation rules
Resulting architectural

components

Domain Model DEntity_root DataTransferComponent,

e.g., MusicTrackEntity.

Dac_root DataAccessComponent,

e.g., MusicTrackDAC.

Extended Domain Model

Extended Navigational Model

Bec_root BusinessEntityComponent,

e.g., MusicTrackBEC.

OEntity_root DataTransferComponent,

e.g., TrackEntity.

Client_root ServiceAgentProxy, e.g.,

SparqlClient.

Gateway_root ServiceAgent, e.g.,

MusicBrainzGateway.

Extended Navigational Model Service_root ApplicationFaçade, e.g.,

WCFApplicationService.

EEntity_root DataTransferComponent,

e.g., MusicTrackDTO.

Extended Presentation Model

Extended Orchestration Model

View_root UserInterfaceComponent,

e.g., XAMLView.

Viewmodel_root UserProcessComponent,

e.g., SilverlightViewModel.

UIEntity_root UIEntity,

ApplicationFaçadeProxy,

e.g., MusicTrackUIEntity.

Domain Model

Extended Domain Model

Extended Navigational Model

Assembler_root,

AssemblerDTOEn_root

Assembler, e.g.,

Entity2DTOAssembler,

Track2MusicTrackAssembler.

All Project_root Visual Studio project files and

auxiliary modules.

174
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Table 7.4. Summary of the Sm4RIA M2T transformation rules, their input models and the

resulting resources.

Model
Model-to-text transformation

rule
Resulting resources

Domain Model NHibernate_root NHibernate mapping rules

Extended Domain Model Ontology_root Domain ontology

Extended Navigation Model Mapping_root D2RQ Database-to-RDF

mapping rules

NOntology_root Navigational ontology

Ontology instances

Visualisation Ontology Model VOntology_root Visualisation ontology

Ontology instances

All Project_root Visual Studio project files.

The rules introduced in both tables can be invoked in any order since

each of them addresses the creation of different application components.

The tables introduce one of the possible organisation of the rules. The

rules that employ the Domain Model as input, i.e., DEntity_root, Dac_root

and NHibernate_root, are reused from the OOH4RIA methodology.

Moreover, the rules for the generation of the SRIA WCF service, i.e.,

Service_root and EEntity_root, and the SRIA Silverlight client, i.e.,

UIEntity_root, Viewmodel_root and View_root, were also imported from

OOH4RIA and adapted to employ the new elements of the Sm4RIA

models. The new transformations included in Sm4RIA are depicted in

red and yellow, e.g., OEntity_root, Gateway_root, DOntology_root or

Mapping_root.

All the transformation rules were specified using the Xpand

language, which is a template-based language for the definition of

model-to-text transformation rules. Unlike QVT, Xpand facilitates the

definition of imperative statements, in which designers need to

explicitly specify the behaviour of the transformation. With Xpand,

designers can define protected regions, in which the code included by

users will be safely kept from one generation process to another.

The following subsections will introduce three Sm4RIA

transformation rules including an example of generated SRIA

components: OEntity_root, Gateway_root and Mapping_root. These offer a

representative example of the transformations performed in this activity

and the manner they are defined using Xpand. The code of other

transformation rules can be found in Section F.1 (page 277).

Model-Driven Development of Rich Internet Applications on the Semantic Web 175

7.2.1 THE OENTITY_ROOT MODEL-TO-TEXT TRANSFORMATION

The first example explained is the OEntity_root transformation rule,

which generates the DataTransferObject components (e.g., TrackEntity,

from Figure 7.3, page 157) used by the ServiceAgent components (e.g.,

MusicBrainzGateway) from the information stored in the Extended

Navigational Model and the Extended Domain Model. This

transformation rule analyses the external navigational classes

(ExtNavigationalClass metaclass) used in the model and generates one

DataTransferObject component per each in a separate file using the

domain ontology.

The rule also generates the attributes and the operations of the

component, specified by the Concept class from the EDM which any

external navigational class is associated to. When the Concept class is also

mapped to a domain class, the rule obtains a DataTransferObject

component that extends the one used by the DataAccessComponent

component (e.g., MusicTrackEntity, from Figure 7.3, page 157). In this

case, it adds the attributes required for identifying external objects, i.e., a

URI, and the attributes and operations from the Concept class with no

representation in the Domain model.

Figure 7.13 shows a UML Sequence diagram with the sequence of

rule invocation started by the OEntity_root rule. This diagram uses a

UML profile for defining transformation rules, in which each model-to-

text transformation rule is represented as a component and stereotyped

as M2T_Rule. The invocation of a rule is represented by a synchronous

message called invoke.

Figure 7.13. UML Sequence diagram of the OEntity_root transformation rule.

176
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Table 7.5 contains the Xpand templates for each of the

transformation rules shown in the previous figure. The «DEFINE»

statements represent the definition of the rules while the «EXPAND»

statements their invocations. In order to understand the definition of the

rules, Section G.2 (page 302) contains a brief reference of the main

elements of the language.

Table 7.5. Xpand code of the OEntity_root M2T transformation rule.

«DEFINE OEntiy_root FOR EDModel-»

 «EXPAND EntityClasses FOREACH this.models.select(e|e.metaType ==

OntologyModel).elements.typeSelect(Concept)-»

«ENDDEFINE»

«DEFINE EntityClasses FOR Concept-»

 «LET this.name.toFirstUpper() + "Entity" AS csClassName-»

 «FILE ((String)GLOBALVAR project) + "_LinkedDataCommon" + fileSeparator() +

"Entities" + fileSeparator() + this.model.name.toFirstUpper()+fileSeparator() +

csClassName + ".cs"-»

using System;

namespace «this.getEntityPackage()»

{

 public class «csClassName» «IF this.domainClass != null-»:

«this.domainClass.getENPackage()».«this.domainClass.formattedClassName(getENSuffix()

)»«ENDIF»

 {

 private string __uri = "";

 public string __Uri{ get{ return this.__uri; } set{ this.__uri = value; } }

 «IF this.domainClass == null-»

 «EXPAND EntityAttributes FOREACH this.attributes()-»

 «EXPAND EntityOperations FOREACH this.attributes()-»

 «ENDIF-»

 }

}

 «ENDFILE»

 «ENDLET-»

«ENDDEFINE»

«DEFINE EntityAttributes FOR Attribute-»

 «LET this.getCsType() AS type-»

 «LET this.name.toFirstLower() AS attrName-»

private «type» «attrName»;

 «ENDLET-»

 «ENDLET-»

«ENDDEFINE»

Model-Driven Development of Rich Internet Applications on the Semantic Web 177

«DEFINE EntityOperations FOR Attribute-»

 «LET this.getCsType() AS type-»

 «LET this.name.toFirstLower() AS attrName-»

public «type» «attrName.toFirstUpper()»{ get{ return this.«attrName»; } set{

this.«attrName» = value; } }

 «ENDLET-»

 «ENDLET-»

«ENDDEFINE»

The result of this transformation rule can be appreciated in Table 7.6.

This table shows two examples of DataTransferObject components

obtained from the transformation: the PersonEntity component,

generated from the Person concept of the FOAF ontology; and the

TrackEntity, generated from the Track concept of the MusicOntology

ontology (see Figure 5.2, page 88). The Track component extends the

MusicTrack DataTransferObject component employed by the

DataAccessComponent component by adding the attribute that identifies

the external objects, i.e., the URI. In both examples the only operations

generated are the setters and getters for each attribute, which, in this

case, are implemented as C# properties.

Table 7.6. PersonEntity and TrackEntity DataTransferObject components, generated by the

OEntity_root transformation.

(FILE: PersonEntity.cs)

using System;

namespace LinkedDataManagement.Entities.FOAF

{

 public class PersonEntity

 {

 private string __uri = "";

 public string __Uri{ get{ return this.__uri; } set{ this.__uri = value; } }

 private string name;

 private string homepage;

 private string email;

 /* Other attributes */

 public string Name{ get{ return this.name; } set{ this.name = value; } }

 public string Homepage{ get{ return this.homepage; } set{ this.homepage =

value; } }

 public string Email{ get{ return this.email; } set{ this.email = value; } }

 /* Other properties & operations*/

 }

}

178
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

(FILE: TrackEntity.cs)

using System;

namespace LinkedDataManagement.Entities.MusicOntology

{

 public class TrackEntity

 : SocialNetworkMDWEGenNHibernate.EN.SocialNetwork.MusicTrackEN

 {

 private string __uri = "";

 public string __Uri { get{ return this.__uri; } set{ this.__uri = value; } }

 }

}

7.2.2 THE GATEWAY_ROOT MODEL-TO-TEXT

TRANSFORMATION

The Gateway_root transformation rule generates the ServiceAgent

components of the application from the Extended Domain Model, which

defines the external services and their features, and the Extended

Navigation Model, which defines the manner they are used by means of

the external navigational classes and external links.

The transformation analyses the use of external navigational classes

in the Extended Navigational Model of the application and, according to

the domain ontology and the definition of the service, generates a

component that can access external information and invoke remote

services. Figure 7.14 illustrates a UML sequence diagram with the

process of transformation followed (this diagram uses the same UML

profile that Figure 7.13). The Gateway_root rule invokes a collection of

sub-rules that generate the code of the remote invocations and the

processing of the results.

The aims of each sub-rule can be briefly described as follows:

 ServiceGateway: This rule explores the navigation model

searching external navigational classes and links that use a

specific external source of the Extended Domain Model and

generates the IServiceAgent interface and the ServiceAgent

component for that source (conformant to the interface).

o QueryPrefixes. It creates the prefixes of the SPARQL queries

that will be invoked in the remote service. These prefixes

will be reused by any SPARQL request.

o LinkMap. It creates the operations that invoke the external

services from the external traversal or service links.

Model-Driven Development of Rich Internet Applications on the Semantic Web 179

§ LinkArguments. It generates the arguments of the

operation generated by the LinkMap rule.

§ QueryMap. It generates a SPARQL sentence for each

traversal or service link.

§ ResultMap. It generates the code that maps the data

objects obtained from the external service into a

DataTransferObject component that could be managed by

the application (i.e., those generated by the OEntity_root

transformation).

Figure 7.14. UML Sequence diagram of the Gateway_root M2T transformation rule.

180
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Table 7.7 contains the Xpand templates for each of the

transformation rules shown in the previous figure. The «PROTECT»

statement (see QueryMap rule) defines a protected region, in which the

code modified by the developers will be kept safely between generation

processes.

Table 7.7. Xpand code of the Gateway_root M2T transformation rule.

«DEFINE Gateway_root FOR ENModel-»

 «FOREACH ((List[ExtNavigationalClass]) navigationalElem.select(e | e.metaType

== ExtNavigationalClass)).source.toSet() AS source-»

 «EXPAND ServiceGateway-»

 «ENDFOREACH-»

«ENDDEFINE»

«DEFINE ServiceGateway (Source source) FOR ENModel-»

 «LET navigationalElem.typeSelect(TravesalLink).select(l |

l.nodeTarget.metaType == ExtNavigationalClass && ((ExtNavigationalClass)

l.nodeTarget).source == source) AS externalLinks-»

 «LET ((String)GLOBALVAR project) + "_LinkedDataCommon" + fileSeparator() +

"Gateways" + fileSeparator() + source.edModel.name.toFirstUpper() +

fileSeparator() AS path-»

«REM» *** SERVICE AGENT INTERFACE *** «ENDREM»

 «FILE path + "I" + source.name.toFirstUpper() + "ServiceGateway.cs"-»

using System;

using System.Net;

using System.Collections.Generic;

using System.Text.RegularExpressions;

using Newtonsoft.Json.Linq;

 «REM» Add DTO using statements «ENDREM»

namespace LinkedDataManagement.«source.edModel.name.toFirstUpper()».Gateways

{

 public partial interface I«source.name.toFirstUpper()»ServiceGateway

 {

 «EXPAND methodSignature FOREACH externalLinks-»

 }

}

 «ENDFILE-»

«REM» *** SERVICE AGENT COMPONENT *** «ENDREM»

 «FILE path + source.name.toFirstUpper() + "ServiceGateway.cs"-»

using System;

using System.Net;

using System.Collections.Generic;

using System.Text.RegularExpressions;

using Newtonsoft.Json.Linq;

 «REM» Add DTO using statements «ENDREM»

using LinkedDataManagement.«source.edModel.name.toFirstUpper()».Clients;

Model-Driven Development of Rich Internet Applications on the Semantic Web 181

namespace LinkedDataManagement.«source.edModel.name.toFirstUpper()».Gateways

{

 public partial class «source.name.toFirstUpper()»ServiceGateway :

I«source.name.toFirstUpper()»ServiceGateway

 {

 private const string PREFIXES = @"PREFIX owl:

<http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

«EXPAND QueryPrefixes FOREACH this.edModel.models-»";

 public «source.name.toFirstUpper()»ServiceGateway()

 {

 }

«EXPAND LinkMap FOREACH externalLinks-»

 }

}

 «ENDFILE-»

 «ENDLET-»

 «ENDLET-»

«ENDDEFINE»

«DEFINE QueryPrefixes FOR OntologyModel-»

 PREFIX «namespace»: <«uriBase»>

«ENDDEFINE»

«DEFINE LinkMap FOR TravesalLink-»

 «LET (ExtNavigationalClass)this.nodeTarget AS externalClass-»

 «LET externalClass.edmConcept.name.toFirstUpper() + "Entity" AS enClass-»

 public IList<«enClass»> «name.toFirstUpper()»_«((NavigationalModel)

GLOBALVAR enModel).formattedName()»(«EXPAND LinkArguments»)

 {

 List<«enClass»> list = null;

 string query = PREFIXES + @"«EXPAND QueryMap»";

 // Invoke the remote service

 «externalClass.source.name»SparqlClient sparqlClient = new

«externalClass.source.name-»SparqlClient();

 list = new List<«enClass»>();

 try

 {

 string result = sparqlClient.Query(query);

 // Parse the resulting JSON object

 JObject json = JObject.Parse(result);

 JArray resultArray = (JArray) json["results"]["bindings"];

 // Process the results

 foreach (JToken token in resultArray.Children())

 {

 var track = new «enClass»();

 track.__Uri = (string)token["uri"]["value"];

 «IF externalClass.edmConcept.domainClass != null &&

externalClass.edmConcept.domainClass.dataTypeOID() == PrimitiveType::String-»

182
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

track.«externalClass.edmConcept.domainClass.getOIDProperty().toFirstUpper()-» =

(string)token["uri"]["value"];

 «ENDIF-»

 «EXPAND ResultMap FOREACH externalClass.navAttribute.

typeSelect(ExternalNavigationalAttribute)-»

 list.Add(track);

 }

 }

 catch

 {

 list = null;

 }

 return list;

 }

 «ENDLET-»

 «ENDLET-»

«ENDDEFINE»

«DEFINE LinkArguments FOR TravesalLink-»

 «LET ((List[String]) List[String].newInstance()) AS argList-»

 «IF paging»«IF argList.add("int offset").add("int limit")!=null»«ENDIF»«ENDIF»

 «IF this.metaType == ExternalTraversalLink && ((ExternalTraversalLink)this).

edmObjectProperty != null»

 «IF argList.add("String uriParam") != null»«ENDIF»

 «ENDIF-»

 «FOREACH argList AS elem SEPARATOR ","»«elem»«ENDFOREACH-»

 «ENDLET-»

«ENDDEFINE»

«DEFINE QueryMap FOR TravesalLink-»

 «LET ((ExtNavigationalClass) nodeTarget) AS target-»

SELECT ?uri «FOREACH

target.navAttribute.typeSelect(ExternalNavigationalAttribute) AS a-»?«a.name»

«ENDFOREACH»

WHERE

{

 ?uri rdf:type «target.edmConcept.model.namespace»:«target.edmConcept.name» .

 «REM» Expand conditions for property navigation «ENDREM»

 «IF this.metaType == ExternalTraversalLink && ((ExtNavigationalClass)

this.nodeOrigin).source == ((ExtNavigationalClass) this.nodeTarget).source-»

 «LET ((ExternalTraversalLink)this).edmObjectProperty AS objProperty-»

 «IF objProperty != null-»

 <" + uriParam + @"> «objProperty.getNamespace()»:«objProperty.name» ?uri .

 «ENDIF-»

 «ENDLET-»

 «ENDIF-»

 «REM»Expand conditions related to attributes«ENDREM»

 «FOREACH target.navAttribute.typeSelect(ExternalNavigationalAttribute) AS a»

 «IF a.edmAttribute.metaType == RefAttribute-»

 «LET (RefAttribute) a.edmAttribute AS refA-»

 OPTIONAL { ?uri «refA.refProperty.getNamespace()»:«refA.refProperty.name»

?«a.name» } .

Model-Driven Development of Rich Internet Applications on the Semantic Web 183

 «ENDLET-»

 «ELSE-»

 OPTIONAL { ?uri «a.edmAttribute.getNamespace()»:«a.edmAttribute.name»

?«a.name» } .

 «ENDIF-»

 «ENDFOREACH-»

}

 «IF paging-»

OFFSET " + offset + " LIMIT " + limit + @"

 «ELSE-»

LIMIT 5

 «ENDIF-»

«ENDLET-»

«ENDDEFINE»

«DEFINE QueryMap FOR ExternalServiceLink-»

 SELECT ?uri «FOREACH ((NavigationalClass)

nodeTarget).navAttribute.typeSelect(ExternalNavigationalAttribute) AS a-

»?«a.name» «ENDFOREACH»

 WHERE

 {

 ?uri rdf:type «((ExtNavigationalClass)

nodeTarget).edmConcept.model.namespace»:«((ExtNavigationalClass)

nodeTarget).edmConcept.name» .

 «FOREACH ((NavigationalClass)

nodeTarget).navAttribute.typeSelect(ExternalNavigationalAttribute) AS attr-»

 ?uri «attr.edmAttribute.getNamespace()»:«attr.edmAttribute.name»

?«attr.name» .

 «ENDFOREACH»

 «REM»Generate SPARQL filters for each argument«ENDREM»

 «PROTECT CSTART "#*" CEND "*#" ID getFilterRegionId() -»

 «FOREACH argumentLink.typeSelect(ExternalArgumentLink).select(e |

extendedDomainModel::Attribute.isInstance(e.edmElement)) AS arg-»

 «LET (extendedDomainModel::Attribute) arg.edmElement AS attr-»

 ?var «attr.getNamespace()»:«attr.name» ?«attr.name» .

 «IF ((extendedDomainModel::Attribute) arg.edmElement).target ==

XmlDatatypes::string-»

 FILTER regex(?«attr.name», "^«arg.value»").

 «ELSEIF ((extendedDomainModel::Attribute) arg.edmElement).target ==

XmlDatatypes::integer-»

 FILTER (?«attr.name» = «arg.value»)

 «ENDIF»

 «ENDLET»

 «ENDFOREACH»

 «ENDPROTECT»

 }

«ENDDEFINE»

Table 7.8 contains the result of this transformation for the

MusicBrainz source, which contains instances of the MusicOntology

ontology (see Figure 5.2, page 88). The table shows the code of the

MusicBrainzServiceGateway component with the

184
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

GetAllRecord_SocialNetwork operation, which retrieves a list of albums

from the MusicBrainz repository. The operation employs the

RecordEntity component, generated by the OEntity_root rule, and the

MusicBrainzSparqlClient component, generated by the Client_root rule.

Table 7.8. ServiceAgent component for the MusicBrainz service generated with the

Gateway_root transformation rule.

using System;

using System.Net;

using System.Collections.Generic;

using System.Text.RegularExpressions;

using Newtonsoft.Json.Linq;

using LinkedDataManagement.Entities.MusicOntology;

using LinkedDataManagement.Default.Clients;

namespace LinkedDataManagement.Default.Gateways

{

 public partial class MusicBrainzServiceGateway : IMusicBrainzServiceGateway

 {

 private const string PREFIXES = @"PREFIX owl:

<http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX socialnetwork: <http://socialnetwork.com>

PREFIX : <>

PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

";

 public MusicBrainzServiceGateway()

 {

 }

 public IList<RecordEntity> GetAllRecord_SocialNetwork()

 {

 List<RecordEntity> list = null;

 string query = PREFIXES + @" SELECT ?uri ?title

WHERE

{

 ?uri rdf:type mo:Record .

 OPTIONAL { ?uri dc:title ?title } .

}

LIMIT 20

";

 // Invoke the remote service

 MusicBrainzSparqlClient sparqlClient = new MusicBrainzSparqlClient();

 list = new List<RecordEntity>();

 try

 {

 string result = sparqlClient.Query(query);

 // Parse the resulting JSON object

 JObject json = JObject.Parse(result);

 JArray resultArray = (JArray) json["results"]["bindings"];

 // Process the results

 foreach (JToken token in resultArray.Children())

 {

 var track = new RecordEntity();

 track.__Uri = (string)token["uri"]["value"];

Model-Driven Development of Rich Internet Applications on the Semantic Web 185

 try

 {

 track.Name = (string) token["title"]["value"];

 }

 catch { }

 list.Add(track);

 }

 }

 catch

 {

 list = null;

 }

 return list;

 }

 }

}

7.2.3 THE MAPPING_ROOT MODEL-TO-TEXT

TRANSFORMATION

The last example of this section is the Mapping_root transformation

rule, which generates the database-to-RDF mapping rules for the D2RQ

system using their own language. From the information contained in the

Semantic Web Agent view of the Extended Navigational Model (see

Figure 5.9, page 111) and the Extended Domain Model, this rule

generates the mapping rules for this system.

The rule analyses the external navigational classes and traversal links

contained in the view and generates the required mapping rules. It also

generates the statements for the setup of the database and the Web

server in a protected block, which can be safely modified by the

developers. Figure 7.15 illustrates a UML sequence diagram that

describes the transformation process followed in this rule (it is

conformant to the same UML profile that the previous diagrams).

The tasks performed by each sub-rule in the diagram can be

described as follows:

 Mapping_root: This rule manages the generation of the mapping

rules and generates the setup data for the database connection

and the ServiceInterface architectural components provided, i.e.,

the SparqlEndpoint and the PHPServiceInterface components (from

Figure 7.3, page 157).

186
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

 OntologyModelPrefix: This rule generates the URI prefixes

required for the mapping file from the models described in the

Extended Domain Model.

 ConceptMap: This rule creates the D2RQ mapping rule for the

concepts associated to the external navigational classes of the

Extended Navigational Model.

 AssociationMap: This rule creates the D2RQ mapping rule for the

associations linked to the external traversal links of the Extended

Navigational Model.

 PropertyMap: This rule generates the D2RQ mapping rule for the

associations linked to the external traversal links of the Extended

Navigational Model.

Figure 7.15. UML sequence diagram of the Mapping_root transformation rule.

Table 7.9 shows the Xpand code for each of the sub-rules. The

complete syntax of the D2RQ mapping rules can be found at the D2RQ

Web site45. The D2RQ language defines each statement as a RDF triple

(subject, predicate, object) using the N3 format. Mapping rules are

collections of these triples. When a triple is ends in “;”, the subsequent

triple shares the same subject. In Xpand, the «GLOBALVAR» statement is

used for defining global variables, external to the models and more

related to the generation engine. In this case, some information about the

45 The D2RQ mapping language: http://d2rq.org/d2rq-language

Model-Driven Development of Rich Internet Applications on the Semantic Web 187

database has been provided externally in order to facilitate the reuse of

the same model in different projects.

Table 7.9. Xpand code of the Mapping_root model-to-text transformation rule.

«DEFINE Mapping_root FOR ENModel-»

 «FILE name.toLowerCase() + ".n3"-»

@prefix map: <file:/C:/Users/«name.toLowerCase()».n3#> .

@prefix db: <> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .

@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

@prefix d2r: <http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/config.rdf#> .

«EXPAND OntologyModelPrefix FOREACH edModel.models»

«PROTECT CSTART "#*" CEND "*#" ID "ServerConfig"»

SERVER CONFIGURATION

<> a d2r:Server;

 rdfs:label "HTML + RDFa view";

 d2r:baseURI <http://localhost:2020/>;

 d2r:port 2020;

 d2r:vocabularyIncludeInstances true;

d2r:metadataTemplate "metadata.n3";

d2r:documentMetadata [

rdfs:comment "This comment is custom document metadata.";

];

 .

map:Configuration a d2rq:Configuration;

 d2rq:useAllOptimizations true

 .

«ENDPROTECT»

DATABASE CONFIGURATION

map:database a d2rq:Database;

 # SQL Server

 d2rq:jdbcDriver "com.microsoft.sqlserver.jdbc.SQLServerDriver";

 d2rq:jdbcDSN

"jdbc:sqlserver://localhost:1405;instanceName=sqlexpress;databaseName=«GLOBALVAR

projectName»NHibernate";

 d2rq:username "nhibernateUser";

 d2rq:password "nhibernatePass";

 .

 «EXPAND OntologyConceptMap FOREACH

navigationalElem.typeSelect(ExtNavigationalClass).edmConcept»

 «EXPAND OntologyAssociationMap FOREACH

188
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

navigationalElem.typeSelect(ExternalTraversalLink).edmAssociation»

 «ENDFILE»

«ENDDEFINE»

«DEFINE OntologyModelPrefix FOR OntologyModel-»

@prefix «namespace»: <«uriBase»«IF isLocal && !uriBase.endsWith("/")»#«ENDIF»> .

«ENDDEFINE»

«DEFINE ConceptMap(ExtNavigationalClass navClass) FOR Concept-»

 map:«name» a d2rq:ClassMap;

 d2rq:dataStorage map:database;

 d2rq:uriPattern "«name»/@@«GLOBALVAR db».«domainClass.alias».

«this.domainClass.firstIdentifier().alias»|urlify@@";

 d2rq:class «model.namespace»:«name»;

 d2rq:classDefinitionLabel "«domainClass.name»";

 .

«EXPAND PropertyMap FOREACH properties.select(p|p.visibility==Visibility::Public &&

navClass.navAttribute.typeSelect(ExternalNavigationalAttribute).edmAttribute.contai

ns(p))»

«ENDDEFINE»

«DEFINE PropertyMap FOR Property-»«ENDDEFINE»

«DEFINE PropertyMap FOR Attribute-»

map:«concept.name»_«name» a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:«concept.name»;

 d2rq:property «concept.model.namespace»:«name»;

 d2rq:propertyDefinitionLabel "«concept.name» «name»";

 d2rq:column "«GLOBALVAR

db».«concept.domainClass.alias».«domainAttribute.alias»";

 .

«ENDDEFINE»

«DEFINE AssociationMap FOR Association-»

map:«conceptOrigin.name»_«direct.name» a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:«conceptOrigin.name»;

 d2rq:property «conceptOrigin.model.namespace»:«direct.name»;

 d2rq:refersToClassMap map:«conceptTarget.name»;

 «PROTECT CSTART "#*" CEND "*#" ID getDirectId(this.direct)»

 # TABLE JOINS

 «ENDPROTECT»

 .

 «IF inverse != null»

map:«conceptTarget.name»_«inverse.name» a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:«conceptTarget.name»;

 d2rq:property «conceptTarget.model.namespace»:«conceptTarget.name»;

 d2rq:refersToClassMap map:«conceptOrigin.name»;

 «PROTECT CSTART "#*" CEND "*#" ID getInverseId(this.inverse)»

 # TABLE JOINS

 «ENDPROTECT»

 .

 «ENDIF»

«ENDDEFINE»

Model-Driven Development of Rich Internet Applications on the Semantic Web 189

«DEFINE AssociationMap FOR LinkedAssociation-»

 «LET conceptOrigin.domainClass.alias AS originTableName-»

 «LET (conceptOrigin.domainClass.alias == conceptTarget.domainClass.alias &&

!direct.domainAttribute.isManyToMany() ? conceptTarget.domainClass.alias + "Alias"

: conceptTarget.domainClass.alias) AS targetTableName-»

map:«conceptOrigin.name»_«direct.name» a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:«conceptOrigin.name»;

 d2rq:property «direct.concept.model.namespace»:«direct.name»;

 d2rq:refersToClassMap map:«conceptTarget.name»;

 #DIRECT

 «IF direct.domainAttribute.isOneToMany()-»

 d2rq:join "«GLOBALVAR db».«originTableName».«conceptOrigin.domainClass.

firstIdentifier().alias» <= «GLOBALVAR

db».«targetTableName».«direct.domainAttribute.associationOtherSide().getFKName()»";

 «ELSEIF direct.domainAttribute.isManyToOne()-»

 d2rq:join "«GLOBALVAR db».«originTableName».«direct.domainAttribute.

getFKName()» => «GLOBALVAR db».«targetTableName».«conceptTarget.domainClass.

firstIdentifier().alias»";

 «ELSEIF direct.domainAttribute.isManyToMany()-»

 d2rq:join "«GLOBALVAR db».«originTableName».«conceptOrigin.domainClass.

firstIdentifier().alias» <= «GLOBALVAR db».«direct.domainAttribute.association()

.alias».«direct.domainAttribute.associationOtherSide().getFKName()»";

 d2rq:join "«GLOBALVAR db».«direct.domainAttribute.association().alias»

.«direct.domainAttribute.getFKName()» => «GLOBALVAR

db».«targetTableName».«conceptTarget.domainClass.firstIdentifier().alias»";

 «ELSEIF direct.domainAttribute.isOneToOne()-»

 d2rq:join "«GLOBALVAR db».«originTableName».«direct.domainAttribute.

getFKName()» => «GLOBALVAR db».«targetTableName».«conceptTarget.domainClass.

firstIdentifier().alias»";

 «ELSE-»

 # ERROR

 «ENDIF-»

 «IF conceptOrigin.domainClass.alias == conceptTarget.domainClass.alias &&

!direct.domainAttribute.isManyToMany()-»

 d2rq:alias "«originTableName» AS «targetTableName»";

 «ENDIF-»

 .

 «IF inverse != null-»

map:«conceptTarget.name»_«inverse.name» a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:«conceptTarget.name»;

 d2rq:property «inverse.concept.model.namespace»:«inverse.name»;

 d2rq:refersToClassMap map:«conceptOrigin.name»;

 #INVERSE

 «REM»d2rq:join sentences«ENDREM»

 «ENDIF-»

 «ENDLET-»

 «ENDLET-»

«ENDDEFINE»

Table 7.10 illustrates part of the code resulting from the

transformation rule for the Social Network case study. In this case, the

table shows the configuration parameters of the server interfaces (triple

190
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

“<> a d2r:Server;”, within a protected block) and the database (triple

“map:database a d2rq:Database;”) and the mapping rules for

generating the information of the users as instances of the FOAF

ontology (the name of the users will be generated as instances of the

foaf:name property).

Table 7.10. Database-to-RDF mapping rules for the Social Network case study using the

D2RQ language.

@prefix map: <file:/C:/Users/a.n3#> .

@prefix db: <> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

MORE PREFIXES

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .

@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

@prefix d2r: <http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/config.rdf#> .

@prefix foaf: <http://xlmns.com/foaf/0.1/> .

@prefix sns: <http://www.dlsi.ua.es/sns#> .

#*PROTECTED REGION ID(ServerConfig) ENABLED START*#

SERVER CONFIGURATION

<> a d2r:Server;

 rdfs:label "HTML + RDFa view";

 d2r:baseURI <http://localhost:2020/>;

 d2r:port 2020;

 d2r:vocabularyIncludeInstances true;

d2r:metadataTemplate "metadata.n3";

d2r:documentMetadata [

rdfs:comment "This comment is custom document metadata.";

];

 .

map:Configuration a d2rq:Configuration;

 d2rq:useAllOptimizations true

 .

#*PROTECTED REGION END*#

DATABASE CONFIGURATION

map:database a d2rq:Database;
SQL Server
 d2rq:jdbcDriver "com.microsoft.sqlserver.jdbc.SQLServerDriver";

 d2rq:jdbcDSN

"jdbc:sqlserver://localhost:1405;instanceName=sqlexpress;databaseName=NHibernate";

 d2rq:username "nhibernateUser";

 d2rq:password "nhibernatePass";

 .

map:User a d2rq:ClassMap;

 d2rq:dataStorage map:database;

 d2rq:uriPattern "User/@@SocialNetwork.UserAccount.email|urlify@@";

 d2rq:class foaf:Person;

 d2rq:classDefinitionLabel "UserAccount";

 .

map:User_name a d2rq:PropertyBridge;

 d2rq:belongsToClassMap map:User;

 d2rq:property foaf:name;

 d2rq:propertyDefinitionLabel "User name";

 d2rq:column "SocialNetwork.UserAccount.name";

 .

OTHER MAPPING RULES

Model-Driven Development of Rich Internet Applications on the Semantic Web 191

These examples have provided an overview of the transformation

processes performed in the third activity of the Sm4RIA process. As

mentioned before, the code of other model-to-text transformation rules

can be found in Section F.1 (page 277). After this activity, the developers

of the SRIA obtain a Visual Studio project with all the code generated

and the OWL ontologies and mapping rules. They need to compile the

code and deploy the server and client components into a Microsoft

Internet Information Services server46.

Those components provided by D2RQ should be downloaded from

the D2RQ Web site47, unzipped and initialised as the D2RQ developers

indicate using the mapping file generated. These components can be

deployed to an Apache Tomcat server48 as a Java Web service or can be

directly executed by the D2RQ framework.

The subsequent subsection explains the model-to-model

transformations designed to speed up the development of a SRIA with

the Sm4RIA methodology. They automatically generate mock-ups of the

main models, which can be extended and/or modified by the designers.

7.3 MODEL-TO-MODEL TRANSFORMATIONS TO ACCELERATE

THE SM4RIA PROCESS

Model-to-model transformation rules transform the elements of one

or more origin models (CIM, PIM or PSM) into the elements of one or

more target models. This type of transformations facilitates the creation

of mock-ups of models, which should be modified or completed by the

designers, or even complete models. This last approach can accelerate

the design processes of the methodology and thus reduce the time and

effort spent in the development.

As explained in Section 4.2.3 (page 69), the modelling tasks in the

Sm4RIA process are mostly performed by human designers, which

usually need to create all the elements of a model and linked them to

others. Some of these tasks can be automated partially or totally by

means of model-to-model transformations. This section describes the

46 The Official Microsoft IIS Site: http://www.iis.net/
47 http://d2rq.org/
48 Apache Tomcat Web site: http://tomcat.apache.org/

192
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

most important M2M transformation rules specified in Sm4RIA in order

to help designers to create the mock-up of some models and thus speed

up the development of SRIAs.

Table 7.11 introduces the five main model-to-model transformations

designed for the Sm4RIA process, which can be specifically invoked

during the processes of designed performed in the first or the second

Sm4RIA activities. All the transformations are optional. They were

created to help designers and simplify repetitive tasks but they should

decide if the transformations can actually help the design depending on

the requirements of the application. All the transformations introduced

are unidirectional, i.e., the transformation cannot be reversed due to the

information lost during the process.

Table 7.11. Summary of the Model-to-Model transformations rules in Sm4RIA.

Model-to-Model
Transformation rules

Origin Model(s) Resulting Model(s)

Domain2EDM Domain Model Extended Domain Model

EDM2ENM Extended Domain Model Extended Navigation Model

Pres&Orch2Visu Extended Presentation Model

Extended Orchestration Model

Visualisation Ontology Model

Domain2Navigation Domain Model (Extended) Navigation Model

Navigation2Presentation (Extended) Navigation Model (Extended) Presentation Model

(Extended) Orchestration Model

The first three transformations (Domain2EDM, EDM2ENM and

Pres&Orch2Visu) are part of the Sm4RIA core and can directly help to

reduce the time for developing a SRIA. The two last transformation rules

(Domain2Navigation and Navigation2Presentation) can be used in

processes of modernisation and generation of interfaces with a low

degree of variability, such as those for visualising raw data, e.g., in

administrative applications. The following paragraphs briefly describe

each of these model-to-model transformations.

The Domain2EDM transformation rule creates a mock-up of the

domain ontology of the application (represented as the Extended

Domain Model) from the information of the data structures included in

the Domain model. From this initial model, the designer can import

external ontologies or knowledge sources in order to create the final

ontology.

Model-Driven Development of Rich Internet Applications on the Semantic Web 193

The EDM2ENM transformation rule generates the view of the

Extended Navigational Model for Semantic Web agents based on the

knowledge captured in the domain ontology of the Extended Domain

Model. The model view generated should be refined by the designer in

order to filter the access to the ontology instances.

The Pres&Orch2Visu transformation rule generates the Visualisation

Ontology Model from the information of the Extended Presentation and

Orchestration model. In this case, given that the resulting model should

not be manipulated by the designers, this transformation should be used

in any case to avoid inconsistencies in the resulting ontologies of the

SRIA.

The Domain2Navigation transformation can be used to generate a

mock-up of an (Extended) Navigation model from the entities of the

Domain model. This is a generic transformation that creates all the

possible navigation paths given the domain classes, associations and

class operations. The definition of the navigation through the data is an

aspect of the application that is strongly dependent on the requirements

of the application. However, there exist some auxiliary interfaces, such

as the administrator interface, in which the data navigation and the

operations invoked are similar in all the applications.

The Navigation2Presentation transformation generates a default

interface from the information contained in the (Extended) Navigation

models generated with the Domain2Navigation transformation. The

definition of user interfaces is also a process very dependent on the

requirements of the stakeholders. However, it is possible to define a

fixed set of widgets given a pattern of navigation for some types of

interfaces, such as those for administrators. This transformation

facilitates the creation of this type of user interfaces, in which users will

be able to manage the application data with no restrictions.

The following subsections are focused on explaining the

transformations of the first group, i.e., the Domain2EDM, EDM2ENM

and Pres&Orch2Visu transformation rules, including the code of the

actual transformation. The transformations for software modernisation

can be found in Section F.2 (page 287).

In this case, the transformations were implemented using QVT

operational as rule language, which is a variant of the QVT language

194
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

that allows designers to define transformations using imperative

(explicitly invoked) instead of declarative rules (invoked after a certain

condition is fulfilled).

7.3.1 MODEL-TO-MODEL TRANSFORMATIONS TO OBTAIN THE

EXTENDED DOMAIN MODEL

The first example of model-to-model transformation is the

Domain2EDM transformation, which, as mentioned, before creates a

mock-up of the EDM. The Domain2EDM rule employs a collection of

sub-rules that address the transformation of the different elements of the

model. Table 7.12 shows a list of the transformation sub-rules, the

Domain model elements employed as input of the transformation and

the resulting EDM elements.

Regarding the input elements from the Domain model, the

ConceptualModel element can be used to represent the whole model or a

sub-package, which modifies the output of the transformation. In the

same way, the Attribute objects can be used for representing class

attributes or association roles, thus yielding different results.

Table 7.12. Summary of the input and output model elements in the Domain2EDM

transformation.

Transformation Rule Element in the Origin Model Resulting Element(s)

Model2Model
ConceptualModel (root) EDModel +

OntologyModel

ConceptualModel2OntologyModel ConceptualModel (leaf) OntologyModel

Class2Concept Class Concept

Attribute2Attribute Attribute (class attribute) Attribute

Attribute2ObjectProperty Attribute (association role) ObjectProperty

Association2Association Association Association

Inheritante2Inheritance Inheritance Inheritance

Table 7.13 introduces the different rules defined for the

Domain2EDM rule expressed using QVT operational.

Table 7.13. Code of the Domain2EDM QVTo model-to-model transformation rule.

modeltype ConceptualView uses "http://www.insidesoft.net/conceptualView/1.0.0";

modeltype EDM uses "http://www.dlsi.ua.es/ooh/sm4ria/edm/1.0";

Model-Driven Development of Rich Internet Applications on the Semantic Web 195

transformation Domain2EDM(in inModel: ConceptualView, out outModel: EDM);

main()

{

 inModel.rootObjects()[ConceptualModel]->map Model2Model();

}

mapping ConceptualModel::Model2Model() : EDModel

{

 result.name := "default";

 //result.models += self.map CModel2OModel();

 self.map ConceptualModel2OntologyModel(result, null);

 var localModel := result.models[OntologyModel]->selectOne(isLocal = true);

 // Create default Source element

 var source := object Source

 {

 name := localModel.name + "-source";

 uriBase := "http://default.source.com";

 type := SourceType::SPARQL;

 };

 result.models += source;

 result.relations += object Instance

 {

 id := "instance";

 base := localModel;

 target := source;

 };

}

mapping ConceptualModel::ConceptualModel2OntologyModel(inout edModel : EDModel, in

lastOModel : OntologyModel)

{

 var model = object OntologyModel {};

 model.name := self.name;

 model.isLocal := true;

 model.namespace := self.name.toLower();

 model.uriBase := "http://" + model.namespace + ".com";

 model.description := "New model";

 model.conceptualModel := self;

 model.elements += self.elements[Class]->map Class2Concept();

 model.elements += self.elements[Association]->map Association2Association(

model);

 model.elements += self.elements[Inheritance]->map Inheritance2Inheritance(

model);

 edModel.models += model;

 if (lastOModel <> null) then

 {

 edModel.relations += new OntoImport(lastOModel.name + "_" + model.name,

lastOModel, model);

 }

 endif;

 self.elements[ConceptualModel]->map ConceptualModel2OntologyModel(edModel,

model);

}

constructor edm::OntoImport::OntoImport (i : String, b: OntologyModel, t :

OntologyModel)

{

 id := i;

196
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

 base := b;

 target := t;

}

mapping Class::Class2Concept() : Concept

{

 result.name := self.name;

 result.uri := self.name.toLower();

 result.description := "New class '" + self.name + "'";

 result.domainClass := self;

 result.properties += self.attributes[associationOrigin = null and

associationTarget = null]->map Attribute2Attribute();

 result.properties += self.attributes[navigable = true and (associationOrigin <>

null or associationTarget <> null)]->map Attribute2ObjectProperty();

}

mapping conceptualView::Attribute::Attribute2Attribute() : edm::Attribute

{

 result.name := self.name;

 result.uri := self.name.toLower();

 result.domainAttribute := self;

 result.target := self.type.PType2XmlType();

}

mapping conceptualView::Attribute::Attribute2ObjectProperty() : edm::ObjectProperty

{

 result.name := self.name;

 result.uri := self.name.toLower();

 result.domainAttribute := self;

}

mapping conceptualView::Association::Association2Association(in model:

OntologyModel) : LinkedAssociation

{

 init

 {

 var concepts := model.elements[Concept];

 var objProperties := concepts.properties[ObjectProperty];

 }

 result.name := result.uri := "assoc_" + self.name.toLower();

 result.domainAssociation := self;

 result.conceptOrigin := concepts->select(e | e.domainClass = self.classOrigin)-

>first();

 result.conceptTarget := concepts->select(e | e.domainClass = self.classTarget)-

>first();

 result.direct := objProperties->select(p | self.rolOrigin.navigable and

p.domainAttribute = self.rolOrigin)->first();

 result.inverse := objProperties->select(p | self.rolTarget.navigable and

p.domainAttribute = self.rolTarget)->first();

}

mapping conceptualView::Inheritance::Inheritance2Inheritance(in model:

OntologyModel) : edm::Inheritance

{

 init

 {

 var concepts := model.elements[Concept];

 }

 result.uri := result.name := self.name.toLower();

Model-Driven Development of Rich Internet Applications on the Semantic Web 197

 result.conceptualInheritance := self;

 result.ascendant := concepts->select(c | c.domainClass = self.father)->first();

 result.descendant := concepts->select(c | c.domainClass = self.son)->first();

}

This transformation generates a domain ontology with the elements

of the local ontology in a new EDM. Subsequently, designers need to

complete adding external ontologies and knowledge sources if

necessary.

7.3.2 MODEL-TO-MODEL TRANSFORMATIONS TO OBTAIN THE

EXTENDED NAVIGATION MODEL

The EDM2ENM transformation creates a mock-up of the view of the

Extended Navigational Model for Semantic Web agents that designers

should refine before generating the application. The EDM2ENM rule

employs a collection of sub-rules that address the transformation of the

different elements of the model. Table 7.14 shows a list of the

transformation sub-rules, the EDM elements used as input of the

transformation and the resulting ENM elements.

Table 7.14. Summary of the input and output model elements in the EDM2ENM

transformation.

Transformation rules Element in the Origin Model Resulting Element(s)

Model2Model EDModel (root) ENModel (root)

OntologyModel2ENModel OntologyModel (isLocal = true) ENModel

Concept2ENClass Concept ExtNavigationalClass

Attribute2NavAttribute Attribute ExternalNavigationalAttribute

Association2Link ObjectProperty ExternalTraversalLink

Association2Link Association --

-- Inheritance --

Table 7.15 introduces the different rules defined for the EDM2ENM

rule expressed using QVT operational.

Table 7.15. Code of the EDM2ENM QVTo model-to-model transformation rule

modeltype EDM uses "http://www.dlsi.ua.es/ooh/sm4ria/edm/1.0";

modeltype ENM uses "http://www.dlsi.ua.es/ooh/sm4ria/enm/1.0";

modeltype NAV uses "http://www.insidesoft.net/navigationalView";

198
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

transformation EDM2ENM(in inModel : EDM, out outModel : ENM);

main()

{

 inModel.rootObjects()[EDModel].models[isLocal = true].map Model2Model();

}

mapping OntologyModel::Model2Model() : ENModel when { self.isLocal = true }

{

 result.edModel := self.edModel;

 result.name := self.name;

 // Create "home" class

 var home := object ExtNavigationalClass

 {

 name := "home";

 isEntryPoint := true;

 };

 result.navigationalElem += home;

 result.navigationalElem += self.elements[Concept]->map Concept2ENClass();

 self.elements[Association]->map Association2Link(result);

 var localSource := result.edModel[Instance]->selectOne(base.isLocal =

true).target;

 // Create the links between the home class and the rest

 result.navigationalElem[ExtNavigationalClass]->forEach(elem)

 {

 result.navigationalElem += object ExternalTraversalLink

 {

 name := "home-" + elem.name;

 nodeOrigin := home;

 nodeTarget := elem;

 activationMode := ActivationType::Manual;

 source := localSource;

 }

 };

}

mapping Concept::Concept2ENClass() : ExtNavigationalClass

{

 result.name := self.name;

 result.edmConcept := self;

 result.referToClass := self.domainClass;

 result.isEntryPoint := false;

 result.navAttribute += self.properties[Attribute]->map

Attribute2NavAttribute();

}

mapping EDM::Attribute::Attribute2NavAttribute() : ExternalNavigationalAttribute

{

 result.name := self.name;

 result.edmAttribute := self;

 result.referToAttribute := self.domainAttribute;

}

mapping Association::Association2Link(inout model : ENModel)

{

 var extNavClasses := model.navigationalElem[ExtNavigationalClass];

 var origin := extNavClasses->selectOne(edmConcept = self.conceptOrigin);

 var target := extNavClasses->selectOne(edmConcept = self.conceptTarget);

 var localSource := model.edModel.relations[Instance]->selectOne(base.isLocal =

true).target;

Model-Driven Development of Rich Internet Applications on the Semantic Web 199

 if (self.direct.domainAttribute.navigable)

 then

 model.navigationalElem += object ExternalTraversalLink

 {

 name := self.name + "-" + self.direct.name;

 nodeOrigin := origin;

 nodeTarget := target;

 activationMode := ActivationType::Manual;

 source := localSource;

 associationRol := self.direct.domainAttribute;

 edmObjectProperty := self.direct;

 }

 endif;

 if (self.inverse.domainAttribute.navigable)

 then

 model.navigationalElem += object ExternalTraversalLink

 {

 name := self.name + "-" + self.inverse.name;

 nodeOrigin := target;

 nodeTarget := origin;

 activationMode := ActivationType::Manual;

 source := localSource;

 associationRol := self.inverse.domainAttribute;

 edmObjectProperty := self.inverse;

 }

 endif;

}

After the transformation process, the designer will need to refine the

model introducing constraints that limit the sharing of the data with the

external agents.

7.3.3 MODEL-2-MODEL TRANSFORMATIONS TO OBTAIN THE

VISUALISATION ONTOLOGY MODEL

Despite the fact that the VOM can be created directly from scratch,

the Sm4RIA process defines a model-to-model transformation called

Pres&Orch2Visu, which can automatically generate the VOM from the

Extended Presentation and Orchestration models.

In the same manner that the previous transformations, the

Pres&Orch2Visu rule employs a collection of sub-rules that address the

transformation of the different elements of the model, shown in Table

7.16 with the elements used as input of the transformation and the

resulting VOM elements.

200
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

Table 7.16. Summary of the input and output model elements

in the Pres&Orch2Visu transformation.

Transformation Rule Element in the Origin Model Resulting Element(s)

Model2Model Presentation Model +

Orchestration Model

VisualisationOntologyModel

ScreenShot2ScreenShot ScreenShot ScreenShot

Contains

Widget2VE Widget (Extended Presentation

Model)

VisualElement

Annotation2Annotation Annotation (EPM) Annotation

Method2Action WMethod (EPM) Action

RunnableAction

Param2ActParam WMethodParameter (EPM) ActionParameters

Event2Event WEvent (EPM) Event

AvailableEvent

Call2Run EventCall (Extended

Orchestration Model)

Run

The specification of the sub-rules using the QVT operational rule

language is introduced in Table 7.17.

Table 7.17. Code of the Pres&Orch2Visu QVTo model-to-model transformation rule.

mapping SLPresentationModel::Model2Model(in orchModel : EOM) : VisualisationModel
{
 result.name := self.name;
 result.elements += self.sshot->map Screenshot2Screenshot(result);
 result.epm := self;
 result.eom := orchModel;
}

mapping ScreenShot::Screenshot2Screenshot(inout model:VisualisationModel) :

VOM::ScreenShot

{

 result.name := self.name;

 result.uri := “default uri”;

 self.referredWidgets->map Widget2VE(model)->forEach(ve)

 {

 result.se += ve;

 }

 result.ss := self;

}

mapping Widget::Widget2VE(inout model:VisualisationModel) : VisualElement

{

 init

 {

 result.name := self.name;

 }

Model-Driven Development of Rich Internet Applications on the Semantic Web 201

}

mapping SLWidget::SLWidget2VE(inout model:VisualisationModel) : VisualElement

inherits Widget::Widget2VE

{

 init

 {

 if (self.oclIsTypeOf(SLButton)) then

 {

 result := object VOM::Button{}

 }

 // Check input type to return the correct type of element

 else

 {

 result := object VOM::SimpleElement()

 }

 endif;

 }

 // Copy aesthetic properties of the widget

 result.annotations += self.annotations->map Annotation2Annotation();

 result.widget := self;

 self.methods->map WMethod2Action()->forEach(a)

 {

 model.elements += a;

 model.elements += object RunnableAction

 {

 }

 };

 self.events->map WEvent2Event()->forEach(e)

 {

 model.elements += e;

 model.elements += object AvailableEvent

 {

 component := result;

 event := e;

 }

 };

 model.elements += self.ecas->Call2Run(model);

}

mapping Annotation::Annotation2Annotation() : VOM::Annotation

{

 result.uri := self.uri;

 result.refAnnotation := self;

}

mapping WEvent::WEvent2Event() : Event

{

 result.name := self.name;

 // Mapping WEventParameter elements contained in self.parameters

}

mapping WMethod::WMethod2Action() : VOM::Action

{

 result.name := self.name;

 // Mapping WMethodParameter elements contained in self.parameters

}

202
Chapter 7. Generating the Software Modules of a Semantic RIA through

Model Transformations

mapping EventCall::Call2Run(in model : VisualisationModel) : VOM::Run

{

 result.event := model.elements->select(e | e.oclIsTypeOf(VOM::Event) and e.name

= self.event.name)->asSequence()->first().oclAsType(VOM::Event);

 result.action := model.elements->select(a | a.oclIsTypeOf(VOM::Action) and

a.name = self.conditions.trueActions->first().name)->asSequence()->

first().oclAsType(VOM::Action);

}

The resulting model of this transformation can be used in the model-

to-text transformations processes with no adaptation or update.

The three examples explained offer a general view of the model-to-

model transformations in the Sm4RIA process, which completes the

description of the methodology. The next section describes the CASE

tool that supports the development processes of the Sm4RIA

methodology, including a collection of model editors and the rule

engines for the invocation of the transformation rules explained in this

section.

7.4 CONCLUSIONS

This chapter concluded the description of the Sm4RIA methodology

with the explanation of the model-to-model and model-to-text

transformation rules involved in the development process. In order to

define these transformations, a reference architecture for SRIAs was

proposed in the first subsection using the experience gained from the

manual development of the case studies. Subsequently, a set of model-

to-text transformation rules were defined that address the generation of

the architectural components and resources of the SRIA. These

transformations were specified using the Xpand language, which

expresses the transformation rules as a collection of code templates.

In order to speed up the design processes of a SRIA, the Sm4RIA

methodology includes a collection of model-to-model transformation

rules, which help designers to create model mock-ups or even complete

models. The purpose of these rules is to reduce the time and effort that

developers spend in repetitive tasks when creating new models. The

defined transformations could be classified in two groups: a) the

transformations oriented to accelerate the core tasks of the Sm4RIA

Model-Driven Development of Rich Internet Applications on the Semantic Web 203

process and b) the ones that address processes of modernisation based

on the Sm4RIA process.

The previous subsections introduced the main details of the

transformations, as well as their code (Xpand or QVTo) and an example

of result in some cases. These transformations were successfully tested

using the proposed case studies. Notwithstanding this, a further

analysis of the benefits and shortcomings of the architecture proposed

and the transformations could be carried out using a group of real

developers, who could assess the resulting applications based on their

professional experience.

Chapter 8. IMPLEMENTATION OF THE

METHODOLOGY: SM4RIA EXTENSION

FOR OIDE

In order to assess the Sm4RIA methodology and facilitate its

adoption, their models and transformation processes were implemented

as an extension of the OIDE tool49 called Sm4RIA Extension for OIDE

(Hermida et al., 2012a, 2012b). This tool implements the Sm4RIA models

and automates the transformation processes (model-to-model and

model-to-text, explained in previous subsections) needed for generating

SRIAs.

This tool was also developed to validate the components of the

Sm4RIA methodology by modelling and developing the use cases

proposed in Sections 3.4 and 3.5.2 (pages 53 and 60). In a first stage, the

development of the tool was used for detecting those possible lacks or

drawbacks of the method. Once the development process was in its final

stages, the tool was externally evaluated in two forums (national and

international), in which the opinions held by the experts were taken into

consideration to refine the method and the tool.

The tool also implements the main mechanisms of modernisation

described in the Sm4RIA-M configuration in order to allow developers

to generate rich user interfaces from ontologies and to automatically

generate administration views for the designed applications.

49 OOH4RIA Integrated Development Environment (Meliá et al., 2010b).

206 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

8.1 OOH4RIA INTEGRATED DEVELOPMENT ENVIRONMENT

OIDE is an application based on the Eclipse framework, developed

as a set of Eclipse plug-ins, which supports the OOH4RIA methodology

for the development of RIAs. Specifically, this application defines the

OOH4RIA meta-models using the EMOF/Ecore format and, using the

EMF 50 /GMF 51 framework, facilitates the definition using a graphical

concrete syntax of the OOH4RIA models: Domain, Navigational and

Presentation-Orchestration. In OIDE, Presentation and Orchestration

models are integrated into a single model, i.e., the OIDE Presentation

Model, developed using the GMF framework. The OOH4RIA

Orchestration model is represented as a new section in the Properties

window.

Furthermore, OIDE supports the generation processes that obtain

most of the RIA software components (both server and client modules).

The model-to-text generation rules are implemented as a set of Xpand

rules, which, at present, transform the information contained in the

models into C# code contained into a Visual Studio solution. The

transformation rules use the WCF and the NHibernate frameworks for

the development of the server modules and the Silverlight framework

for the user interface. At present, the generation rules of OIDE are being

adapted to the generation of HTML5 Rich Internet Applications, whose

server modules are developed in Java technologies and the client

modules using HTML5 and JavaScript.

OIDE does not implement any transformation process between

OOH4RIA models but contains a collection of wizards and helpers that

assist users in the process of creating models and elements and

generating the RIA application.

Figure 8.1 illustrates a screenshot of the OIDE user interface showing

an example of an OIDE Presentation Model. The interface is divided in

four areas, inherited from the Eclipse IDE:

 Model editors: the central area of interface shows the different

model editors of the IDE and the Palette, which is the tool bar

that shows the buttons for creating the elements of model.

50 Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/
51 Graphical Modeling Project: http://www.eclipse.org/modeling/gmp/

Model-Driven Development of Rich Internet Applications on the Semantic Web 207

 Project explorer: the left-side area shows the different projects and

the folder and file structure.

 Property bar: the down-side area (below the Model Editor area)

shows the properties of the elements and the outline of the

models represented.

Figure 8.1. Screenshot of the main interface of the OIDE tool.

8.2 MODELS AND TRANSFORMATIONS

Using OIDE as platform, the Sm4RIA extension for OIDE implements

the artefacts and processes of the Sm4RIA methodology as a new

functionality of Eclipse. This section describes the elements developed

and the modifications to the original tool that facilitate the design of the

SRIA software components.

8.2.1 MODEL EDITORS

This extension implements the editors of the Sm4RIA models, the

transformation rules and the workflows that manage the generation of

the SRIA applications using the frameworks provided by Eclipse (e.g.,

EMF, GMF, Xtext 52 , Xpand, QVT operational or MWE 53). More

52 Xtext Web site: http://www.eclipse.org/Xtext/
53 Modeling Workflow Engine:

http://wiki.eclipse.org/Modeling_Workflow_Engine_%28MWE%29

208 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

specifically, two new model editors have been implemented from

scratch, i.e., the Extended Domain Model and the Visualisation

Ontology Model; and two models have been extended from the existing

OOH4RIA implementation: the Extended Navigation Model, the

Extended OIDE Presentation Model. Furthermore, new wizards and

helpers have been developed in order to help users to create the

elements of the models. The models included in this tool can be

described as follows:

 Extended Domain Model. In order to create the editor for this

model, its metamodel was specified using the EMOF/Ecore meta-

metamodel included in the Eclipse EMF framework. From the

metamodel, this framework also generates all the elements of a

tree-based, editor in which designers can create new models, and

the API for managing the elements of the model from the

transformation processes. A screenshot of the EMF editor in

OIDE is illustrated in Figure 8.2, showing the example of the SNS

case study (see Section 5.2.2, page 94).

Figure 8.2. Screenshot of the Sm4RIA extension for OIDE showing the EMF representation of the

Extended Domain Model for the SNS case study.

In order to facilitate the creation of the EDM and due to the

limitations of the EMF editors, an alternative Xtext editor was

developed (see Figure 8.3), which allows the specification of the

model using a textual notation. The syntax was firstly generated

from the Extended Domain Model and then refined to improve

Model-Driven Development of Rich Internet Applications on the Semantic Web 209

the usability of the resulting language. The final syntax of the

Extended Domain Model language is defined in Section G.3

(page 303).

Figure 8.3. Screenshot of the Sm4RIA extension for OIDE showing the Xtext representation of the

Extended Domain Model for the SNS case study.

Figure 8.4. Screenshot of the Sm4RIA extension for OIDE showing the GMF representation of the

Extended Navigational Model for the SNS case study.

210 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

 Extended Navigational Model. The editor of this model extends

the GMF editor of the OOH4RIA Navigation model including the

tools for defining new external navigational classes from the

EDM and external navigational links, which could be combined

creating data/knowledge mashups. At present, the tool helps to

access the main Linked Data services, i.e., the SPARQL

endpoints. Figure 8.4 depicts the screenshot of the tool showing

this editor with the example for the SNS case study (see Section

5.3.2, page 107).

 Extended OIDE Presentation Model. The editor for the

Extended Presentation and Orchestration models extends the one

for the OIDE Presentation model with new properties for

including semantic annotations and establishing relationships

between the elements of the Extended Presentation and

Orchestration models and the ones of the Extended Navigation

Model.

The following figures (Figure 8.5, Figure 8.6 and Figure 8.7) show

three screenshots of the Extended Presentation and Orchestration

models for the SNS case study, modelled in the OIDE platform

(corresponding to the models introduced in Section 6.1.2, page

126).

Figure 8.5. Screenshot of the Sm4RIA extension for OIDE showing the GMF representation of the

OIDE Presentation Model for the SNS case study (Default screenshot).

Model-Driven Development of Rich Internet Applications on the Semantic Web 211

Figure 8.6. Screenshot of the Sm4RIA extension for OIDE showing the GMF representation of the

OIDE Presentation Model for the SNS case study (Main screenshot).

Figure 8.7. Screenshot of the Sm4RIA extension for OIDE showing the GMF representation of the

OIDE Presentation Model for the SNS case study (Main screenshot)

 Visualisation Ontology Model. Following the same process that

with the EDM editor, the editor for the Visualisation Ontology

Model was implemented based on its EMF/Ecore metamodel

following the same process that the EDM editor.

212 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

Figure 8.8. Screenshot of the Sm4RIA extension for OIDE showing the EMF view of the

Visualisation Ontology Model for the SNS case study.

 OOH4RIA Domain Model. The editor of the Domain Model was

directly reused from the implementation included in OIDE. To

complete the description of the model editors available in the

tool, Figure 8.9 depicts a screenshot of the OIDE tool showing the

Domain Model editor with the example of the SNS case study

(see Section 5.1.2, page 87).

Figure 8.9. Screenshot of the OIDE tool showing the GMF representation of

the Domain Model for the SNS case study.

Model-Driven Development of Rich Internet Applications on the Semantic Web 213

8.2.2 TRANSFORMATION PROCESSES

The Sm4RIA extension for OIDE implements all the transformation

rules explained in the previous sections of this chapter:

 Model-to-Text transformations. In order to generate the

software components specific for SRIAs, this extension includes

the Xpand transformation rules of the Sm4RIA third activity and

executes them using the information obtained from the model

editors and the Eclipse Xpand transformation engine. Figure 8.10

shows a screenshot of the application with the Visual Studio

project generated from the SNS case study and an editor with the

code of the MusicBrainzServiceGateway component.

Figure 8.10. Screenshot of the Sm4RIA extension for OIDE showing the Visual Studio project

resulting from the model-to-text transformation processes for the SNS case study.

 Model-to-Model transformations. Apart from the wizards and

helpers included in the model, the tool includes a collection of

M2M rules that facilitate creation of new models from existing

ones. The tool extension implements the QVT operational rules

introduced in the last section and invokes them using the Eclipse

QVT Operational rule engine. Specifically, the transformations

defined in this extension are the following (Ma – Mb

transformations are unidirectional, i.e., they transform model Ma

into Mb):

214 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

o Domain2EDM transformation: Domain model – Extended

Domain Model.

o EDM2Domain transformation (beta): Domain model –

Extended Domain Model.

o EDM2ENM transformation: Extended Domain Model –

Extended Navigation Model.

o Navigation2Presentation transformation: Extended

Navigation Model – Presentation Model.

Figure 8.11 illustrates a screenshot of the tool with the QVTo

projects developed and an example of transformation

implemented in the Eclipse QVTo editor.

Figure 8.11. Screenshot of the Sm4RIA extension for OIDE showing the M2M projects developed

and the Domain2EDM model-to-model transformation in the Eclipse QVTo editor.

8.2.3 NEW PROCESSES OF SOFTWARE MODERNISATION

The new artefacts introduced in the last two subsections facilitate the

adaptation of the Sm4RIA methodology to new processes of

modernisation and generation as described in Section 4.2.5.2, page 76. At

present, these processes are under testing in the Sm4RIA extension for

OIDE. The most relevant processes of modernisation are the following:

 Automatic generation of administrator views for applications. Using

the M2M transformations already implemented, it is possible to

automatically generate UIs for SRIA administrators (or facilitate

the generation of most of their modules) from the Sm4RIA EDM

Model-Driven Development of Rich Internet Applications on the Semantic Web 215

or the OOH4RIA Domain model. Figure 8.12 and Figure 8.13

show a screenshot of the tool with the Navigation and

Presentation models automatically generated for the SNS case

study from the Domain model. At present, the tool generates a

default presentation model. Still, it is necessary to study different

possibilities of personalisation of the resulting interface

depending on the designer’s preference.

 Generation of RIA interfaces for Linked Data sources. By means of

two new transformations that obtain a Domain model and an

EDM from an OWL ontology, it is possible to specify a RIA

server that manage the data of a Linked Data service and

subsequently define a RIA client that visualize them. This process

has only been assessed with simple ontologies.

Figure 8.12. Screenshot of the Sm4RIA extension for OIDE showing the Navigational model for

the administration view of the SNS case study.

216 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

Figure 8.13. Screenshot of the Sm4RIA extension for OIDE showing the Presentation model for

the administration view of the SNS case study.

8.3 CONCLUSIONS

The final part of the chapter introduces the Sm4RIA extension for

OIDE, i.e., an application that implements the Sm4RIA process using the

OIDE CASE tool as a basis. The development of this application was

used to assess the methodology in two stages. The first one was an

interative process of validation, in which, the development of the tool

was employed to improve the Sm4RIA modelling artefacts. In a second

stage, the tool was externally assessed in national and international

forums, thus obtaining valuable comments from external experts. The

final success in the development of this tool proves the viability of the

approach.

This chapter has introduced the main features of the tool and a set of

screenshots showing them. In order to clarify its contributions, the

following three tables summarise the main components implemented in

the tool. Table 8.1 shows the main model editors implemented and the

concrete syntaxes supported for each of them. The tree-based editor is

automatically generated by the EMF framework. The basic elements of

the Sm4RIA model have already been implemented in the tool. The

elements of the OIDE Presentation model for the Sm4RIA-B

configuration are under development.

Model-Driven Development of Rich Internet Applications on the Semantic Web 217

Table 8.1. Summary of the model editors included in the extension.

Editors
Implemented components

EMF Tree-based
editor

Textual editor
(Xtext)

Visual editor
(GMF)

Include wizards
and helpers

Domain Model

Editor

Yes, from OIDE Under

development

Yes, from OIDE Yes, from OIDE

Extended

Domain Model

editor

Yes Yes Under

development

Yes, needs

improvements in

usability

Extended

Navigational

Model editor

Yes No Yes Yes, needs

improvements in

usability

OIDE Extended

Presentation

Model editor

Yes No Yes. Under

development the

visualisation

elements specific

for the Business

Intelligence field.

Yes, adapted
from OIDE.

Under
development the

elements in
Sm4RIA-B.

Table 8.2 shows the main features of the two main sets of model-to-

model transformations, i.e., for the generation of the SRIA server and

client modules, respectively. The software generators currently generate

SRIAs adapted to the .NET framework version 4.0 and the generation of

Java and HTML SRIAs is under development. The tool generates D2RQ

mapping rules for the D2RQ server, which can perform the

transformation from data objects to ontology instances.

Table 8.2. Summary of the features of the code generator processes.

Feature SRIA Server Generator SRIA Client Generator

Generator language Xpand 4, Xtend 1 Xpand 4, Xtend 1

Output languages C# 4.0 C# 4.0

Java 6 (under development) HTML 4.1, JavaScript (under

development)

Frameworks used Nhibernate 3.1,Windows

Communication Foundation

Silverlight 4

Hibernate 3.1, AXIS2 JQuery

Architectural pattens (from

Section 7.1)

Data Access Object, Data

Transfer Object, Distributed

Façade, Service Gateway,

Service Interface

Model View View Model

Partial code generated Yes No

Generation of ontologies XML OWL 1.1 --

Generation of database-to-

RDF

D2RQ mapping rules --

Generation of ontology

instances

XML RDF XML RDF

218 Chapter 8. Implementation of the Methodology: Sm4RIA Extension for OIDE

Finally, Table 8.3 summarises the QVTo model-to-model

transformations implemented in the tool and the development process

to which they are associated. This table includes the transformations

needed in the processes of modernisation and automatic user interface

generation described in Section 8.2.3.

Table 8.3. Summary of the model-to-model transformations supported by the tool.

Development
process

Transformation Input model
Output
model

Status

Sm4RIA Domain2EDM Domain EDM Supported
Nav2Pres ENM OIDE EPM Supported for designing

interfaces for
adminitrators

Nav&Pres2Orch

Pres&Orch2Visu OIDE EPM VOM Supported. Under
development elements
specific for the Business
Intelligence field.

Sm4RIA-M Ontology2EDM
(text-to-model)

OWL 1.1
ontology

EDM Partially supported.
Needs improvements in
multiple, transitive
ontology imports.

EDM2Domain EDM Domain Supported

The empirical evaluation of the non-functional requirements of the

methodology and the CASE tool (e.g., usability, maintainability and

easiness of use) is being conducted for OOH4RIA and Sm4RIA by means

of a set of experiments. The study of the non-functional properties is

being performed using statistical analysis over the experiences of a real

group of developers, who test the models of the methodologies using

real designs based on their background. The first experiments have been

already performed over the OOH4RIA/Sm4RIA Domain model,

assessing its maintainability, ease of use and the overall impression of

the developers. The results were positive as shown by Martinez et al.

(Martinez et al., 2013)

This second analysis complements the functional analysis carried out

in this thesis, ensuring that the methodology and the tool fulfil the

requirements for the development of SRIA, and can help to detect new

aspects to improve the methodology. Moreover, these aspects can

determine the final degree of adoption of the tool in real business

scenarios, and thus, the actual success of the approach.

Chapter 9. CONCLUSIONS & FUTURE

WORK

The last chapters described in detail the main aspects of the SRIA

proposal and the Sm4RIA methodology, which are the two main

contributions of this thesis. Each of the chapters contained a specific

section which drew partial conclusions about the topics addressed.

Using a different approach, the purpose of this last chapter is to

highlight the general contributions of this thesis, their benefits and

limitations based on the problems detected in the first two chapters.

More specifically, the first part of the chapter revisits the research

questions stated in Chapter 1 and offers an answer to each of them based

on the content of the core chapters of the thesis. From the analysis of the

limitations found and the conclusions obtained in the rest of the

chapters, the second part describes the main lines of future work.

9.1 CONCLUSIONS

Based on the findings throughtout this thesis, this section aims to

answer the three research questions introduced in Chapter 1, focusing

on the contributions brought by the present work, their main benefits

and limitations. The following paragraphs will answer each of the

questions:

RQ1 – Is it possible to improve the interoperability of Rich Internet

Applications with other software systems (such as, Web search engines) using

existing techniques, technologies and resources from the Semantic Web?

220 Chapter 9. Conclusions & Future Work

This research question was affirmatively answered with the proposal

of Semantic Rich Internet Application introduced in Chapter 3, which is

the first contribution of this thesis. SRIAs are designed as an extension of

traditional RIAs that employ Semantic Web technologies in order to

represent the knowledge they use and share it across the Web. The use

of the Linked data principles, which are a de-facto standard supported

by the W3C, and the technologies for representing and sharing

knowledge, mainly ontologies represented in OWL, facilitates the reuse

of knowledge published by other applications. Chapter 3 specifies a

complete set of requirements for this new type of Semantic Web

application and explains how to structure the knowledge of the

application using three orthogonal ontologies: domain, navigation and

visualisation, which can be used in complex processes of search. By

changing the domain ontology of the application, developers could

share knowledge in different domains. The information contained in the

navigational ontology could guide the navigation of the users across the

RIA. The third ontology can be used to share information of the

multimedia elements included in the application.

This chapter also describes the basic structure of the application used

as a reference in the thesis. This structure offers a general view of the

application and emphasizes the differences between traditional RIA and

SRIA. As could be appreciated, SRIAs include new software modules in

their server for sharing ontology instances and, in those applications

with HTML interfaces, embed semantic annotations directly within the

content visualised by the browser. The description of this approach is

completed in Chapter 7, where the architecture of the application is

proposed. This chapter describes in detail the software components that

should be developed per each software module of Chapter 3 and their

relationship. In order to facilitate the development of the applications,

Chapter 7 also showed the manner in which some of the functionalities

could be externalised by using one of the existing database-to-RDF

mapping tools, i.e., D2RQ.

The assessment process followed in Chapter 3 was based on the

development of a collection of case studies, which demonstrated that a)

the expected benefits regarding knowledge sharing can be achieved; and

b) the data interoperability and visibility of the RIA data in some Web

clients, such as Web searchers, can be improved. Using these predefined

Model-Driven Development of Rich Internet Applications on the Semantic Web 221

scenarios, the evaluation process ensures that the proposed

requirements are fulfilled and the desired functionalities are included in

the application, thus solving the issues detected in RIA. Moreover, these

case studies were externally assessed in international conferences and

journals in order to ensure the validity of the conclusions that were

drawn (see Annex A).

In the case of the applications for business intelligence, this thesis

proposed an adaptation of the original approach, i.e., the RI@BI

approach. In order to deal with the special requirements of this type of

applications, the proposed adaptation combine techniques for

knowledge management and visualisations and business-to-business

services.

The main limitation of the approach is that it does not consider non-

functional requirements related to the general performance of the SRIA

applications in real scenarios. Despite the fact that the SRIAs developed

for the evaluation are similar to real applications, it would be also

necessary to measure quantitative parameters of performance (e.g.,

response time, memory used, CPU used) under different load conditions

and information queries to validate the software architecture proposed

and the alternative D2R mapping tool. With the results of this empirical

evaluation, it would be possible to establish different architectural

configurations according to different non-functional requirements set by

the stakeholders.

Another aspect of the proposal that has not assessed in this thesis is

the benefit of combining the three ontologies (representing different

knowledge) in the annotation model proposed in Section 3.2 (page 46).

Although there are some previous approaches that use ontologies to

represent domain data, navigational structures or user interface

elements, the benefits of combining the three in order to improve the

searches of information has not been empirically demonstrated. This

assessment process requires the implementation of a specialised client

that employs this data, which was out of the scope and objectives of this

thesis.

222 Chapter 9. Conclusions & Future Work

RQ2 – How can the existing model-driven methodologies be extended in

order to develop the solution to the problems detected in Rich Internet

Applications?

In order to answer this question, Chapter 4 introduced the Sm4RIA

methodology, which is the second contribution of this thesis, as an

extension of the OOH4RIA methodology, for the development of SRIA.

As could be appreciated from the analysis in Section 2.2.3 (page 37),

none of the existing model-driven Web engineering methodologies

effectively combined the elements required for the development of this

type of applications. Existing methodologies (e.g., WebML) contain part

of the elements needed (development of RIA, ontologies, access to Web

services), but these elements remain unconnected. In addition, they are

not yet aligned to the new initiatives for knowledge management of the

Semantic Web, such as the Linked Data approach, which facilitates the

processes of knowledge publication and exploitation. Table 9.1 and

Table 9.2 extend the analysis perfomed in the second chapter including

and highlighting the features of Sm4RIA. Sm4RIA effectively combines

the artefacts for modelling RIA (extending the ones included in

OOH4RIA) and the required primitives for modelling the components

for knowledge management and sharing with the purpose of developing

SRIAs.

The methodology facilitates the design of the processes of sharing

(and reusing) knowledge as linked data (following the Linked Data

principles) in SRIAs. The simplicity of their processes and models

should reduce the learning curve and enable non-expert designers to use

Linked Data sources in order to import fresh knowledge from the Web

to their applications. Sm4RIA also provides the elements required to

represent the knowledge and services shared by a RIA using different

techniques (e.g., SPARQL endpoints).

This thesis has already introduced two configurations of the Sm4RIA

process: one for the development of RI@BI (Sm4RIA-B, Section 4.2.5.1,

page 74) and another oriented to the modernisation of legacy

applications and the generation of RIA interfaces to knowledge bases

(Sm4RIA-M, Section 4.2.5.2, page 76). The first configuration groups the

elements that designers need to develop of SRIA in the field of Business

Intelligence, which includes new modelling elements for representing

complex data visualisations and the access to B2B services.

Model-Driven Development of Rich Internet Applications on the Semantic Web 223

Table 9.1. Comparison of Sm4RIA with other methodologies (RIA design features).

M
et

h
od

ol
og

ie
s

S
H

D
M

O
nt

ol
og

y-
dr

iv
en

Y

es

a Y
es

Y
es

, w
it

h
th

e
P

re
se

nt
at

io
n

on
to

lo
gy

Y
es

, w
it

h
th

e
P

re
se

nt
at

io
n

on
to

lo
gy

Y
es

N
o

O
O

W
S

M
od

el
-d

ri
ve

n

Y

es

a,
 e

xt
en

ds

O
O

-M
et

ho
d

Y
es

Y
es

, w
it

h
th

e
In

te
ra

ct
io

n
m

od
el

Y
es

, w
it

h
th

e
In

te
ra

ct
io

n
m

od
el

Y
es

N
o

O
O

H
D

M

M
od

el
-d

ri
ve

n

Y

es

a Y
es

Y
es

, w
it

h
A

bs
tr

ac
t D

at
a

V
ie

w
s

Y
es

, w
it

h
A

D
V

-c
ha

rt
s

Y
es

N
o

R
U

X
-M

et
h

od

M
od

el
-d

ri
ve

n

R
U

X
 T

oo
l

Y

es

b N
o

Y
es

, w
it

h
th

e
C

on
cr

et
e

In
te

rf
ac

e

Y
es

, w
it

h
th

e
C

on
cr

et
e

In
te

rf
ac

e

Y
es

N
o

R
U

X
 T

oo
l

U
W

E
-R

M
od

el
-d

ri
ve

n

Y

es

a Y
es

Y
es

, e
xt

en
di

ng

th
e

P
re

se
nt

at
io

n
m

od
el

Y
es

, e
xt

en
di

ng

th
e

N
av

ig
at

io
n

an
d

P
ro

ce
ss

m

od
el

s

Y
es

N
o

U
W

E

M
od

el
-d

ri
ve

n

A
rg

oU
W

E

Y

es

d

Y
es

Y
es

, w
it

h
a

ne
w

se

t o
f p

at
te

rn
s

ov
er

 th
e

P
re

se
nt

at
io

n
m

od
el

Y
es

, w
it

h
a

ne
w

se

t o
f p

at
te

rn
s

ov
er

 th
e

N
av

ig
at

io
n

an
d

th
e

P
ro

ce
ss

 m
od

el

Y
es

N
o

A
rg

oU
W

E

W
eb

M
L

M
od

el
-d

ri
ve

n

W
eb

R
at

io

Y

es

a Y
es

Y
es

, w
it

h
th

e
H

yp
er

m
ed

ia

m
od

el

Y
es

, w
it

h
th

e
H

yp
er

m
ed

ia

m
od

el

Y
es

Y
es

W
eb

R
at

io

S
m
4R

IA

M
od

el
-d

ri
ve

n

O
ID

E

Y

es

a,
 e

xt
en

d
s

O
O

H
4R

IA

Y
es

Y
es

, w
it

h
 t

h
e

E
xt

en
d

ed

P
re

se
n

ta
ti

on
 M

od
el

Y
es

, w
it

h
 t

h
e

E
xt

en
d

ed

O
rc

h
es

tr
at

io
n

M

od
el

Y
es

Y
es

S
m
4R

IA
 e

xt
en

si
on

fo

r
O

ID
E

Fe
at

u
re

T
yp

e

C
A

SE
 to

ol

 D
ev

el
op

 R
ic

h
In

te
rn

et

A
pp

lic
at

io
ns

T
yp

e
of

 m
et

ho
do

-l
og

y
(B

us
ch

 &
 K

oc
h

 2
00

9)

D
es

ig
n

R
IA

 s
er

ve
r

D
es

ig
n

th
e

st
ru

ct
ur

e
of

R

ic
h

U
se

r
In

te
rf

ac
es

D
es

ig
n

th
e

be
ha

vi
ou

r
of

 R
ic

h
U

se
r

In
te

rf
ac

es

G
en

er
at

e
br

ow
se

r-
or

ie
nt

ed
 r

ic
h

cl
ie

nt
s

G
en

er
at

e
pl

ug
in

-
or

ie
nt

ed
 r

ic
h

cl
ie

nt
s

C
A

SE
 to

ol
 s

up
p

or
t

Objective

O
3

O
2

O
1

O
1

O
1

O
1

O
1

O
3

 General Rich Internet Applications

224 Chapter 9. Conclusions & Future Work

Table 9.2. Comparison of Sm4RIA with other methodologies

(Semantic Web application design features).
M

et
h

od
ol

og
ie

s

H
er

a/
H

er
a-

S

Y
es

Y
es

, i
n

th
e

D
at

a
co

lle
ct

io
n

ac
ti

vi
ty

Y
es

Y
es

Y
es

Y
es

, b
as

ed
 o

n
Se

R
Q

L

N
o

N
o

N
o

N
o

O
n

to
W

eb
b

er

Y
es

Y
es

, w
it

h
th

e
D

om
ai

n
m

od
el

Y
es

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

O
nt

oW
eb

be
r

W
S

D
M

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

S
H

D
M

Y
es

Y
es

, w
it

h
th

e
D

om
ai

n
on

to
lo

gy

Y
es

, w
it

h
th

e
do

m
ai

n
on

to
lo

gy

Y
es

, i
n

an
ot

he
r

ap
p

ro
ac

h
(D

e
So

uz
a

B
om

fi
m

 &

Sc
hw

ab
e,

 2
01

1)

Y
es

Y
es

N
o

Y
es

N
o

Y
es

, i
n

an
ot

he
r

ap
p

ro
ac

h
(D

e
So

uz
a

B
om

fi
m

 &

Sc
hw

ab
e,

 2
01

1)

Y
es

Sy
nt

h
pl

at
fo

rm

R
U

X
-M

et
h

od

Y
es

N
o

N
o,

 o
nl

y
w

or
ks

w

it
h

O
nt

oR
U

X
.

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

ed
it

R
U

X
, i

nc
lu

d
ed

in

 R
U

X
T

oo
l

W
eb

M
L

Y
es

Y
es

, u
si

ng
 th

e
O

nt
ol

og
y

m
od

el

Y
es

Y
es

, w
it

h
Se

m
an

ti
c

W
eb

Se

rv
ic

es

Y
es

Y
es

Y
es

, S
em

an
ti

c
W

eb
 S

er
vi

ce
s

N
o

N
o

N
o

N
o -

S
m

4R
IA

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

, L
in

k
ed

 D
at

a

en
d

p
oi

n
ts

Y
es

Y
es

Y
es

Y
es

S
m
4R

IA
 e

xt
en

si
on

fo
r

O
ID

E

Fe
at

u
re

D
ev

el
op

 S
em

an
ti

c
W

eb

A
pp

lic
at

io
ns

D
es

ig
n

on
to

lo
gi

es

Im
po

rt
 o

nt
ol

og
ie

s

R
eu

se
 e

xt
er

na
l

kn
ow

le
d

ge
 b

as
es

G
en

er
at

e
on

to
lo

gy

in
st

an
ce

s

G
en

er
at

e
se

m
an

ti
ca

lly

an
no

ta
te

d
U

Is

G
en

er
at

e
a

se
rv

ic
e

fo
r

ac
ce

ss
in

g
th

e
on

to
lo

gy

in
st

an
ce

s

A
lig

ne
d

to
 th

e
Li

nk
ed

D

at
a

pr
in

ci
p

le
s

G
en

er
at

e
Li

nk
ed

 D
at

a
da

ta
se

ts

R
eu

se
 L

in
ke

d
D

at
a

da
ta

se
ts

D
es

ig
n

ri
ch

 U
Is

C
A

SE
 to

ol
 s

up
p

or
t

Objective

O
2

O
1.

1
O

1.
2

O
1.

3

O
1.

3

O
1.

3

O
1.

1
O

1.
2

O
1.

1
O

1.
2

O
1.

1

O
1.

1
O

1.
2

O
1.

3
O

1.
1

O
1.

3

O
1

O
3

 Semantic Web Applications

Model-Driven Development of Rich Internet Applications on the Semantic Web 225

The second configuration facilitates the creation of SRIAs from

existing databases or ontologies by means of text-to-model and model-

to-model transformations. In this configuration, developers can exploit

the use of model-to-model transformation rules in order to reengineer

traditional Web applications –and create new (S)RIAs– and simplify the

design of those parts shared by many applications, e.g., interfaces for

administrators. Further possibilities for the modernisation processes

with Sm4RIA will be analysed and assessed more in detail in future

works.

The validation of the models and the processes included in the

methodology was driven by the design of different case studies using a

SRIA as a platform, with different requirements in the same domain.

The case study chosen to explain the features of the process from

Chapter 5 to 7 was the social network site because of its complexity and

requirements, and also because it is well-known in the field of Web

Engineering.

The methodology has been applied to two ongoing projects, with

public and private funding, that aim at developing Linked Data

repositories with rich user interfaces using a SRIA as a platform.

The development of the case studies and the application to the

development projects has shown the benefits of Sm4RIA:

(a) it facilitates the definition of most of the SRIA software modules

at design time, offering an overview of the resulting application

before it is actually generated, and protects the customised code

introduced by the developers from regenerations;

(b) it reduces the cost in terms of time and resources involved in

developing and maintaining SRIAs (which is also a consequence of

the implementation in a CASE tool). Several of the main tasks of the

methodology can be automated with the model transformations

(model-to-model and model-to-text).

(c) it enables non-expert users to employ the knowledge bases

available on the Web in their applications and to create new ones;

and

(d) it simplifies the creation and exploitation of Linked Data services

in RIAs.

226 Chapter 9. Conclusions & Future Work

Despite the known benefits, however, model-driven methodologies

have not yet reached a high degree of adoption in business scenarios,

mainly due to the mentality of the stakeholders, who are reluctant to

using automatically generated code. This is due to the fact that such

code might, on the one hand, not be entirely adapted to their necessities

and, on the other hand, that it is obtained through model-to-text

generation processes, which are usually developed as black boxes, so

stakeholders might not trust the generated code.

Notwithstanding these practice-related issues, Sm4RIA is meant to

help the development of SRIAs. As shown in Chapter 4, the Sm4RIA

models specify most of the components of the application, and the

generation processes are capable of generating the main structure of the

application. Moreover, some parts can be manually completed by

developers after the application has been generated, bearing no risk in

case of code regeneration. Furthermore, the OOH4RIA Architectural

model (Meliá et al., 2010a) can be adapted to the Sm4RIA methodology,

thus adding to it mechanisms for the specification of the architectural

variability of the resulting SRIA. It would also be possible to create new

generation rules that, reusing existing models, enable the generation of

different front-ends for other types of devices, e.g., mobile devices.

Empirically analysing the complexity of a model-driven

methodology can be a challenge. Nevertheless, such an assessment is

sometimes required so as to ensure that the learning curve does not

grow steeply for users with a strong background in Web development.

To this aim, some experiments have already been conducted over the

OOH4RIA and Sm4RIA models yielding positive results (Martinez et al.,

2013). These first experiments assessed the satisfaction of use and

maintainability of the Domain model on groups of real Web developers.

The goal is to replicate this evaluation process with the rest of the

OOH4RIA/Sm4RIA models.

RQ3 – How can the proposed solutions be implemented in a CASE tool?

This third research question was addressed together with the second

one. In this dissertation, after the presentation of the methodology,

Chapter 8 introduced the main features of the CASE tool that

implements the Sm4RIA methodology, called Sm4RIA extension for OIDE,

Model-Driven Development of Rich Internet Applications on the Semantic Web 227

thus answering this last question. As its name indicates, this tool extends

the OIDE CASE tool, which implements the OOH4RIA methodology,

with the new model editors and generation processes included in

Sm4RIA. The reuse of the OIDE tool and the Eclipse modelling

framework, on which OIDE is based, facilitated the development of the

models and transformation processes.

At present, after a decade of new approaches in Web engineering, it

is a fact that the success of a model-driven development methodology is

clearly bound to the existence of a CASE tool that implements the

models and the processes of software generation. As mentioned in

Chapter 8, the functionalities of the tool were iteratively validated

together with the elements of the methodology.

One last evaluation that should be conducted is the application of the

methodology and the tool in a set of real projects using developers with

different expertise levels and backgrounds as test subjects. In this way, it

would be possible to improve the development of the model editors

taking into consideration other non-functional requirements such as

their usability (which were out of the scope of this thesis). Another

feasible option could be to release the tool as open source and,

subsequently, to gather the opinions of developers and users of the tool,

thus yielding a wider analysis of the benefits and disadvantages of the

tool. This third evaluation should be performed together with the

authors of the OIDE tool or their authorisation since OIDE is not open

source at this moment.

This evaluation can be used to shorten the process of training needed

in order to be able to employ the CASE tool correctly, which normally

depends on different factors, e.g., complexity of the methodology, level

of usability of the tool, background of the designer, etc.

As a summary of the contributions of this thesis, Table 9.3 associates

the objectives introduced in Chapter 1, stated from the research

questions, and the tasks performed to fulfil them.

228 Chapter 9. Conclusions & Future Work

Table 9.3. Summary of the contributions of this thesis associated to the objectives.

Research
question

Objective Description Tasks Performed

RQ1 O1 Improve the interoperability of

Rich Internet Applications with

text-driven software systems on

the Web (e.g., searchers).

Development of a proposal of

Semantic Rich Internet Application.

O1.1 Improve the exportability of the

data contained in Rich Internet

Applications

 SRIAs include new server modules

for sharing the information as

linked data (e.g., knowledge base

or the SPARQL service), which

provides a standard manner of

publishing the information.

 SRIAs with HTML interfaces can

also embed semantic annotations

based on the annotation model

proposed.

O1.2 Improve the access to

information related to

multimedia elements.

The domain and the visualisation

ontologies of the annotation model

proposed can be used to share

information of the multimedia

elements by means of the SRIA

software modules.

O1.3 Reuse techniques, technologies

and resources already

developed in the Semantic Web

 The SRIA proposal reuses part of

the Semantic Web architecture and

the Linked data principles to share

knowledge across the Internet.

 Use of ontologies to represent the

knowledge managed by SRIAs.

 Use of the standard languages

OWL, RDF and SPARQL for the

representation of the ontologies,

ontology instances and queries.

O1.4 Develop a collection of use

cases that assess the validity of

the solution proposed.

 Development of a media player as

a SRIA.

 Development of a social network

site as a SRIA.

 Development of a social network

site for enterprises as a RI@BI.

RQ2 O2 Design a model-driven

methodology for the

development of the solution.

Development of the Sm4RIA model-

driven methodology for the

development of SRIA.

O2.1 Facilitate the development of

the solution proposed in O1.

Design of new models in Sm4RIA

adapted to the new features included

in SRIA:

 The Extended Domain Model, for

the design of the domain ontology.

 The Extended Navigation Model,

Model-Driven Development of Rich Internet Applications on the Semantic Web 229

Research
question

Objective Description Tasks Performed

for specifying the manner in which

the ontology instances are used in

the application.

 The Extended Presentation and

Orchestration models, for the

visualisation of the ontology

instances imported from external

sources.

Design of a collection of model-2-

model transformation that speeds up

the creation of model mock-ups for

designers.

O2.2 Improve the maintainability of

the solution proposed in O1.

As a model-driven methodology,

changes in the requirements of an

application would only imply

modifications in the models and

regenerate the software code.

The Xpand framework protects

personalised code when invoking the

transformation rules.

O2.3 Extend an existing

methodology for the

development of RIA.

Design of Sm4RIA as an extension of

the OOH4RIA methodology,

specialised in the development of

traditional RIAs.

RQ3 O3 Implement the elements of the

methodology designed in a

CASE tool.

Development of the CASE tool called

Sm4RIA extension for OIDE.

Evaluation of the tool in research

forums.

All in all, this thesis has shown the manner in which the techniques

and technologies from one trend of the Web, i.e., the Semantic Web (or

the Web of Data), can be applied to the problems found in another, i.e.,

RIA, thus reusing the efforts spent during the last decade of

development of the Internet. In order to deal with the challenge of

developing applications that combine the technologies from the both

trends in the context of the Web engineering, this thesis showed the

benefits of using a model-driven methodology (together with a CASE

tool) and the manner in which the modelling primitives for each trend

can be used together, simplified by the extensive use of model

transformations.

The contributions introduced in this thesis open new business

opportunities by directly applying the solutions designed in real

230 Chapter 9. Conclusions & Future Work

scenarios and also opens new lines of future research, which are

described in the next section.

9.2 FUTURE WORK

The last section presented an overview of the contributions of this

thesis, their main benefits and limitations. Consequently, also in

correspondence to the partial conclusions obtained after each chapter,

new lines of future research deriving from this thesis are described:

Related to the Semantic Web field, the following lines of work

remain open:

 Empirical assessment of the annotation model proposed using a

Semantic Web search engine. The annotation model proposed

should be evaluated in a practical manner. To do so, first, it is

necessary to establish a set of parameters, new or reused from

other approaches, to measure the performance of the searches of

information over the new SRIAs. Secondly, a large number of

SRIA applications should be developed to obtain more detailed

conclusions.

 Extension of a Semantic Web client to exploit the annotation model

proposed. The current Semantic Web searchers, such as Sindice or

Watson, retrieve and index the ontologies and annotations

contained in Web sites. The annotation model described could

help these searchers to retrieve the information they need in a

more efficient manner and to discriminate it according to the

structure and visualisation of the Web site, also described as

ontology instances. In order to evaluate the model, as a second

step, one of the existing Semantic Web clients should be

extended.

 Empirical evaluation of the chosen architecture for SRIA. The SRIA

architecture was defined based on previous experiences in the

development of RIA and Semantic Web applications. However,

the SRIA architecture was proposed according to the desired

functionalities and the issues found in RIA, ignoring the aspects

related to non-functional requirements of the solution, such as

the final performance of the applications. An exhaustive study of

different types of SRIA should be performed using different

Model-Driven Development of Rich Internet Applications on the Semantic Web 231

technologies and mapping tools, which could lead to

improvements in the architecture proposed. This study should

evaluate the performance of the resulting application at different

load rates and queries of information.

 Repeat the evaluation processes for SRIA with RI@BI.

 Automatic generation of mobile interfaces. Using the information

shared by means of the SRIA Linked Data service, it would be

possible to automatically create user interfaces for mobile devices

that interpret the ontology instances shared. This could be a

solution to the lack of support of plugin-oriented RIAs in mobile

devices, which are one of the main gateways to the Internet for

users.

Related to the Web engineering field, the lines of research proposed

are the following:

 Empirical evaluation of the Sm4RIA methodology. In order to detect

new limitations of the methodology and facilitate the adoption in

business scenarios, it is necessary to continue with the empirical

assessment of the process and the models with a group of real

developers, following the first experiments with the OOH4RIA

Domain model (Martinez et al., 2013) that statistically evaluated

its maintainability, ease of use and the general impression of the

developers.

 Adapt the OOH4RIA Architecture model to Sm4RIA. The proposed

methodology does not take into consideration the possible

variations in the SRIA software architecture (either for clients or

servers). The application of the OOH4RIA Architecture model

(Meliá et al., 2010a) to Sm4RIA would facilitate the representation

of the architectural variability of SRIAs.

 Study the modernisation processes for the generation of interfaces.

Sm4RIA has shown the manner in which it is possible to generate

interfaces to Linked Data sources. However, this approach can be

further studied focusing on the manner in which data can be

visualised (structure, behaviour and aesthetics) and the

adaptation of the model-to-model transformations. Another

aspect to analyse is the possibility to generate more complex

interfaces, not only those for administrators.

232 Chapter 9. Conclusions & Future Work

 Study the modernisation processes for the generation of mobile

applications. In the same way, it could be possible to define new

modernisation processes in Sm4RIA that generate mobile

applications that access the data exposed by SRIA, or Web user

interfaces for visualising these data. From a more generic

perspective, the application of techniques of Web personalisation

to Sm4RIA could be studied.

 Study the definition of product lines for the generation of SRIA. The

definition of product lines for the generation of SRIA would

facilitate the personalisation of the process of generation.

Developers would choose the SRIA desired from a prefixed set of

options (e.g., type of SRIA, output technology, etc.), which

control the activation of the model-to-text transformation rules

invoked during the process. This approach has already been

studied in OOH4RIA with RIA development (Meliá et al., 2010a).

 Study the advantages and limitations of the models with textual

notation against the ones with graphic notation. The CASE tool

implemented a textual concrete syntax of the EDM given that, in

the Eclipse platform, the time of development for an Xtext textual

editor is lower than a graphical one, which facilitates the creation

of models mock-ups and the testing of model transformations.

After the development of an editor with a graphical concrete

syntax, it would be possible to empirically assess the benefits of

each one for the modelling of the knowledge of domain.

Finally, there are some issues with the tool that could be analysed:

 Complete the implementation of the model-to-text transformation rules

for RI@BI. The transformations for the generation of the RI@BI

interfaces should be included in the CASE tool.

 Complete the implementation of the modernisation processes of Sm4RIA.

The current implementation of the tool already includes most of

the transformation rules defined by the Sm4RIA processes.

However, the integration between the transformations and the

model editors could be improved.

 Improve the general usability of the tool. The development of the

CASE tool addressed the implementation of the main elements of

the methodology and the process. However, there are other

aspects related to the usability of the tool that should be

Model-Driven Development of Rich Internet Applications on the Semantic Web 233

considered if the tool is aimed at real developers. Among them,

the management of the Sm4RIA projects and the invocation of the

model-to-text rules could be improved.

 Improve the usability of the model editors. Model editors are a

relevant part of the CASE tool. They include all the

functionalities required to model the Sm4RIA models. However, it

is necessary to study those functionalities of the editor that can

boost the efficiency of the developers when modelling. Moreover,

the integration between the model editors and the transformation

processes should be also improved.

REFERENCES

Acerbis, R., Bongio, A., Brambilla, M., Butti, S., 2007. WebRatio 5: an
eclipse-based CASE tool for engineering web applications, in:
Proceedings of the 7th International Conference on Web
Engineering, ICWE’07. Springer-Verlag, Berlin, Heidelberg, pp.
501–505.

Alur, D., Malks, D., Crupi, J., 2003. Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall.

Allaire, J., 2002. Macromedia Flash MX - A next-generation rich client.
Macromedia.

Allemang, D., 2010. Semantic Web and the Linked Data Enterprise
Linking Enterprise Data, in: Wood, D. (Ed.), Linking Enterprise
Data. Springer US, Boston, MA, pp. 3–23.

Barjis, J., Gupta, A., Sharda, R., 2011. Knowledge work and
communication challenges in networked enterprises. Information
Systems Frontiers 13, 615–619.

Barrasa Rodríguez, J., 2007. Modelo para la definición de
correspondencias entre ontologías y modelos relacionales (PhD
Thesis). Universidad Politécnica de Madrid, Madrid, Spain.

Benjamin, K., 2010. A Strategy for Efficient Crawling of Rich Internet
Applications (MSc Thesis). University of Otawa, Otawa, Canada.

Benjamin, K., Bochmann, G. von, Dincturk, M.E., Jourdan, G.-V., Onut,
I.-V., 2011. A Strategy for Efficient Crawling of Rich Internet
Applications, in: Web Engineering - 11th International
Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011,
Lecture Notes in Computer Science. Presented at the 11th

236 References

International Conference on Web Engineering (ICWE 2011),
Springer, Paphos, Cyprus, pp. 74–89.

Berners-Lee, T., 1998a. Semantic Web Road map. World Wide Web
Consortium. Available from:
http://www.w3.org/DesignIssues/Semantic.html

Berners-Lee, T., 1998b. Relational Databases on the Semantic Web.
World Wide Web Consortium. Available from:
http://www.w3.org/DesignIssues/RDB-RDF.html

Berners-Lee, T., 2000. Semantic Web - XML 2000. World Wide Web
Consortium.

Berners-Lee, T., 2006. Linked Data - Design Issues. World Wide Web
Consortium. Available from:
http://www.w3.org/DesignIssues/LinkedData.html

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. A new
form of Web content that is meaningful to computers will
unleash a revolution of new possibilities. Scientific American
284, 34–43.

Bettencourt, N., Maio, P., Pongó, A., Silva, N., Rocha, J., 2006. A
Systematization and Clarification of Semantic Web Annotation
Terminology, in: Proceedings of the International Conference on
Knowledge And Decision Technologies (ICKEDS’06). pp. 27–34.

Bizer, C., Seaborne, A., 2004. D2RQ – Treating Non-RDF Databases as
Virtual RDF Graphs.

Bozzon, A., Comai, S., Fraternali, P., Carughi, G.T., 2006. Conceptual
modeling and code generation for rich internet applications, in:
Proceedings of the 6th International Conference on Web
Engineering, ICWE ’06. ACM, New York, NY, USA, pp. 353–360.

Brambilla, M., Ceri, S., Facca, F.M., Celino, I., Cerizza, D., Cefriel, E.
della V., 2007. Model-driven design and development of
semantic Web service applications. ACM Trans. Internet Technol.
8, 3.

Brambilla, M., Facca, F.M., 2007. Building Semantic Web Portals with
WebML. Lecture Notes in Computer Science 4607, 312–327.

Brambilla, M., Preciado, J.C., Linaje, M., Sánchez-Figueroa, F., 2008.
Business Process-Based Conceptual Design of Rich Internet

Model-Driven Development of Rich Internet Applications on the Semantic Web 237

Applications, in: Proceedings of the 2008 Eighth International
Conference on Web Engineering. Presented at the ICWE ’08,
IEEE Computer Society, New York, USA, pp. 155–161.

Breslin, J., Decker, S., 2007. The Future of Social Networks on the
Internet: The Need for Semantics. IEEE Internet Computing 11,
86–90.

Breslin, J.G., Passant, A., Decker, S., 2009. Motivation for Applying
Semantic Web Technologies to the Social Web, in: The Social
Semantic Web. Springer Berlin Heidelberg, pp. 11–20.

Broekstra, J., Kampman, A., 2003. SeRQL: A Second Generation RDF
Query Language, in: Proceedings of the SWAD-Europe
Workshop on Semantic Web Storage and Retrieval. Vrije
Universiteit, Amsterdam, Netherlands.

Broekstra, J., Kampman, A., Harmelen, F. van, 2002. Sesame: An
Architecture for Storing and Querying RDF and RDF Schema, in:
Proceedings of the First International Semantic Web Conference,
LNCS. Presented at the ISWC 2002, Springer-Verlag, pp. 54–68.

Būmans, G., Cerāns, K., 2010. RDB2OWL: a practical approach for
transforming RDB data into RDF/OWL, in: Proceedings of the
6th International Conference on Semantic Systems, I-
SEMANTICS ’10. ACM, New York, NY, USA, pp. 25:1–25:3.

Busch, M., Koch, N., 2009. Rich Internet Applications State-of-the-Art.
Ludwig-Maximilians-Universität München, Munich, Germany.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.
Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley, Chichester, UK.

Cachero, C., Meliá, S., Genero, M., Poels, G., Calero, C., 2007. Towards
improving the navigability of Web applications: a model-driven
approach. European Journal of Information Systems 16, 420–447.

Casteleyn, S., Plessers, P., De Troyer, O., 2006. On generating content
and structural annotated websites using conceptual modeling, in:
Proceedings of the 25th International Conference on Conceptual
Modeling, ER’06. Springer-Verlag, Berlin, Heidelberg, pp. 267–
280.

Ceri, S., Brambilla, M., Fraternali, P., 2009. The History of WebML:
Lessons Learned from 10 Years of Model-Driven Development of

238 References

Web Applications, in: Borgida, A.T., Chaudhri, V.K., Giorgini, P.,
Yu, E.S. (Eds.), Conceptual Modeling: Foundations and
Applications: Essays in Honor of John Mylopoulos. Springer-
Verlag, Berlin, Heidelberg, pp. 273–292.

Ceri, S., Fraternali, P., Bongio, A., 2000. Web Modeling Language
(WebML): a modeling language for designing Web sites.
Computer Networks 33, 137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.,
2002. Designing Data-Intensive Web Applications. Elsevier,
Amsterdam, Netherlands.

Corcho, O., López-Cima, A., Gómez-Pérez, A., 2006. A platform for the
development of semantic web portals, in: Proceedings of the 6th
International Conference on Web Engineering (ICWE’06). ACM,
New York, NY, USA, pp. 145–152.

Cranefield, S., Purvis, M.K., 1999. UML as an Ontology Modelling
Language, in: Proceedings of the IJCAI-99 Workshop on
Intelligent Information Integration, Held on July 31, 1999 in
Conjunction with the Sixteenth International Joint Conference on
Artificial Intelligence City Conference Center, Stockholm,
Sweden, CEUR Workshop Proceedings. Presented at the IJCAI-
99 Workshop on Intelligent Information Integration, Stockholm,
Sweden.

Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Von
Bochmann, G., Jourdan, G.-V., Onut, I.-V., 2012. Crawling Rich
Internet Applications: The State of the Art, in: Proceedings of the
22nd Annual International Conference Hosted by the Centre for
Advanced Studies Research, IBM Canada Software Laboratory.
Presented at the The 22nd annual international conference
hosted by the Centre for Advanced Studies Research, IBM
Canada Software Laboratory.

D’ Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez,
V., Guidi, D., 2008. Towards a new generation of semantic web
applications. IEEE Intelligent Systems 23, 20–28.

Davenport, T.H., 2000. The Future of Enterprise System-Enabled
Organizations. Information Systems Frontiers 2, 163–180.

De Souza Bomfim, M.H., Schwabe, D., 2011. Design and Implementation
of Linked Data Applications Using SHDM and Synth, in: Web

Model-Driven Development of Rich Internet Applications on the Semantic Web 239

Engineering - 11th International Conference, ICWE 2011, Paphos,
Cyprus, June 20-24, 2011, Lecture Notes in Computer Science.
Presented at the 11th International Conference (ICWE 2011),
Springer, Paphos, Cyprus, pp. 121–136.

De Troyer, O., Casteleyn, S., Plessers, P., 2007. WSDM: Web Semantics
Design Method, in: Rossi, G., Pastor, O., Schwabe, D., Olsina, L.
(Eds.), Web Engineering: Modelling and Implementing Web
Applications, Human-Computer Interaction Series. Springer,
London, pp. 303–351.

De Troyer, O., Leune, K., 1998. WSDM: a user centered design method
for Web sites, in: Proceedings of the 7th International World
Wide Web Conference. Presented at the Word Wide Web
Conference (WWW’98), Elsevier, Brisbane, Australia, pp. 85–94.

Djuric, D., Gasevic, D., Devedzic, V., Damjanovic, V., 2004. UML Profile
for OWL, in: Web Engineering - 4th International Conference,
ICWE 2004, Munich, Germany, July 26-30, 2004, Proceedings,
Lecture Notes in Computer Science. Presented at the 4th
International Conference on Web Engineering (ICWE 2004),
Springer, Munich, Germany, pp. 607–608.

Fialho, A.T.S., Schwabe, D., 2007. Enriching hypermedia application
interfaces. Lecture Notes in Computer Science 4607, 188–193.

Fowler, M., 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Fowler, M., 2004. Presentation Model [WWW Document]. URL
http://martinfowler.com/eaaDev/PresentationModel.html

Frasincar, F., Houben, G.-J., Barna, P., 2010. Hypermedia presentation
generation in Hera. Inf. Syst. 35, 23–55.

Fraternali, P., Comai, S., Bozzon, A., Toffeti Carughi, G., 2010a.
Engineering rich internet applications with a model-driven
approach. ACM Transactions on the Web 4, 1–47.

Fraternali, P., Tisi, M., Silva, M., Frattini, L., 2010b. Building
Community-based Web Applications with a Model-Driven
Approach and Design Patterns. Politecnico di Milano. Available
from:
http://webml.org/webml/upload/ent5/1/CommunityPatterns-
final.pdf

240 References

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Gasevic, D., Djuric, D., Devedzic, V., 2005. Bridging MDA and OWL
Ontologies. J. Web Eng. 4, 118–143.

Gasevic, D., Djuric, D., Devedzic, V., 2007. MDA-based Automatic OWL
Ontology Development. STTT 9, 103–117.

Gerber, A., Van der Merwe, A., Barnard, A., 2008. A Functional Semantic
Web Architecture, in: Proceedings of the 5th European Semantic
Web Conference. Presented at the ESWC’08, pp. 273–287.

Gómez, J., Cachero, C., Pastor, O., 2001. Conceptual Modeling of Device-
Independent Web Applications. IEEE MultiMedia 8, 26–39.

Gómez-Pérez, A., Fernández-López, M., Corcho, O., 2007. Ontological
Engineering: with examples from the areas of Knowledge
Management, e-Commerce and the Semantic Web. (Advanced
Information and Knowledge Processing). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Gossman, J., 2005. Introduction to Model/View/ViewModel pattern for
building WPF apps. MSDN Blogs - Tales from the Smart Client.

Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L.,
Minack, E., Mesnage, C., Jazayeri, M., Reif, G., Gudjonsdottir, R.,
2007. The NEPOMUK Project - On the way to the Social Semantic
Desktop, in: Pellegrini, T., Schaffert, S. (Eds.), Proceedings of the
7th International Conference on Semantic Systems (I-
SEMANTICS’ 07). Presented at the 7th International Conference
on Semantic Systems, JUCS, pp. 201–211.

Gruber, T.R., 1995. Toward principles for the design of ontologies used
for knowledge sharing. International Journal of Human-
Computer Studies 5–6, 907–928.

Guarino, N., 1998. Formal Ontology in Information Systems, in:
Proceedings of the International Conference on Formal Ontology
in Information Systems. Presented at the FOIS’98, IOS Press,
Trento, Italy, pp. 3–15.

Heath, T., Bizer, C., 2011. Linked Data. Evolving the Web into a Global
Data Space, 1st ed, Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool.

Model-Driven Development of Rich Internet Applications on the Semantic Web 241

Heitmann, B., Kinsella, S., Hayes, C., Decker, S., 2009. Implementing
Semantic Web applications: reference architecture and
challenges, in: Proceedings of the 5th International Workshop on
Semantic Web-Enabled Software Engineering. Presented at the
SWESE’09, Virginia, USA, pp. 16–30.

Hermida, J.M., Meliá, S., Martinez, J.-J., Montoyo, A., Gómez, J., 2012a.
Developing Semantic Rich Internet Applications with the
Sm4RIA Extension for OIDE, in: ICWE Workshops 2012, Lecture
Notes in Computer Science. Presented at the Workshop on
Model-Driven and Agile Engineering for the Web (MDWE 2012),
Springer Berlin Heidelberg, Belin, Germany, pp. 20–25.

Hermida, J.M., Meliá, S., Montoyo, A., Gómez, J., 2011a. Developing
Rich Internet Applications as Social Sites on the Semantic Web: A
Model-Driven Approach. IJSSOE 2, 21–41.

Hermida, J.M., Meliá, S., Montoyo, A., Gómez, J., 2011b. Developing
Semantic Rich Internet Applications Using a Model-Driven
Approach, in: Web Information Systems Engineering - WISE
2010 Workshops - WISE 2010 International Symposium WISS,
and International Workshops CISE, MBC, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, pp. 198–
211.

Hermida, J.M., Meliá, S., Montoyo, A., Gómez, J., 2012b. Sm4RIA
Extension for OIDE: Desarrollo de Rich Internet Applications en
la Web Semántica., in: Actas De Las “XVII Jornadas De Ingeniería
Del Software y Bases De Datos (JISBD)”. Presented at the XVII
Jornadas de Ingeniería del Software y Bases de Datos (JISBD’12),
Universidad de Almería, Almería, Spain, pp. 123–126.

Hermida, J.M., Meliá, S., Montoyo, A., Gómez, J., 2013. Applying Model-
Driven Engineering to the Development of Rich Internet
Applications for Business Intelligence. ISF in-press.

Hermida, J.M., Montoyo, A., Gómez, J., 2009. Improving Semantic Web
Applications with Navigational Semantics, in: Natural Language
Processing and Information Systems, 14th International
Conference on Applications of Natural Language to Information
Systems, NLDB 2009, Saarbrücken, Germany, June 24-26, 2009.
Revised Papers, Lecture Notes in Computer Science. Presented at
the 14th International Conference on Applications of Natural
Language to Information Systems, NLDB 2009, Springer,
Saarbrücken, Germany, pp. 291–292.

242 References

Horrocks, I., Parsia, B., Patel-Schneider, P., Hendler, J., 2005. Semantic
Web Architecture: Stack or Two Towers? Principles and Practice
of Semantic Web Reasoning 37–41.

Houben, G.-J., Barna, P., Frasincar, F., Vdovjak, R., 2003. Hera:
Development of Semantic Web Information Systems, in:
Proceedings of the 3rd International Conference on Web
Engineering. Presented at the ICWE 2003, Springer-Verlag, pp.
529–538.

Isakowitz, T., Bieber, M., Vitali, F., 1998. Web information systems.
Commun. ACM 41, 78–80.

Jin, Y., Decker, S., Wiederhold, G., 2001. OntoWebber: Model-Driven
Ontology-Based Web Site Management. Presented at the
Semantic Web Working Symposium (SWWS), Stanford
University, pp. 529–547.

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., Schwinger, W., Wimmer, M., 2006. Lifting
metamodels to ontologies: a step to the semantic integration of
modeling languages, in: Proceedings of the 9th International
Conference on Model Driven Engineering Languages and
Systems, MoDELS’06. Presented at the 9th international
conference on Model Driven Engineering Languages and
Systems, Springer-Verlag, Berlin, Heidelberg, pp. 528–542.

Kinsella, S., Passant, A., Breslin, J.G., Decker, S., Jaokar, A., 2009. The
Future of Social Web Sites: Sharing Data and Trusted
Applications with Semantics. Advances in Computers 76, 121–
175.

Knapp, A., Koch, N., Wirsing, M., 2004. Modeling the Structure of Web
Applications with ArgoUWE, in: Web Engineering, 4th
International Conference, ICWE 2004, Munich, Germany, July 26-
30, 2004. Proceedings, Lecture Notes in Computer Science.
Presented at the Modeling the Structure of Web Applications
with ArgoUWE, Springer Berlin Heidelberg, Munich, Germany,
pp. 615–616.

Koch, N., Kraus, A., 2002. The expressive power of UML-based Web
Engineering, in: Proceecings of the 2nd International Workshop
on Web Oriented Software Technology (IWWOST’2002).
Presented at the 2nd International Workshop on Web Oriented
Software Technology (IWWOST’2002), pp. 105–119.

Model-Driven Development of Rich Internet Applications on the Semantic Web 243

Koch, N., Kraus, A., 2003. Towards a Common Metamodell for the
Development of Web Appliactions, in: Web Engineering,
International Conference, ICWE 2003, Oviedo, Spain, July 14-18,
2003, Proceedings, Lecture Notes in Computer Science. Presented
at the 3rd International Conference on Web Engineering,
Springer-Verlag, Oviedo, Spain, pp. 497–506.

Koch, N., Pigerl, M., Zhang, G., Morozova, T., 2009. Patterns for the
Model-Based Development of RIAs, in: Proceedings of the 9th
International Conference on Web Engineering, Lecture Notes in
Computer Science. Presented at the 9th International Conference
on Web Engineering, Springer-Verlag, Berlin, Heidelberg, pp.
283–291.

Kozaki, K., Hayashi, Y., Sasajima, M., Tarumi, S., Mizoguchi, R., 2008.
Understanding Semantic Web Applications. Lecture Notes in
Computer Science 5367, 524–539.

Laurent, W., 2010. Flash And Silverlight.New Staples Of Rich Visual BI
Applications. Dashboard Insight.

Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Hernandez, R.L., Han, S.-
K., 2005. Semantic web portals: state-of-the-art survey. Journal of
Knowledge Management 9, 40–49.

Lima, F., Schwabe, D., 2003. Modeling applications for the semantic
Web. Lecture Notes in Computer Science 2722.

Linaje, M., Lozano-Tello, A., Perez-Toledano, M.A., Preciado, J.C.,
Rodriguez-Echeverria, R., Sánchez-Figueroa, F., 2011. Providing
RIA user interfaces with accessibility properties. Journal of
Symbolic Computation 46, 207 – 217.

Linaje, M., Lozano-Tello, A., Preciado, J.C., Rodríguez, R., Sánchez-
Figueroa, F., 2009a. Obtaining accessible RIA UIs by combining
RUX-Method and SAW, in: Proceedings of the International
Workshop on Automated Specification and Verification of Web
Systems. pp. 85–97.

Linaje, M., Preciado, J.C., Morales-Chaparro, R., Rodríguez-Echeverría,
R., Sánchez-Figueroa, F., 2009b. Automatic Generation of RIAs
Using RUX-Tool and Webratio, in: Proceedings of the 9th
International Conference on Web Engineering, Lecture Notes in
Computer Science. Springer-Verlag, San Sebastián, Spain, pp.
501–504.

244 References

Linaje, M., Preciado, J.C., Sánchez-Figueroa, F., 2007. A method for
model based design of rich internet application interactive user
interfaces, in: Proceedings of the 7th International Conference on
Web Engineering, Lecture Notes in Computer Science. Presented
at the ICWE’07, Springer-Verlag, Como, Italy, pp. 226–241.

Linaje Trigueros, M., Preciado, J.C., Sánchez-Figueroa, F., 2007.
Engineering Rich Internet Application User Interfaces over
Legacy Web Models. IEEE Internet Computing 11, 53–59.

Machado, L., Filho, O., Ribeiro, J., 2009. UWE-R: an extension to a web
engineering methodology for rich internet applications. WSEAS
Trans. Info. Sci. and App. 6, 601–610.

Martinez, Y., Cachero, C., Meliá, S., 2013. MDD vs. traditional software
development: A practitioner’s subjective perspective.
Information and Software Technology 55, 189–200.

Meliá, S., 2007. WebSA: Un método de desarrollo dirigido por modelos
de arquitectura para aplicaciones Web (PhD Thesis). University
of Alicante, Alicante. Spain.

Meliá, S., Gómez, J., Pérez, S., Díaz, O., 2008. A model-driven
development for GWT-based rich Internet applications with
OOH4RIA, in: Proceedings of the 2008 Eighth International
Conference on Web Engineering (ICWE 2008). IEEE Computer
Society, Yorktown Heights, New York, USA, pp. 13–23.

Meliá, S., Gómez, J., Pérez, S., Díaz, O., 2010a. Architectural and
technological variability in Rich Internet Applications. IEEE
Internet Computing 14, 24–32.

Meliá, S., Martinez, J.-J., Mira, S., Osuna, J.-A., Gómez, J., 2010b. An
Eclipse Plug-in for Model-Driven Development of Rich Internet
Applications. Lecture Notes in Computer Science 6189, 514–517.

Mesbah, A., Bozdag, E., Deursen, A. van, 2008. Crawling AJAX by
Inferring User Interface State Changes, in: Proceedings of the
Eighth International Conference on Web Engineering, ICWE
2008, 14-18 July 2008, Yorktown Heights, New York, USA.
Presented at the 8th International Conference on Web
Engineering (ICWE 2008), IEEE, New York, NY, USA, pp. 122–
134.

Model-Driven Development of Rich Internet Applications on the Semantic Web 245

Mesbah, A., Deursen, A. van, Lenselink, S., 2012. Crawling Ajax-Based
Web Applications through Dynamic Analysis of User Interface
State Changes. TWEB 6, 3.

Mesbah, A., Van Deursen, A., 2007. Migrating multi-page Web
applications to single-page AJAX interfaces, in: Proceedings of
the 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007). Amsterdam, Netherlands, pp. 181–
190.

Mikroyannidis, A., 2007. Toward a Social Semantic Web. Computer 40,
113–115.

Murugesan, S., 2008. Web Application Development: Challenges and the
Role of Web Engineering, in: Web Engineering: Modelling and
Implementing Web Applications, Human-Computer Interaction
Series. Springer, London, pp. 7–32.

Object Management Group, 2003. MDA Guide Version 1.0.1. Available
from: http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Object Management Group, 2008. Software Process Engineering Meta-
Model, version 2.0. OMG. Available from:
http://www.omg.org/cgi-bin/doc?formal/08-04-01.pdf

Object Modeling Group, 2009. Ontology Definition Metamodel Version
1.0. OMG. Available from:
http://www.omg.org/spec/ODM/1.0/PDF

Penela, V., Álvaro, G., Ruiz, C., Córdoba, C., Carbone, F., Castagnone,
M., Gómez-Pérez, J.M., Contreras, J., 2011. miKrow: semantic
intra-enterprise micro-knowledge management system, in:
Proceedings of the 8th Extended Semantic Web Conference on
The Semanic Web: Research and Applications - Volume Part II,
ESWC’11. Springer-Verlag, Berlin, Heidelberg, pp. 154–168.

Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O., Stevens, R.,
Harper, S., Goble, C., 2005. Accessibility: a Web engineering
approach, in: Proceedings of the 14th International Conference
on World Wide Web, WWW ’05. ACM, New York, NY, USA, pp.
353–362.

Preciado, J.C., Linaje, M., Comai, S., Sánchez-Figueroa, F., 2007.
Designing rich internet applications with Web engineering
methodologies, in: Proceedings of the Third International
Workshop on Automated Specification and Verification of Web

246 References

Systems (WWV 2007). San Servolo island, Venice, Italy, p. 23?–
30.

Preciado, J.C., Linaje, M., Morales-Chaparro, R., Sanchez-Figueroa, F.,
Zhang, G., Kroiss, C., Koch, N., 2008. Designing Rich Internet
Applications Combining UWE and RUX-Method, in:
Proceedings of the 2008 Eighth International Conference on Web
Engineering. Presented at the ICWE ’08, IEEE Computer Society,
New York, USA, pp. 148–154.

Raspal, N., 2010. Why RIA allows a New Breed of Business Intelligence
Solution. Dashboard Insight.

Rovan, L., Jagust, T., Baranovic, M., 2011. Defining Categories and
Functionalities of Semantic Web Applications. International
Journal of Systems Applications, Engineering and Development
5, 245–253.

Schwabe, D., Rossi, G., 1998. An Object Oriented Approach to Web-
Based Applications Design. TAPOS 4, 207–225.

Silva Parreiras, F., Staab, S., Winter, A., 2007. On marrying ontological
and metamodeling technical spaces, in: Proceedings of the the
6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07. Presented
at the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ACM, New York, NY, USA,
pp. 439–448.

Simperl, E., Thurlow, I., Warren, P., Dengler, F., Davies, J., Grobelnik,
M., Mladenić, D., Gomez-Perez, J.M., Moreno, C.R., 2010.
Overcoming Information Overload in the Enterprise: The Active
Approach. IEEE Internet Computing 14, 39–46.

Smith, J., 2009. WPF Apps With The Model-View-ViewModel Design
Pattern. MSDN Magazine 24.

Software & Information Industry Association, 2001. Software as a
Service: Strategic Backgrounder. Available from:
http://www.siia.net/estore/pubs/SSB-01.pdf

Toffetti Carughi, G., 2007. Conceptual Modeling and Code Generation of
Data-Intensive Rich Internet Applications (PhD Thesis).
Politecnico di Milano, Milan, Italy.

Model-Driven Development of Rich Internet Applications on the Semantic Web 247

Toffetti, G., Comai, S., Preciado, J.C., Linaje, M., 2011. State-of-the Art
and trends in the Systematic Development of Rich Internet
Applications. J. Web Eng. 10, 70–86.

Trowbridge, D., Mancini, D., Quick, D., Hohpe, G., Newkirk, J., Lavigne,
D., 2003. Enterprise Solution Patterns Using Microsoft .Net:
Version 2.0�: Patterns & Practices. Microsoft Press, Redmond,
WA, USA.

Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D., 2007. Designing the
Interface of Rich Internet Applications, in: Fifth Latin American
Web Congress (LA-Web 2007), 31 October - 2 November 2007,
Santiago De Chile. Presented at the Fifth Latin American Web
Congress (LA-Web 2007), IEEE Computer Society, Santiago de
Chile, Chile, pp. 144–153.

Valverde, F., Pastor, O., 2008. Applying Interaction Patterns: Towards a
Model-Driven Approach for Rich Internet Applications
Development, in: Gaedke, M., Bieliková, M. (Eds.), Proceedings
of the 7th International Workshop on Web-Oriented Software
Technologies. Presented at the 7th International Workshop on
Web-Oriented Software Technologies, New York, United States,
pp. 13–18.

Valverde Giromé, F., 2010. OOWS 2.0: un método de ingeniería web
dirigido por modelos para la producción de aplicaciones web 2.0
(PhD Thesis). Universidad Politécnica de Valencia, Valencia,
Spain.

Van der Sluijs, K., Houben, G.-J., Broekstra, J., Casteleyn, S., 2006. Hera-
S: Web design using sesame, in: Proceedings of the Sixth
International Conference on Web Engineering (ICWE 2006). Palo
Alto, California, USA, pp. 337–344.

Vdovjak, R., Frasincar, F., Houben, G.-J., Barna, P., 2003. Engineering
Semantic Web Information Systems in Hera. Journal on Web
Engineering 2, 3–26.

Volz, R., Handschuh, S., Staab, S., Stojanovic, L., Stojanovic, N., 2004.
Unveiling the hidden bride: deep annotation for mapping and
migrating legacy data to the Semantic Web. J. Web Sem. 1, 187–
206.

W3C Model-based User Interfaces Incubator Group, 2009. SHDM -
Semantic Hypermedia Design Method. W3C. Available from:

248 References

http://www.w3.org/2005/Incubator/model-based-
ui/wiki/SHDM_-_Semantic_ Hypermedia_Design_Method

White, C., 2009. Using Rich Internet Applications in Business
Intelligence. Technology Transfer.

World Wide Web Consortium, 2004. OWL Web Ontology Language
Overview. W3C Recommendation. W3C. Available from:
http://www.w3.org/TR/owl-features/

World Wide Web Consortium, 2008a. RDFa in XHTML: Syntax and
Processing. W3C Recommendation. W3C. Available from:
http://www.w3.org/TR/rdfa-syntax/

World Wide Web Consortium, 2008b. SPARQL protocol for RDF, W3C
Recommendation. W3C. Available from:
http://www.w3.org/TR/rdf-sparql-protocol/

World Wide Web Consortium, 2011. Accessible Rich Internet
Applications (WAI-ARIA) 1.0, W3C Candidate
Recommendation. W3C. Available from:
http://www.w3.org/TR/wai-aria/

Xu, Z., Zhang, S., Dong, Y., 2006. Mapping between Relational Database
Schema and OWL Ontology for Deep Annotation, in:
Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’06. IEEE Computer Society,
Washington, DC, USA, pp. 548–552.

Annex A. SCIENTIFIC CONTRIBUTIONS

This annex lists the contributions to scientific journals and

conferences of the author during the period of development of this

thesis.

Articles in international journals:

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Applying Model-

Driven Engineering to the Development of Rich Internet

Applications for Business Intelligence. Information System

Frontiers. DOI 10.1007/s10796-012-9402-9. 2013.

Balahur, A.; Hermida, J.M.; Montoyo, A. Detecting Implicit Expressions

of Emotion in Text: A Comparative Analysis. Decision Support

Systems 53(4), 742-753, 2012.

Balahur, A.; Hermida, J.M.; Montoyo, A. Building and Exploiting

EmotiNet, a Knowledge Base for Emotion Detection Based on

the Appraisal Theory Model. IEEE Transactions on Affective

Computing 3(1), 88- 101, 2012.

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Developing Rich

Internet Applications as Social Sites on the Semantic Web: A

Model- Driven Approach. International Journal of Systems and

Service-Oriented Engineering (IJSSOE) 2(4), 21-41, 2011.

Contributions to international conferences and workshops:

Hermida, J.M.; Meliá, S.; Martínez, J.; Montoyo, A.; Gómez, J.

Developing Semantic Rich Internet Applications with the

Sm4RIA Extension for OIDE. In proceedings of the 8th

workshop on Model-Driven and Agile Engineering for the Web

(MDWE 2012) held in conjunction with the 12th International

Conference on Web Engineering (ICWE 2012). Lecture Notes in

Computer Science 7703, 20–25. 2012. ISSN 0302-9743

Balahur, A.; Hermida, J.M.; Montoyo, A. Detecting Implicit Expressions

of Sentiment in Text Based on Commonsense Knowledge. In

250 Annex A. Scientific Contributions

proceedings of the 2nd Workshop on Computational Approaches

to Subjectivity and Sentiment Analysis (WASSA 2011) held with

ACL 2011. Pages 53-60. 2011. http://aclweb.org/anthology-

new/W/W11/W11-1704.pdf

Balahur, A.; Hermida, J.M.; Montoyo, A. Detecting Emotions in Social

Affective Situations Using the EmotiNet Knowledge Base. In

proceedings of the 8th International Symposium on Neural

Networks (ISNN 2011). Lecture Notes in Computer Science, 6677,

611-620, 2011.

Balahur, A.; Hermida, J.M.; Montoyo, A.; Muñoz, R. EmotiNet: A

Knowledge Base for Emotion Detection in Text Built on the

Appraisal Theory. In proceedings of the 16th International

Conference on Applications of Natural Language to Information

Systems (NDLB 2011). Lecture Notes in Computer Science 6716,

27-39, 2011.

Romá-Ferri, M.T.; Hermida, J.M.; Palomar, M. OntoFIS as a NLP

Resource in the Drug-Therapy Domain: Design Issues and

Solutions Applied. In proceedings of the 16th International

Conference on Applications of Natural Language to Information

Systems (NDLB 2011). Lecture Notes in Computer Science 6716,

125-136, 2011.

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Rich Internet

Applications on the Semantic Web: A Model-Driven Approach.

Poster at the 7th Extended Semantic Web Conference (ESWC

2011). 2011

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Developing Semantic

Rich Internet Applications Using a Model-Driven Approach. In

proceedings of the 1st International Symposium on Web

Intelligent Systems & Services (WISS 2010). Lecture Notes in

Computer Science 6724, 198-211. 2011

Medina, D.; Hermida, J.M.; Montoyo, A.; Torres, A. Assessing the

quality of scientific publications as educational content on

digital libraries. In proceeedings of the 5th Iberian Conference

on Information Systems and Technologies (CISTI 2010). Pages

390-395. 2010. ISBN: 978-1-4244-7227-7

Model-Driven Development of Rich Internet Applications on the Semantic Web 251

Balahur, A.; Hermida, J.M.; Montoyo, A. Information Need versus

Privacy: Living in an Open Society and Its Consequences. In

proceedings of "A Global Surveillance Society?" 4th Biannual

Surveillance and Society/SSN conference, London, UK, 2010.

http://www.surveillancecultures.org/abstracts.html

Hermida, J. M.; Romá-Ferri, M. T.; Montoyo, A.; Palomar, M. Reusing

UML Class Models to Generate OWL Ontologies. In

proceedings of the 1st International Conference on Knowledge

Engineering and Ontology Development (KEOD'09). INSTICC

Press. Pages 281-286. 2009. ISBN 978-989-674-012-2.

Medina, D; Hermida, J.M.; Montoyo, A. LOQEVAL: Propuesta de

Evaluación de la calidad de los objetos de aprendizajes

mediante ontologías. In proceedings of the 6º Simposio

Iberoamericano en Educación, Cibernética e Informática (SIECI

2009). Pages 337-340. 2009. ISBN 1-934272-66-3.

Medina, D.; Hermida Carbonell, J.; Montoyo, A. A New Proposal for

Learning Object Quality Evaluation Based on Ontology. In

proceedings of the International Conference on Education and

New Learning Technologies (Edulearn’09). 2009. ISBN 978-84-

612-9801-3.

Hermida, J.M.; Montoyo, A.; Gómez, J. Improving Semantic Web

Applications with Navigational Semantics. In proceedings of

the 14th International Conference on Application of Natural

Language to Information Systems (NLDB’09). Lecture Notes in

Computer Science, 5723, 291-292. 2009.
http://www.springerlink.com/content/48165x478u083908/

Medina, D.; Hermida, J.M.; Montoyo, A. Towards a New Ontology-

Driven Approach for the Extraction of Parameters in Learning

Object Quality Evaluation Tasks. In Proceedings of the 4a

Conferencia Ibérica de Sistemas e Tecnologias de Informaçao

(CISTI 2009). Pages 509 – 512. 2009. ISBN 978-989-96247-0-2.

252 Annex A. Scientific Contributions

Contributions to national conferences:

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Sm4RIA Extension for

OIDE: Desarrollo de Rich Internet Applications en la Web

Semántica. In proceedings of the XVII Jornadas de Ingeniería del

Software y Bases de Datos (JISBD 2012), 123-126. Universidad de

Almería, ISBN 978-84-15487-28-9. 2012. Best demo award.

Hermida, J.M.; Meliá, S.; Montoyo, A.; Gómez, J. Mejora de la

interoperabilidad de las RIAs desde una perspectiva semántica:

Un caso de estudio en la Web Social. In proceedings of the XVI

Jornadas de Ingeniería del Software y Bases de Datos (JISBD

2011). Pages 183–196. 2011

Romá-Ferri, M. T.; Hermida, J. M.; Montoyo, A.; Palomar, M.

Representación del Conocimiento Farmacoterapéutico: Diseño

de una Ontología. In proceedings of the XI Congreso Nacional

de Informática de la Salud. Pages 240–247. 2008. ISBN 978-84-

691-2468-0.

Annex B. MAIN ELEMENTS OF THE

NAVIGATIONAL & VISUALISATION

ONTOLOGIES

This annex describes the two fixed ontologies involved in the

annotation model proposed for SRIA: the navigational ontology for

representing the navigational aspects of a Web application and the

visualisation ontology for representing the visual elements. As a

remaining task, these ontologies should be aligned to existing ontologies

in the Linked Data cloud (e.g., Dublin Core) in order to facilitate the

interoperability among data sets and thus the reuse of the instances of

both ontologies.

B.1. NAVIGATIONAL ONTOLOGY : NAVONTOLOGY

The NavOntology ontology defines the elements required to specify

the components that play a role when a user surfs a Web site. The

ontology was built using OWL 1.1 and published on the following Web

site: http://artemisa.dlsi.ua.es/ontology/sria/navOntology.owl

The concepts of the main hierarchy of this ontology are the following

(abstract classes are represented in italics):

 WebContainer
 WebDocument

o MultimediaDocument
§ AudioDocument
§ Image
§ VideoDocument
§ Screenshot

o PlainTextDocument
§ XmlDocument
§ WebPage

 EntryPoint
 AnnotatedWebPage

§ StyleSheet
 Parameter

o ClientParameter

254 Annex B. Main elements of the Navigational & Visualisation Ontologies

o ServerParameter
 WebLink

o StaticLink
§ Frame

o NavigationalLink
§ AutomaticNavigationalLink

o NavigationalPath

The subsequent paragraphs describe the most relevant elements of

the ontology and its properties.

WebContainer

Name: Web container

Description: Represents a collection of Web documents.

Datatype properties:

WC_Type

Description Type of container

Domain WebContainer

Range String

WC_BaseURI

Description Base URI of the Web container

Domain WebContainer

Range String

Object properties:

WC_Documents

Description Documents contained in the Web container.

Domain WebContainer

Range Web Document

WebDocument

Name: Web document

Description: Represents a document that can be accessed from the Internet.

Object properties:

WD_Parameters

Description Parameters required to accessing the information of

the document or part of it.

Domain WebDocument

Range Parameter

Model-Driven Development of Rich Internet Applications on the Semantic Web 255

MultimediaDocument

Name: Multimedia document

Description: Represents any document with multimedia contents, e.g., audio,

video or images.

Datatype properties:

MD_Description

Description Description of the multimedia contents.

Domain MultimediaDocument

Range String

MD_Format

Description Format of the contents. Depeding on the specific type

of multimedia documents, designers could use a

different collection of formats (e.g., png, jpeg for

images and mpeg or mkv for videos.)

Domain MultimediaDocument

Range String

MD_Document

Description Title of the multimedia document.

Domain MultimediaDocument

Range String

AudioDocument

Name: Audio document

Description: Represents any document of audio in any format.

Datatype properties:

AD_Length

Description Length of the document (in seconds).

Domain AudioDocument

Range Integer

VideoDocument

Name: Video document

Description: Represents any document of video in any format.

Datatype properties:

VD_Length

Description Length of the document (in seconds).

Domain VideoDocument

256 Annex B. Main elements of the Navigational & Visualisation Ontologies

Range Integer

Image

Name: Image

Description: Represents an image in any format.

Datatype properties:

I_Resolution

Description Resolution of the image in pixel per inch.

Domain Image

Range Integer

Screenshot

Name: Screen shot

Description: State of a certain Web page in a specific moment. A Web page

can contain different screen shots given a single URL.

Object properties:

SS_WebPage

Description Web page to which it is related.

Domain Screenshot

Range WebPage

WebPage

Name: Web page

Description: Represent the concept of Web page from the user’s perspective,

defined as the HTML document visualised by the Web browser given a URL.

EntryPoint

Name: Entry point

Description: Initial Web page of a Web site.

AnnotatedWebPage

Name: Annotated Web page

Description: HTML Web page with annotations.

StyleSheet

Name: Style sheet

Model-Driven Development of Rich Internet Applications on the Semantic Web 257

Description: Document that describes the visualisation of the elements

contained in a Web page.

Parameter

Name: Parameter.

Description: Information required for performing some task.

Data type properties:

ParamName

Description Name of the parameter.

Domain Parameter

Range String

ParamType

Description Type of the parameter. Must be a XML type.

Domain Parameter

Range String

ParamValue

Description Value of the parameter.

Domain Parameter

Range String

WebLink

Name: Web link.

Description: Represents a generic link between two or more web documents.

NavigationalLink

Name: Navigational link

Description: Represents a link between two Web pages or two screenshots of

the same web page. The activation of this link implies a change in the

information visualised.

Object properties:

LinkInit

Description Initial node of the link.

Domain NavigationalLink

Range WebPage

LinkEnd

Description Ending node of the link.

Domain NavigationalLink

258 Annex B. Main elements of the Navigational & Visualisation Ontologies

Range WebPage

AutomaticNavigationalLink

Name: Automatic navigational link

Description: Navigational link that does not require the interaction of the

user for its activation.

NavigationalPath

Name: Navigational path

Description: Collection of navigational links, in which the ending of a link is

the beginning of another.

Object properties:

Link

Description Current link in the path.

Domain NavigationalPath

Range NavigationalLink

NP_Last

Description Last step in the navigational path.

Domain NavigationalPath

Range NavigationalLink

B.2. VISUALISATION ONTOLOGY

The Visualisation ontology represents the elements visualised by

users on the Web browser, i.e., it represents the elements of the user

interface from the user’s viewpoint.The ontology was built using OWL

1.0 and published on the following Web site:

http://artemisa.dlsi.ua.es/ontology/sria/visuOntology.owl. This

ontology was the basis of the Visualisation Ontology metamodel.

The concepts of the main hierarchy are the following (abstract classes

are represented in italics):

1. VisualElement
a. BehaviouralElement

i. Action
ii. Event

b. StructuralElement

i. Annotation

Model-Driven Development of Rich Internet Applications on the Semantic Web 259

ii. Property
iii. Component

1. Screenshot
2. SimpleElement

a. ElementContainer
i. Panel

b. Button
c. CheckBox
d. TextBox
e. Chart
f. Label
g. HyperLink
h. Map
i. Combobox

The following paragraphs describe each of the concepts with their

datatype and object properties.

VisualElement

Name: Visual element

Description: Any element involved in the visualisation of the user interface

of a Web site.

Datatype properties:

VE_Name

Description Name given to the visual element

Domain VisualElement

Range String

BehaviouralElement

Name: Behavioural element

Description: Any element (visible or not) related to the behaviour of the user

interface of the Web site.

Parent: VisualElement

Action

Name: Action

Description: Action performed by the user interface.

Parent: BehaviouralElement

260 Annex B. Main elements of the Navigational & Visualisation Ontologies

Event

Name: Event

Description: Event triggered by the user on the interface.

Parent: BehaviouralElement

Run

Name: Run

Description: Invocation of a certain action after an event is triggered.

Parent: BehaviouralElement

Object properties:

Run_Event

Description Event triggered.

Domain Run

Range Event

Run_Action

Description Actions run after the event was triggered.

Domain Run

Range Action

StructuralElement

Name: Structural element

Description: Any element related to the visual structure of the Web site on

which the information is embedded.

Parent: VisualElement

Annotation

Name: Annotation

Description: Textual annotation defined over a component of the user

interface

Parent: StructuralElement

Datatype properties:

Ann_TargetUri

Description Web page to which it is related.

Domain Screenshot

Range WebPage

Model-Driven Development of Rich Internet Applications on the Semantic Web 261

Property

Name: Property

Description: Property of a structural element.

Datatype properties:

P_Type

Description Type of the property (must be an XML type).

Domain Property

Range String

P_Value

Description Value of the property.

Domain Screenshot

Range WebPage

Component

Name: Component.

Description: Region of the user interface with a specific purpose.

Parent: StructuralElement

Object properties:

C_AvailableEvent

Description Events available for the component.

Domain Component

Range Event

ScreenShot

Name: Screen shot

Description: In rich interfaces, a screen shot defines a certain state of the user

interface, characterised by the state of all the structural elements it contains.

Parent: Component

Object properties:

SS_Visualises

Description Elements visualised in a certain screen shot.

Domain ScreenShot

Range Component

SimpleElement

Name: Simple element

262 Annex B. Main elements of the Navigational & Visualisation Ontologies

Description: Structural element of the user interface with a specific purpose.

It has a collection of properties associated that define different features such as

position, size, aesthetic features, as well as the events that can trigger.

Parent: Component

ElementContainer

Name: Element container

Description: Element that can contain other elements.

Parent: SimpleElement

EC_Contains

Description Elements contained by the current ElementContainer

instance.

Domain Screenshot

Range SimpleElement

Annex C. DESCRIPTION OF THE SRIA

CASE STUDIES

This annex describes in detail the case studies not introduced in the

main chapters of the manuscript. For the rest, it only includes a

reference to the section containing the description.

C.1. MEDIA PLAYER

The first case study addresses the development of an on-line media

player using a SRIA as a platform (Hermida et al., 2011b). The SRIA

media player will be able to play different types of media (mainly audio

files) stored either locally or remotely on the Web. In addition, the

application will be able to retrieve information related to the media

played in each moment, or even search new media elements, through

the Jamendo SPARQL service, which stores information about music

elements as MusicOntology instances. A screenshot of the final

application is shown in Figure C.1.

This application can be fount at
http://suma2.dlsi.ua.es/ooh4ria/sm4ria.html#uc

Figure C.1. Screenshot of the user interface of the media player.

Playlists

Front cover

Main player

Track list

Media search

264 Annex C. Description of the SRIA Case Studies

The user interface has been designed as simple as possible with

regard to the number of elements and their visual appearance. This case

study is focused on the new elements and processes of SRIA and,

therefore, UI visual composition and effects are not relevant.

Before accessing the main functionalities of the application, users

must have created a personal account. Despite the fact that this is not a

key feature, the registration process is compulsory since the system

might be closed to some types of users.

Once registered, they can access the main interface of the system

through a authentication form. After this process, a list of the user’s

playlists or recently opened media elements is shown in the central area

of the player. If the user opens a play list, its elements will appear within

the same container.

As mentioned before, the application can only play audio tracks,

which can be stored locally (in a limited storage provided by the SRIA)

or externally (in other Web sites, e.g., Jamendo). Users can group their

tracks into playlists using the UI options for adding or deleting elements

to elements. Media elements can be simply played by clicking twice on

the name of each element. Users can change the information to all

his/her elements (personal playlists, music and video tracks) and can

rate it according to his/her personal preferences.

The application UI contains three side menus: The first one, located

on the left part, will show the library of albums, the user playlists and

the front cover of the album or song selected in each moment. More

specifically, in this menu, the interface will manage the user playlists

and the options needed to create, save and delete them.

The main controllers (play/open, stop, fast forward, fast backward,

volume control) are located on the top of the UI. The application also

includes a progress bar showing the position within the track (minute

and second) and the total length of the element played at a certain

moment.

The last area of the application will include a search form, where

users will be able to search and import into their playlist songs from

external music sources, in this case, limited to Jamendo.

The application allows users to specify whether their personal data

(user profile or music preferences) can be shared as ontology instances

Model-Driven Development of Rich Internet Applications on the Semantic Web 265

that might be reused by other systems. Security issues are out of the

scope of this case study.

C.2. SOCIAL NETWORK SITE

This case study was introduced in Section 3.4.1 (page 54).

C.3. SOCIAL NETWORK SITE FOR BUSINESS KNOWLEDGE

MANAGEMENT

This case study was introduced in Section 3.5.2 (page 60).

Annex D. DESIGN MODELS RESULTING

FROM THE CASE STUDIES

This annex presents the Sm4RIA models obtained from the process of

development of the two case studies not described in the chapters of this

manuscript: the media player and the social network for the

management of the working activity of an enterprise. The models are

included in the same order as they were modelled, following the Sm4RIA

process (or Sm4RIA-B).

D.1. MEDIA PLAYER

The following models can be used to develop the Media player case

study with Sm4RIA, described in Annex C. Originally, they were

introduced by Hermida et al. (Hermida et al., 2011b)

Figure D.2. Domain Model of the Media Player case study.

268 Annex D. Design Models Resulting From the Case Studies

Figure D.3. Ontology view of the Extended Domain Model of the Media Player case study.

Figure D.4. Concept view of the Extended Domain Model for the Media Player case study.

Figure D.5. View of the Extended Navigational Model for human users.

JamendoMusicOntology

DOM

FOAF

<<DODefinition>>

namespacePrefix = smp

namespaceURI = http://www.dlsi.ua.es/sm4ria/smp/

<<DODefinition>>

namespacePrefix = mo

namespaceURI = http://purl.org/ontology/mo/

<<DOSource>>

sourceType = SPARQLendpoint

namespaceURI = http://dbtune.org/jamendo/sparql/

DOMSource

<<DOSource>>

sourceType = SPARQLendpoint

namespaceURI = http://www.dlsi.ua.es/sm4ria/smp/kb/

<<DODefinition>>

namespacePrefix = foaf

namespaceURI = http://xmlns.com/foaf/spec/

Model-Driven Development of Rich Internet Applications on the Semantic Web 269

Figure D.6. View of the Extended Navigational Model for software agents.

Figure D.7. Extended Presentation Model of the Media Player case study.

D.2. A SOCIAL APPLICATION FOR MANAGING BUSINESS

KNOWLEDGE AS A RI@BI

The following models can be used to develop a Semantic Rich

Internet Application in the Business Intelligence field. Specifically, they

specify the design of a Social Network Site for Business Intelligence as

described in Section 3.5.2 (page 60). They were firstly introduced by

Hermida et al. (Hermida et al., 2013).

Context Home::get_users

pre:

 self.target.sharing = “open”;

270 Annex D. Design Models Resulting From the Case Studies

Figure D.8. Domain Model of the RI@BI case study.

Figure D.9. Ontology view of the Extended Domain Model for the RI@BI case study.

DBpediaDBpediaOntology

DOM

FOAF

<<DODefinition>>

namespacePrefix = riabi

namespaceURI = http://www.dlsi.ua.es/sm4ria/riabi/

<<DODefinition>>

namespacePrefix = dbpedia

namespaceURI = http://dbpedia.org/ontology/

<<DOSource>>

sourceType = SPARQLendpoint

namespaceURI = http://dbpedia.org/sparql

DOMSource

<<DOSource>>

sourceType = SPARQLendpoint

namespaceURI = http://www.dlsi.ua.es/sm4ria/riabi/kb/

<<DODefinition>>

namespacePrefix = foaf

namespaceURI = http://xmlns.com/foaf/spec/

SIOC

<<DODefinition>>

namespacePrefix = sioc

namespaceUri = http://rdfs.org/sioc/ns#

Model-Driven Development of Rich Internet Applications on the Semantic Web 271

Figure D.10. Concept view of the Extended Domain Model for the RI@BI case study.

Figure D.11. Extended Navigational Model for the RI@BI case study.

272 Annex D. Design Models Resulting From the Case Studies

Figure D.12. Extended Presentation model showing the main screenshot for the RI@BI case study.

Figure D.13. Event-Condition-Action rule associated to the “Post” button of the user interface

(part of the Extended Orchestration Model) of the RI@BI use case.

«Screenshot»

Main

«Orchestral Widget»

SearchButton

«Orchestral Widget»

SLListBox1

onClick (sender: Widget)

[true]

/newStory(text:String)

«SignalBroadcast» onDataChanged

[return != null]

/getAllStories(offset: int, length: int) «SignalHandler» onDataChanged

[true]

/SetBinding(list: Story[])
[return == null]

/error(msg: String)

Annex E. THE EXTENDED

PRESENTATION METAMODEL:

ABSTRACT SYNTAX

This annex introduces the complete abstract syntax of the Extended

Presentation Metamodel as class diagrams. Given the size of the

diagram, the diagram is split in three figures. The first figure (Figure

E.14) shows an overview of the concrete syntax with its main elements.

Figure E.15 and Figure E.16 illustrate the metaclass Widget and all its

possible subclasses and properties.

274 Annex E. The Extended Presentation Metamodel: Abstract Syntax

Figure E.14. Abstract components of the EMOF Extended Presentation Model.

Model-Driven Development of Rich Internet Applications on the Semantic Web 275

Figure E.15. Silverlight components of the EMOF Extended Presentation Metamodel (part I).

276 Annex E. The Extended Presentation Metamodel: Abstract Syntax

Figure E.16. Silverlight components of the EMOF Extended Presentation Metamodel (part II).

Annex F. TRANSFORMATION RULES

This annex introduces the code of transformation rules that could not

be described in Chapter 7. Some parts of the code, reused from the

OOH4RIA methodology, might have been omitted.

F.1. MODEL-TO-TEXT TRANSFORMATION RULES IN XPAND

This section presents the Xpand code of the following model-to-text

transformation rules: Bec_root (Table F.1), Adapter_root (Table F.2),

Dto_root (Table F.3) and Service_root (Table F.4).

Table F.1. Xpand code of the Bec_root model-to-text transformation rule.

«DEFINE Bec_root FOR ENModel-»

«FOREACH ((List[NavigationalClass])

navigationalElem.typeSelect(ExternalLink).nodeOrigin).referToClass AS class-»

«FILE class.getBECDirectory()-»

using System;

using System.Net;

using System.Collections.Generic;

using «class.getENPackage()-»;

using «class.getDACPackage()-»;

using System.Text.RegularExpressions;

using Newtonsoft.Json.Linq;

namespace «class.getBECPackage()-»

{

 public partial class «class.formattedClassName("BEC")-»

 {

 «EXPAND MethodMap FOREACH

navigationalElem.typeSelect(ExternalLink).select(e| ((NavigationalClass)

e.nodeOrigin).referToClass == class)-»

 }

}

«ENDFILE-»

«ENDFOREACH-»

«ENDDEFINE»

«DEFINE MethodMap FOR ExternalLink-»

«ENDDEFINE»

«DEFINE MethodMap FOR ExternalTraversalLink-»

 «LET ((NavigationalClass) this.nodeTarget).referToClass AS class-»

 «LET ((NavigationalClass)

this.nodeTarget).referToClass.formattedClassName("EN") AS enClass-»

 public IList<«enClass-»> «this.name.toFirstUpper()-»()

 {

 IList<«enClass-»> list = null;

 LinkedDataAccess.DAC.I«class.formattedClassName("EDAC")-»

«class.name.toLowerCase()-»DAC = new

LinkedDataAccess.DAC.«this.source.name.toFirstUpper()-

278 Annex F. Transformation Rules

»«class.formattedClassName(getDACSuffix())-» ();

 list = «class.name.toLowerCase()-»DAC.«this.name.toFirstUpper()-»();

 }

 «ENDLET»

 «ENDLET»

«ENDDEFINE»

Table F.2. Xpand code of the Adapter_root model-to-text transformation rule.

«DEFINE Adapter_root FOR ENModel»

 «EXPAND netClassDTO(this) FOREACH ((List[ExtNavigationalClass])

this.navigationalElem.select(e|e.metaType == ExtNavigationalClass)).edmConcept -»

«ENDDEFINE»

«DEFINE netClassDTO(ENModel navigationalModel) FOR Concept»

«LET name.toFirstUpper() AS className-»

«FILE ((String)GLOBALVAR project) + "_" + navigationalModel.name + "WCF" +

fileSeparator() + "Adapters" + fileSeparator() + "LinkedDataManagement" +

fileSeparator() + this.model.name.toFirstUpper() + fileSeparator() +

this.name.toFirstUpper() + "Adapter.cs"»

using System;

using «getEntityPackage()»;

using «getDTOClassPackage()»;

namespace «getAdapterClassPackage()»

{

 public class «className»Adapter

 {

 public static «className»DTO Convert(«className»Entity en)

 {

 «className»DTO newinstance = null;

 if (en != null)

 {

 newinstance = new «className»DTO();

 if (en.__Uri != null)

 newinstance.__Uri = en.__Uri;

 «IF this.domainClass != null-»

 «LET this.domainClass AS class»

 «IF class.identifiers().size > 1-»

newinstance.«class.getAllFathersRoot().get(0).formattedName().toFirstUpper()+"DTO_O

ID"» = en.«class.getAllFathersRoot().get(0).formattedName().toFirstUpper()+"OID"»;

 «ENDIF»

 «FOREACH class.navigableAttibutesAll() AS f-»

 «IF (class.identifiers().size==1 && f.isOID) || !f.isOID-»

 «IF f.association() != null-»

 if (en.«f.formattedName().toFirstUpper()» != null)

 {

 «IF f.upper.isGreaterThanOne()-»

newinstance.«f.formattedName().toFirstUpper()»_oid = new

«f.dtoDataCreationType("DTO")»();

 foreach

(«projectName().toFirstUpper()»NHibernate.EN.«f.associationOtherSide().class.netPac

kageDomain()».«f.associationOtherSide().class.formattedName().toFirstUpper()»EN

entry in en.«f.formattedName().toFirstUpper()»)

newinstance.«f.formattedName().toFirstUpper()»_oid.Add(entry.«f.associationOtherSid

e().class.getOIDProperty().toFirstUpper()»);

 «ELSE-»

newinstance.«f.formattedName().toFirstUpper()»_oid =

Model-Driven Development of Rich Internet Applications on the Semantic Web 279

en.«f.formattedName().toFirstUpper()».«f.associationOtherSide().class.getOIDPropert

y().toFirstUpper()»;

 «ENDIF-»

 }

 «ELSE-»

 newinstance.«f.formattedName().toFirstUpper()» =

en.«f.formattedName().toFirstUpper()»;

 «ENDIF-»

 «ENDIF-»

 «ENDFOREACH-»

 «ENDLET-»

 «ELSE-»

 «FOREACH this.attributes() AS attr-»

 newinstance.«attr.name.toFirstUpper()» =

en.«attr.name.toFirstUpper()»;

 «ENDFOREACH-»

 «ENDIF-»

 }

 return newinstance;

 }

 }

}

 «ENDFILE-»

 «ENDLET-»

«ENDDEFINE»

Table F.3. Xpand code for the Dto_root model-to-text transformation rule.

«DEFINE Dto_root FOR ENModel-»

 «EXPAND DtoClasses(this) FOREACH

this.navigationalElem.typeSelect(ExtNavigationalClass).edmConcept-»

«ENDDEFINE»

«DEFINE DtoClasses(ENModel navigationalModel) FOR Concept-»

«LET this.name.toFirstUpper() + "DTO" AS csClassName-»

«FILE ((String)GLOBALVAR project) + "_" + navigationalModel.name + "WCF" +

fileSeparator() + "DTO" + fileSeparator() + "LinkedDataManagement" +

fileSeparator() + this.model.name.toFirstUpper() + fileSeparator() +

this.name.toFirstUpper() + "DTO.cs"-»

«REM»«FILE ((String)GLOBALVAR project) + "_LinkedDataCommon" + fileSeparator() +

"DTO" + fileSeparator() + this.model.name.toFirstUpper() + fileSeparator() +

csClassName + ".cs"-»«ENDREM»

using System;

using System.Runtime.Serialization;

namespace «this.getDTOClassPackage()»

{

 [DataContract(Name = "«csClassName»")]

 public class «csClassName» «IF this.domainClass != null-»:

«this.domainClass.getDTOPackage()».«this.domainClass.formattedClassName("DTO")»«END

IF»

 {

 private string __uri = "";

 [DataMember]

 public string __Uri { get{ return this.__uri; } set{ this.__uri = value; }

}

 «IF this.domainClass == null-»

 «FOREACH this.attributes() AS attr-»

 «LET attr.getCsType() AS type-»

 «LET attr.name.toFirstLower() AS attrName-»

 private «type» «attrName»;

 [DataMember]

 public «type» «attrName.toFirstUpper()»{ get{ return this.«attrName»; }

set{ this.«attrName» = value; } }

280 Annex F. Transformation Rules

 «ENDLET-»

 «ENDLET-»

 «ENDFOREACH-»

 «ENDIF-»

 }

}

«ENDFILE»

«ENDLET-»

«ENDDEFINE»

Table F.4. Xpand code of the Service_root model-to-text transformation rule.

«DEFINE Service_root FOR ENModel»

«FILE projectName().toFirstUpper()+"_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF"+fileSeparator()+"ServiceExternal.svc.cs"-»

using System;

using System.Linq;

using System.Runtime.Serialization;

using System.ServiceModel;

using System.ServiceModel.Activation;

using NHibernate;

using LinkedDataManagement.«this.edModel.name.toFirstUpper()».Gateways;

namespace «getEWCFPackage()»

{

 public partial class Service

 {

 «EXPAND ServiciesMainImpl-»

 «PROTECT CSTART '/*' BECD '*/' ID

 ((String)GLOBALVAR project) + "_" + ((NavigationalModel) GLOBALVAR

enModel).formattedName()

 + "WCF_External_Other_Operations"»

 «ENDPROTECT»

 }

}

«ENDFILE»

«ENDDEFINE»

«DEFINE ServiciesMainImpl FOR ENModel-»

 «EXPAND ServiceImpl FOREACH

(List[NavigationalClass])this.navigationalElem.select(e |

NavigationalClass.isInstance(e))-»

 «REM»«EXPAND ServiciesMainImpl FOREACH packages()»«ENDREM»

«ENDDEFINE»

«DEFINE ServiceImpl FOR NavigationalClass-»

«REM»

«FOREACH operations() AS o-»

[OperationContract]

«IF o.referToOperation.operationType==OperationType::Custom-»

 «o.referToOperation.visibility.toString().toLowerCase()» «EXPAND CustomMethod

FOR o»

{

 «EXPAND declareBodyCustom FOR o.referToOperation-»

}

«ELSEIF o.referToOperation.operationType==OperationType::ReadOID-»

«o.referToOperation.visibility.toString().toFirstLower()-» «EXPAND ReadOIDMethod

FOR o»

{

 «EXPAND ReadOIDBody FOR o.referToOperation-»

}

«ELSEIF o.referToOperation.operationType==OperationType::ReadAll-»

«FOREACH o.slEnables() AS s-»

«o.referToOperation.visibility.toString().toFirstLower()» «EXPAND ReadAllMethod FOR

Model-Driven Development of Rich Internet Applications on the Semantic Web 281

s»

{

 «EXPAND ReadAllBodySer FOR s-»

}

«ENDFOREACH-»

«ELSEIF o.referToOperation.operationType==OperationType::ReadFilter-»

«FOREACH o.slEnables() AS s-»

«o.referToOperation.visibility.toString().toFirstLower()» «EXPAND ReadFilterMethod

FOR s»

{

 «EXPAND ReadFilterBody(s) FOR o.referToOperation»-

}

«ENDFOREACH-»

«ENDIF-»

«ENDFOREACH-»

«ENDREM»

«FOREACH this.nm.navigationalElem.typeSelect(TravesalLink).select(e|e.nodeOrigin ==

this && e.nodeTarget.metaType == ExtNavigationalClass) AS t-»

«LET ((ExtNavigationalClass) t.nodeTarget).edmConcept AS class-»

«LET class.getDTOClassPackage() AS packageName-»

«LET class.name.toFirstUpper() + "DTO" AS dtoName-»

«LET class.getEntityPackage() AS enPackageName-»

«LET class.name.toFirstUpper() + "Entity" AS enName-»

[OperationContract]

public System.Collections.Generic.IList<«packageName».«dtoName»> «t.nameMethod()»

(«EXPAND TraversalLinkArguments FOR t-»)

{

 System.Collections.Generic.IList<«packageName».«dtoName»> dto = null;

 System.Collections.Generic.IList<«enPackageName».«enName»> en = null;

 try

 {

 var gateway = new «((ExtNavigationalClass)

t.nodeTarget).source.name.toFirstUpper()»ServiceGateway();

 en = gateway.«

 t.formattedName().toFirstUpper()»_«((NavigationalModel) GLOBALVAR

enModel).formattedName()» («IF t.paging»offset, limit«ENDIF»«IF t.metaType ==

ExternalTraversalLink && ((ExternalTraversalLink)t).edmObjectProperty != null»«IF

t.paging», «ENDIF»uri«ENDIF»);

 if (en != null)

 {

 dto = new System.Collections.Generic.List<«packageName».«dtoName»>();

 foreach («enPackageName».«enName» item in en)

 {

dto.Add(«class.getAdapterClassPackage()».«class.name.toFirstUpper()»Adapter.Convert

(item));

 }

 }

 }

 «EXPAND catch»

 return dto;

}

«ENDLET-»

«ENDLET-»

«ENDLET-»

«ENDLET-»

«ENDLET-»

«ENDFOREACH-»

«ENDDEFINE»

«DEFINE TraversalLinkArguments FOR TravesalLink-»

«ENDDEFINE»

«DEFINE CustomMethod FOR NavigationalOperation-»

 «IF referToOperation.type==PrimitiveType::Object &&

282 Annex F. Transformation Rules

referToOperation.collectionType==CollectionType::None»

 «referToOperation.typeObject.netPackageDomainProject("_"+((NavigationalModel)

GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«referToOperation.typeObject.formattedClassN

ame("DTO")»«

 ELSEIF referToOperation.type==PrimitiveType::Object &&

referToOperation.collectionType!=CollectionType::None-»

«referToOperation.collectionType.interfaceCollectionType()»<«referToOperation.typeO

bject.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«

 referToOperation.typeObject.formattedClassName("DTO")»>

 «ELSE-»

 «referToOperation.dataType("DTO")»

 «ENDIF-»

 «nameMethod()» («FOREACH referToOperation.arguments AS a SEPARATOR ','-»

 «a.dataType("DTO")+" "+a.formattedName().toFirstLower()-»

 «ENDFOREACH-»)

«ENDDEFINE»

«DEFINE ReadOIDMethod FOR Operation-»

«ENDDEFINE»

«DEFINE ReadOIDMethod FOR NavigationalOperation-»

«referToOperation.class.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«referToOperation.class.formattedClassName("

DTO")» «nameMethod()-»

(«FOREACH referToOperation.arguments AS arg»«arg.dataTypeOID()»

«arg.formattedName()»«ENDFOREACH-»)«

ENDDEFINE»

«DEFINE ReadAllMethod FOR Operation-»

«ENDDEFINE»

«DEFINE ReadAllMethod FOR ServiceLink-»

«ENDDEFINE»

«DEFINE ReadFilterMethod FOR Operation-»

«ENDDEFINE»

«DEFINE ReadFilterMethod FOR ServiceLink-»

«ENDDEFINE»

«DEFINE NewMethod FOR Operation-»

 «class.dataTypeOID()» «nameMethod()-

 »(«FOREACH arguments AS a SEPARATOR ','-»

 «a.dataType("DTO")+" "+a.formattedName().toFirstLower()-»

 «ENDFOREACH-»)«

ENDDEFINE»

«DEFINE NewMethod FOR NavigationalOperation-»

 «class.referToClass.dataTypeOID()» «nameMethod()-

 »(«FOREACH referToOperation.arguments AS a SEPARATOR ','-»

 «a.dataType("DTO")+" "+a.formattedName().toFirstLower()-»

 «ENDFOREACH-»)«

ENDDEFINE»

«DEFINE ModifDestRelaUnrelMethod FOR Operation-»

ENDDEFINE»

«DEFINE ModifDestRelaUnrelMethod FOR NavigationalOperation-»

ENDDEFINE»

«DEFINE catch FOR NavigationalClass»

 catch(Exception ex)

 {

 throw ex;

 }

«ENDDEFINE»

Model-Driven Development of Rich Internet Applications on the Semantic Web 283

«DEFINE catch FOR Operation»

«ENDDEFINE»

«DEFINE declareBodyCustom FOR Operation»

 «EXPAND declareBEC»

 «EXPAND declareDAC»

 «IF type==PrimitiveType::Object && collectionType==CollectionType::None»

 «typeObject.netPackageDomainProject()».«

 typeObject.formattedName().toFirstUpper()»EN returnValueEN=null;

 «class.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«

 typeObject.formattedName().toFirstUpper()»DTO returnValueDTO=null;

 «ELSEIF type==PrimitiveType::Object && collectionType!=CollectionType::None»

«collectionType.interfaceCollectionType()»<«typeObject.netPackageDomainProject("NHi

bernate","EN")».«

 typeObject.formattedClassName("EN")»> returnValueEN=null;

«collectionType.interfaceCollectionType()»<«typeObject.netPackageDomainProject("_"+

((NavigationalModel) GLOBALVAR enModel).formattedName()+"WCF","DTO")».«

 typeObject.formattedClassName("DTO")»> returnValueDTO=null;

 «ELSE-»

 «IF dataType("").compareTo("void")!=0»

 «dataType("")» returnValueEN;

 «ENDIF»

 «ENDIF»

 try

 {

 using(ISession session=NHibernateHelper.OpenSession())

 using (ITransaction tx = session.BeginTransaction())

 {

 «EXPAND inicialiceDAC»

 «EXPAND inicialiceBEC»

 «EXPAND dto2EN»

 «IF dataType("").compareTo("void")!=0»returnValueEN=«ENDIF-»

«class.formattedClassName("BEC").toFirstLower()».«formattedName().toFirstUpper()»(«

 EXPAND argumentsDTO2argumentsEN»);

 «IF type==PrimitiveType::Object && collectionType==CollectionType::None»

 returnValueDTO=«class.netPackageDomainProject("_"+((NavigationalModel)

GLOBALVAR enModel).formattedName()+"WCF","Adapters")».«

typeObject.formattedName().toFirstUpper()»Adapter.Convert(returnValueEN);

 «ELSEIF type==PrimitiveType::Object &&

collectionType!=CollectionType::None»

 if(returnValueEN!=null)

 {

 returnValueDTO=new

«collectionType.collectionTypeImp()»<«typeObject.netPackageDomainProject("_"+((Navi

gationalModel) GLOBALVAR enModel).formattedName()+"WCF","DTO")».«

 typeObject.formattedClassName("DTO")»>();

foreach(«typeObject.netPackageDomainProject()+"."+typeObject.formattedClassName("EN

")» item in

 returnValueEN){

returnValueDTO.Add(«typeObject.netPackageDomainProject("_"+((NavigationalModel)

GLOBALVAR enModel).formattedName()+"WCF","Adapters")».«

 typeObject.formattedName().toFirstUpper()»Adapter.Convert(item));

 }

 }

 «ENDIF»

 «EXPAND commitSession»

 }

 }

 «EXPAND catch»

 «IF type==PrimitiveType::Object»

 return returnValueDTO;

 «ELSEIF dataType("").compareTo("void")!=0»

284 Annex F. Transformation Rules

 return returnValueEN;

 «ENDIF»

«ENDDEFINE»

«DEFINE ReadFilterBody(ServiceLink serviceLink) FOR Operation»

«IF this.collectionType == CollectionType::None-»

 «EXPAND declareDTO»

«ELSE-»

 «EXPAND declareCollectionDTO»

«ENDIF-»

«IF this.collectionType == CollectionType::None-»

 «EXPAND declareEN-»

«ELSE-»

 «EXPAND declareCollectionEN»

«ENDIF-»

«EXPAND declareBEC»

«EXPAND declareDAC»

try

{

 using(ISession session=NHibernateHelper.OpenSession())

 using (ITransaction tx = session.BeginTransaction())

 {

 «IF this.collectionType == CollectionType::None-»

 «EXPAND inicialiceDTO»

 «ELSE-»

 «EXPAND inicialiceCollectionDTO»

 «ENDIF-»

 «IF this.collectionType == CollectionType::None-»

 «EXPAND inicialiceEN»

 «ELSE-»

 «EXPAND inicialiceCollectionEN»

 «ENDIF-»

 «EXPAND inicialiceDAC»

 «EXPAND inicialiceBEC»

 «this.typeObject.formattedName().toFirstLower()»EN«IF this.collectionType

!= CollectionType::None»s«ENDIF»=«

class.formattedClassName("BEC").toFirstLower()».«formattedName().toFirstUpper()-»

 («FOREACH arguments AS arg SEPARATOR

','»«arg.formattedName()»«ENDFOREACH»«IF serviceLink.paging == true»«IF

serviceLink.argumentLink.size > 0»,«ENDIF»first, «serviceLink.chunkSize»«ELSEIF

this.paging == true»«IF serviceLink.argumentLink.size > 0»,«ENDIF»0, -1«ENDIF»);

 «IF this.collectionType == CollectionType::None-»

«this.typeObject.formattedName().toFirstLower()»DTO=«this.typeObject.netPackageDoma

inProject("_"+((NavigationalModel) GLOBALVAR enModel).name+"WCF","Adapters")».«

this.typeObject.formattedName().toFirstUpper()»Adapter.Convert(«this.typeObject.for

mattedName().toFirstLower()»EN);

 «ELSE-»

 if(«this.typeObject.formattedName().toFirstLower()»ENs!=null)

 {

foreach(«this.typeObject.netPackageDomainProject()+"."+this.typeObject.formattedCla

ssName("EN")» item in «

 this.typeObject.formattedName().toFirstLower()»ENs){

«this.typeObject.formattedName().toFirstLower()»DTOs.Add(«this.typeObject.netPackag

eDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).name+"WCF","Adapters")».«

this.typeObject.formattedName().toFirstUpper()»Adapter.Convert(item));

 }

 }

 «ENDIF»

 «EXPAND commitSession»

 }

}

 «EXPAND catch»

 return «this.typeObject.formattedName().toFirstLower()»DTO«IF

Model-Driven Development of Rich Internet Applications on the Semantic Web 285

this.collectionType != CollectionType::None»s«ENDIF»;

«ENDDEFINE»

«DEFINE ReadFilterBody FOR Operation»

«ENDDEFINE»

«DEFINE ReadAllBody FOR Operation»

«EXPAND declareCollectionDTO»

«EXPAND declareCollectionEN»

«EXPAND declareDAC»

«EXPAND declareBEC»

try

{

 using(ISession session=NHibernateHelper.OpenSession())

 using (ITransaction tx = session.BeginTransaction())

 {

 «EXPAND inicialiceCollectionDTO»

 «EXPAND inicialiceCollectionEN»

 «EXPAND inicialiceDAC»

 «EXPAND inicialiceBEC»

«class.formattedName().toFirstLower()»ENs=«class.formattedClassName("BEC").toFirstL

ower()».«

 formattedName().toFirstUpper()»(0,-1);

 if(«class.formattedName().toFirstLower()»ENs!=null)

 {

foreach(«class.netPackageDomainProject()+"."+class.formattedClassName("EN")» item

in «

 class.formattedName().toFirstLower()»ENs){

«class.formattedName().toFirstLower()»DTOs.Add(«class.netPackageDomainProject("_"+(

(NavigationalModel) GLOBALVAR enModel).formattedName()+"WCF","Adapters")».«

 class.formattedName().toFirstUpper()»Adapter.Convert(item));

 }

 }

 «EXPAND commitSession»

 }

}

«EXPAND catch»

return «class.formattedName().toFirstLower()»DTOs;

«ENDDEFINE»

«DEFINE ReadAllBodySer FOR ServiceLink»

«ENDDEFINE»

«DEFINE ReadOIDBody FOR Operation»

«EXPAND declareDTO»

«EXPAND declareEN»

«EXPAND declareBEC»

«EXPAND declareDAC»

try

{

 using(ISession session=NHibernateHelper.OpenSession())

 using (ITransaction tx = session.BeginTransaction())

 {

 «EXPAND inicialiceDTO»

 «EXPAND inicialiceEN»

 «EXPAND inicialiceDAC»

 «EXPAND inicialiceBEC»

«class.formattedName().toFirstLower()»EN=«class.formattedClassName("BEC").toFirstLo

wer()».«

 formattedName().toFirstUpper()

 »(«FOREACH arguments AS arg SEPARATOR ','»«arg.formattedName()»«ENDFOREACH»);

«class.formattedName().toFirstLower()»DTO=«class.netPackageDomainProject("_"+((Navi

gationalModel) GLOBALVAR enModel).formattedName()+"WCF","Adapters")».«

class.formattedName().toFirstUpper()»Adapter.Convert(«class.formattedName().toFirst

286 Annex F. Transformation Rules

Lower()»EN);

 «EXPAND commitSession»

 }

}

«EXPAND catch»

return «class.formattedName().toFirstLower()»DTO;

«ENDDEFINE»

«DEFINE dto2EN FOR Operation-»

 «FOREACH arguments AS arg-»

 «IF arg.type==PrimitiveType::Object &&

arg.collectionType==CollectionType::None-»

 «arg.dataType("EN")» «arg.formattedName()»EN =

«arg.typeObject.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","AdaptersEN")».«

arg.typeObject.formattedClassName("DTOENAdapter")».Convert(«arg.formattedName()»);

 «ELSEIF arg.type==PrimitiveType::Object &&

arg.collectionType!=CollectionType::None-»

 «arg.dataType("EN")» «arg.formattedName()»EN=new

«arg.collectionType.collectionTypeImp()»<«

arg.typeObject.netPackageDomainProject()».«arg.typeObject.formattedClassName("EN")»

>();

foreach(«arg.typeObject.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«arg.typeObject.formattedClassName("DTO")»

aux in «

 arg.formattedName()»)

 {

«arg.formattedName()»EN.Add(«arg.typeObject.netPackageDomainProject("_"+((Navigatio

nalModel) GLOBALVAR enModel).formattedName()+"WCF","AdaptersEN")».«

 arg.typeObject.formattedClassName("DTOENAdapter")».Convert(aux));

 }

 «ENDIF-»

 «ENDFOREACH-»«

 ENDDEFINE»

«DEFINE argumentsDTO2argumentsEN FOR Operation-»

«FOREACH arguments AS arg SEPARATOR ','-»

 «IF arg.type==PrimitiveType::Object-»

 «arg.formattedName().toFirstLower()»EN«

 ELSE-»

 «arg.formattedName().toFirstLower()»«ENDIF-»

 «ENDFOREACH-»

«ENDDEFINE»

«DEFINE declareBEC FOR Operation»

«class.netPackageDomainProject("BEC")».«

class.formattedClassName("BEC")»

«class.formattedClassName("BEC").toFirstLower()»=null;«

ENDDEFINE»

«DEFINE inicialiceBEC FOR Operation-»

«class.formattedClassName("BEC").toFirstLower()

»=new

«class.netPackageDomainProject("BEC")».«class.formattedClassName("BEC")»(_I«class.f

ormattedClassName("DAC").toFirstLower()»);«

ENDDEFINE»

«DEFINE declareDAC FOR Operation-»

«ENDDEFINE»

«DEFINE inicialiceDAC FOR Operation-»

«ENDDEFINE»

«DEFINE declareEN FOR Operation»

«ENDDEFINE»

Model-Driven Development of Rich Internet Applications on the Semantic Web 287

«DEFINE inicialiceEN FOR Operation»

«ENDDEFINE»

«DEFINE declareCollectionEN FOR Operation-»

 «IF this.operationType == OperationType::ReadFilter-»

System.Collections.Generic.IList<«this.typeObject.netPackageDomainProject()+"."+thi

s.typeObject.formattedClassName("EN")»>

«this.typeObject.formattedName().toFirstLower()»ENs=null;«

 ELSE-»

System.Collections.Generic.IList<«class.netPackageDomainProject()+"."+class.formatt

edClassName("EN")»> «class.formattedName().toFirstLower()»ENs=null;«

 ENDIF-»

«ENDDEFINE»

«DEFINE inicialiceCollectionEN FOR Operation-»

 «IF this.operationType == OperationType::ReadFilter-»

 «this.typeObject.formattedName().toFirstLower()»ENs=new

System.Collections.Generic.List<«

this.typeObject.netPackageDomainProject()+"."+this.typeObject.formattedClassName("E

N")»>();«

 ELSE»

 «class.formattedName().toFirstLower()»ENs=new

System.Collections.Generic.List<«

 class.netPackageDomainProject()+"."+class.formattedClassName("EN")»>();«

 ENDIF-»

«ENDDEFINE»

«DEFINE declareDTO FOR Operation»

«class.netPackageDomainProject("_"+((NavigationalModel) GLOBALVAR

enModel).formattedName()+"WCF","DTO")».«class.formattedClassName("DTO")»

«class.formattedName().toFirstLower()»DTO=null;«

ENDDEFINE»

«DEFINE declareCollectionDTO FOR Operation-»

«ENDDEFINE»

«DEFINE inicialiceCollectionDTO FOR Operation-»

«ENDDEFINE»

«DEFINE inicialiceDTO FOR Operation»

«ENDDEFINE»

«DEFINE commitSession FOR Operation-»

tx.Commit();«

ENDDEFINE»

F.2. MODEL-TO-MODEL TRANSFORMATION RULES IN QVT

OPERATIONAL

This section presents the QVTo code of the Domain2Navigation (Table

F.5) and Navigation2Presentation (Table F.6) model-to-model

transformations.

288 Annex F. Transformation Rules

Table F.5. Domain2Navigation model-to-model QVTo transformation.

modeltype DOM uses "http://www.insidesoft.net/conceptualView/1.0.0";

modeltype NAV uses "http://www.insidesoft.net/navigationalView";

modeltype GMF uses "http://www.eclipse.org/gmf/runtime/1.0.2/notation";

modeltype ecore uses "http://www.eclipse.org/emf/2002/Ecore";

transformation Domain2Navigation(in inModel: DOM, out outModel: NAV, out

outDiagram: GMF);

main()

{

 inModel.rootObjects()[ConceptualModel].map Model2Model();

 outModel.rootObjects()[NavigationalModel].map Model2Diagram();

}

mapping ConceptualModel::Model2Model() : NavigationalModel

{

 result.name := self.name;

 result.conceptualModel := self;

 result.applicationFacade := ApplicationFacadeType::WCF;

 // Create the entry point

 var home := object NavigationalClass

 {

 name := "Home";

 isEntryPoint := true;

 referToClass := self.elements[Class]->select(c | c.name = "User" or

c.name = "Usuario")->asSequence()->first();

 };

 result.navigationalElem += home;

 result.navigationalElem += self.elements[Class]->map Class2NavClass();

 // Obtain those classes that are components of others

 var componentClasses := self.elements[Association]->select(a |

a.rolOrigin.aggregation = AggregationKind::Composite).classTarget->asSet();

 componentClasses := componentClasses->union(self.elements[Association]-

>select(a | a.rolTarget.aggregation = AggregationKind::Composite).classOrigin-

>asSet());

 // Create the links from the entry point to each of the Navigational classes

 result.navigationalElem[NavigationalClass]->select(c | not c.isEntryPoint and

not componentClasses->includes(c.referToClass))->forEach(navClass)

 {

 result.navigationalElem += object TravesalLink

 {

 name := "GetAll" + navClass.name.firstToUpper();

 isSameNode := true;

 targetNavigationPattern := AccessType::ShowAll;

 activationMode := ActivationType::Manual;

 nodeOrigin := home;

 nodeTarget := navClass;

 };

 };

 result.navigationalElem[NavigationalClass].navOperation->forEach(op)

 {

 op.sl := op.map NavOperation2ServiceLink();

 result.navigationalElem += op.sl;

 };

Model-Driven Development of Rich Internet Applications on the Semantic Web 289

 self.elements[Association]->map Association2TraversalLink(result)-

>forEach(link)

 {

 result.navigationalElem += link;

 };

}

mapping NavigationalModel::Model2Diagram() : Diagram

{

 result.element := self.oclAsType(EObject);

 result.name := self.name;

 result.measurementUnit := MeasurementUnit::Pixel;

 result.type := "NavigationalView";

}

mapping Class::Class2NavClass() : NavigationalClass

{

 result.name := self.name;

 result.referToClass := self;

 result.navAttribute += self.getAscendants().attributes[associationOrigin = null

and associationTarget = null]->map Attribute2NavAttribute(result);

 result.navAttribute += self.attributes[associationOrigin = null and

associationTarget = null]->map Attribute2NavAttribute(result);

 result.navOperation += self.operations->xselect(e | e.operationType <>

OperationType::Custom)->map Operation2NavOperation(result);

}

mapping Attribute::Attribute2NavAttribute(in navClass: NavigationalClass) :

NavigationalAttribute

{

 result.name := self.name;

 result.referToAttribute := self;

 result._class := navClass;

}

mapping Operation::Operation2NavOperation(in navClass: NavigationalClass) :

NavigationalOperation

{

 result.name := self.name;

 result.referToOperation := self;

 result.alternativeArguments += self.arguments->map Argument2ArgumentLink();

}

mapping Argument::Argument2ArgumentLink() : ArgumentLink

{

 result.name := self.name;

 result.argument := self;

 result.value := self.value;

}

mapping NavigationalOperation::NavOperation2ServiceLink() : ServiceLink

{

 result.name := self.name + self._class.name.firstToUpper();

 result.operationName := self.name;

 result.nodeOrigin := self._class;

 result.nodeTarget := self._class;

290 Annex F. Transformation Rules

 result.activationMode := ActivationType::Manual;

 result.targetNavigationPattern := AccessType::ShowAll;

 result.argumentLink += self.referToOperation.arguments->map

Argument2ArgumentLink();

 result.isSameNode := true;

}

mapping Association::Association2TraversalLink(in model : NavigationalModel) :

Sequence(TravesalLink)

{

 var originNodeAux := model.navigationalElem[NavigationalClass]->xselect(e | not

e.isEntryPoint and e.referToClass = self.classOrigin)->asSequence();

 var targetNodeAux := model.navigationalElem[NavigationalClass]->xselect(e | not

e.isEntryPoint and e.referToClass = self.classTarget)->asSequence();

 var originDescendants := originNodeAux->first().referToClass.getDescendants();

 var targetDescendants := targetNodeAux->first().referToClass.getDescendants();

 var originNodeList := model.navigationalElem[NavigationalClass]->xselect(e |

not e.isEntryPoint and originDescendants->includes(e.referToClass))-

>union(originNodeAux->asSet());

 var targetNodeList := model.navigationalElem[NavigationalClass]->xselect(e |

not e.isEntryPoint and targetDescendants->includes(e.referToClass))-

>union(targetNodeAux->asSet());

 if (self.rolOrigin.navigable)

 then

 {

 originNodeList->forEach(originNode)

 {

 targetNodeList->forEach(targetNode)

 {

 result += object TravesalLink

 {

 name := getTraversalLinkName(originNode.referToClass,

targetNode.referToClass, self.rolOriginMultiplicity);

 associationRol := self.rolOrigin;

 isSameNode := true;

 targetNavigationPattern := AccessType::ShowAll;

 if (self.rolOrigin.aggregation =

AggregationKind::Composite)

 then

 activationMode := ActivationType::Automatic

 else

 activationMode := ActivationType::Manual

 endif;

 nodeOrigin := originNode;

 nodeTarget := targetNode;

 nm := model;

 };

 };

 };

 }

 endif;

 if (self.rolTarget.navigable)

 then

 {

 originNodeList->forEach(originNode)

 {

Model-Driven Development of Rich Internet Applications on the Semantic Web 291

 targetNodeList->forEach(targetNode)

 {

 result += object TravesalLink

 {

 name := getTraversalLinkName(targetNode.referToClass,

originNode.referToClass, self.rolTargetMultiplicity);

 associationRol := self.rolTarget;

 isSameNode := true;

 targetNavigationPattern := AccessType::ShowAll;

 if (self.rolTarget.aggregation =

AggregationKind::Composite)

 then

 activationMode := ActivationType::Automatic

 else

 activationMode := ActivationType::Manual

 endif;

 nodeOrigin := targetNode;

 nodeTarget := originNode;

 nm := model;

 }

 };

 };

 }

 endif;

}

/* Helpers */

helper getTraversalLinkName(in origin : Class, in target : Class, in multiplicity :

String) : String {}

helper Class::getDescendants() : Sequence(Class) {}

helper Class::getAscendants() : Sequence(Class) {}

Table F.6. Navigation2Presentation model-to-model QVTo transformation.

import Presentation2Diagram;

modeltype DOM uses "http://www.insidesoft.net/conceptualView/1.0.0";

modeltype NAV uses "http://www.insidesoft.net/navigationalView";

modeltype SLPRES uses "http://www.insidesoft.net/silverlightPresentationView";

modeltype PRES uses "http://www.insidesoft.net/abstractPresentationView";

modeltype GMF uses "http://www.eclipse.org/gmf/runtime/1.0.2/notation";

transformation Navigation2Presentation(in inModel : NAV, out outModel : SLPRES, out

outDiagram : GMF);

main()

{

 inModel.rootObjects()[NavigationalModel].map Model2Model();

 outModel.rootObjects()[SLPresentationModel].map Model2Diagram();

}

mapping NavigationalModel::Model2Model() : SLPresentationModel

{

 result.name := self.name;

 result.navigationalModel := self;

 result.height := 800;

292 Annex F. Transformation Rules

 result.width := 1024;

 result.isWidthAuto := result.isHeightAuto := true;

 result.navContext := self.navigationalElem[NavigationalClass]->select(c |

c.isEntryPoint)->asSequence()->first();

 var rootGrid := object SLGrid

 {

 name := "RootGrid";

 height := 800;

 width := 1024;

 isEnabled := true;

 isHidden := false;

 style := 'Background="#ffffffff"';

 rowSpan := 1;

 columnSpan := 1;

 posX := 0;

 posY := 0;

 };

 result.referredWidgets += rootGrid;

 rootGrid.widgets += object SLStackPanel

 {

 name := ("StackPanel_" + self.name + "_item").getUniqueString();

 height := 800;

 width := 1024;

 widgets += object SLCanvas

 {

 name := "Canvas_header";

 height := 100;

 width := 1024;

 };

 widgets += object SLTabControl

 {

 name := "TabControl_menu";

 height := 700;

 width := 1024;

 String.restartAllStrCounter();

 items += self.navigationalElem[TravesalLink]->select(l |

l.nodeOrigin.isEntryPoint)->map TraversalLink2TabItem();

 };

 };

}

mapping TravesalLink::TraversalLink2TabItem() : SLTabItem

{

 name := "TabItem".getUniqueString();

 header := self.nodeTarget.name;

 height := 30;

 width := 60;

 style := getDefaultTextStyle();

 var stackPanel : SLStackPanel := object SLStackPanel

 {

 name := "SLStackPanel_container".getUniqueString();

Model-Driven Development of Rich Internet Applications on the Semantic Web 293

 height := 660;

 width := 1010;

 horizontalAlign := true;

 };

 stackPanel.widgets += self.map TraversalLink2ItemList();

 // Retrieve the item list in order to update it with the new form

 var itemList := stackPanel.widgets->first().oclAsType(SLStackPanel).widgets-

>select(w | w.oclIsTypeOf(SLScrollViewer))->asSequence()-

>first().oclAsType(SLScrollViewer).widgets->first().oclAsType(SLStackPanel);

 stackPanel.widgets += object SLStackPanel

 {

 name := "SLStackPanel_detail".getUniqueString();

 width := 500;

 height := 500;

 var itemContainer := self.nodeTarget.oclAsType(NavigationalClass).map

NavClass2Item(itemList);

 // ADD ITEM

 widgets += itemContainer;

 // Link See Details button with the corresponding context

 var button : SLHyperlinkButton :=

itemList.FindWidget("HyperlinkButton_SeeDetails").oclAsType(SLHyperlinkButton);

 if (button <> null) then

 {

 var method :=

itemContainer.FindWidget("_item").oclAsType(SLStackPanel).methods->select(m |

m.name = "SetContentData")->asSequence()->first().oclAsType(WMethod);

 var onClickEvent := object WEvent{ name := "OnClick" };

 button.events += onClickEvent;

 button.ecas += object EventCall

 {

 event := onClickEvent;

 conditions += object Condition

 {

 expresion := "true";

 trueActions += object ActionCall

 {

 action := object ClientAction { wMethod := method };

 arguments += object ClientArgument

 {

 wMethodParameter := method.parameters->first();

 value := "Context";

 };

 }

 }

 };

 }

 endif;

 // NEW FORM

 // Create form for new elements

 var newElementLinks :=

inModel.rootObjects()[NavigationalModel].navigationalElem[ServiceLink]

 ->select(l | l.nodeOrigin = self.nodeTarget and

l.navOperation.referToOperation.operationType = OperationType::New);

 if (newElementLinks->size() <> 0)

 then

 {

 var newForm := newElementLinks->asSequence()->first().map

294 Annex F. Transformation Rules

ServiceLink2NewForm(null, itemList);

 newForm.marginTop := 10;

 var expander : SLExpander := addExpander(newForm);

 expander.header := "New " + newElementLinks->asSequence()-

>first().oclAsType(ServiceLink).nodeOrigin.name;

 widgets += expander;

 }

 endif;

 };

 var scrollViewer := addScrollViewer(stackPanel);

 scrollViewer.height := 660;

 scrollViewer.width := 1010;

 widgets += scrollViewer;

}

query SLStackPanel::FindWidget(in name : String) : SLWidget

{

 /* Auxiliary method */

}

mapping NavigationalClass::NavClass2ListItem(in container : SLStackPanel) :

SLStackPanel

{

 result.name := ("StackPanel_" + self.name + "_listItem").getUniqueString();

 result.isEnabled := true;

 result.isHidden := false;

 result.marginBottom := 2.0;

 result.style := 'Background="#ffaaaaaa"';

 var numElements := self.navAttribute->size();

 result.width := 500;

 result.height := 80;

 result.isHeightAuto := true;

 // ITEM FEATURES

 result.widgets += self.navAttribute->select(attr |

attr.referToAttribute.isOID)->NavAttribute2ItemFeature();

 result.widgets += self.navAttribute->select(attr |

attr.name.toLower().find("name") != 0 or attr.name.toLower().find("title") != 0)-

>NavAttribute2ItemFeature();

 result.widgets += object SLHyperlinkButton

 {

 name := "HyperlinkButton_SeeDetails_".getUniqueString();

 text := "See details";

 style := getDefaultTextStyle();

 height := 20;

 width := 150;

 }

}

mapping NavigationalClass::NavClass2Item(in container : SLStackPanel) :

SLStackPanel

{

 result.name := ("StackPanel_" + self.name + "_item").getUniqueString();

 result.navType := container.navType;

Model-Driven Development of Rich Internet Applications on the Semantic Web 295

 result.isEnabled := true;

 result.isHidden := false;

 result.marginBottom := 2.0;

 result.style := 'Background="#ffaaaaaa"';

 var numElements := self.navAttribute->size();

 result.width := 500;

 result.height := numElements * 30 + 30;

 result.isHeightAuto := true;

 var setContentDataMethod := object WMethod

 {

 name := "SetContentData";

 type := PrimitiveType::Void;

 parameters += object WMethodParameter

 {

 name := "value";

 scope := ScopeKind::In;

 type := PrimitiveType::Object;

 };

 };

 result.methods += setContentDataMethod;

 var serviceLinks :=

inModel.rootObjects()[NavigationalModel].navigationalElem[ServiceLink]->select(l |

l.nodeOrigin = self);

 var modifyHlButton : SLHyperlinkButton;

 // HEADER

 result.widgets += object SLStackPanel

 {

 name := ("StackPanel_" + self.name + "_itemTitle").getUniqueString();

 horizontalAlign := true;

 height := 30;

 width := 500;

 widgets += object SLTextBlock

 {

 name := ("TextBlock_" + self.name + "_attrValue").getUniqueString();

 width := 250;

 height := 30;

 textWrap := true;

 text := self.name;

 textAlignment := HorizontalAlignment::Center;

 style := getDefaultTextStyle();

 };

 // DELETE FORM

 widgets += serviceLinks->select(l |

l.navOperation.referToOperation.operationType = OperationType::Destroy)-

>asSequence()->first().map ServiceLink2DestroyForm(container.navType, container);

 };

 // ITEM FEATURES

 result.widgets += self.navAttribute->NavAttribute2ItemFeature();

 // MODIFY FORMS

 var modifiers := serviceLinks->select(l |

l.navOperation.referToOperation.operationType = OperationType::Modifier);

 if (modifiers->size() <> 0)

296 Annex F. Transformation Rules

 then

 {

 result.height := result.height * 2 - 30;

 var modifyForm := modifiers->asSequence()->first().map

ServiceLink2ModifyForm(container.navType, container);

 modifyForm.width := 482;

 var expander : SLExpander := addExpander(modifyForm);

 expander.header := "Modify " + container.navType.referToClass.name;

 result.widgets += expander;

 }

 endif;

}

helper NavigationalAttribute::NavAttribute2StackPanel() : SLStackPanel {}

helper NavigationalAttribute::NavAttribute2ItemFeature() : SLStackPanel {}

mapping TravesalLink::TraversalLink2ItemList () : SLStackPanel

{

 /* Generate the list of elements */

}

abstract mapping ServiceLink::ServiceLink2Form(in context : NavigationalClass, in

updatedList : SLStackPanel) : SLStackPanel

{

 result.name := ("StackPanel_" + self.name + "_form").getUniqueString();

 result.isEnabled := true;

 result.isHidden := false;

}

mapping ServiceLink::ServiceLink2NewForm(in navigationalClass : NavigationalClass,

in updatedList : SLStackPanel) : SLStackPanel

inherits ServiceLink::ServiceLink2Form

when {self.navOperation.referToOperation.operationType = OperationType::New}

{

 result.style := 'Background="#ffaaaaaa"';

 var numElements := self.argumentLink->size();

 result.width := 500;

 result.height := numElements * 30 + 30;

 result.widgets += self.argumentLink->map ArgumentLink2FormElement();

 result.widgets += self.map ServiceLink2FormButton(result, updatedList);

}

mapping ServiceLink::ServiceLink2FormButton(in father : SLStackPanel, in

updatedList : SLStackPanel) : SLButton

when {self.navOperation.referToOperation.operationType = OperationType::New}

{

 result.name := ("Button_" + self.name + "_form").getUniqueString();

 result.text := "New";

 result.horizontalContentAlignment := HorizontalAlignment::Center;

 result.verticalContentAlignment := VerticalAlignment::Center;

 result.type := TypeButton::SimpleButton;

 result.width := 100;

 result.height := 30;

 var newEvent := object WEvent { name := "OnClick" };

Model-Driven Development of Rich Internet Applications on the Semantic Web 297

 result.events += newEvent;

 result.ecas += object EventCall

 {

 event := newEvent;

 conditions += object Condition

 {

 expresion := "true";

 trueActions += object ActionCall

 {

 action := object ServerAction

 {

 navigationalAssociation := self;

 // Update list containing the elements

 if (updatedList != null)

 then

 {

 onSuccessConditions += object Condition

 {

 expresion := "true";

 trueActions += updatedList.map List2EcaUpdateList();

 }

 }

 endif;

 };

 var formElements := father.widgets[SLStackPanel].widgets;

 self.argumentLink->forEach(argLink)

 {

 arguments += object ServerArgument

 {

 argumentLink := argLink;

 binding := object ActionArgumentViewBinding

 {

 _property := formElements->select(w |

w.name.find(argLink.name + "_argValue") <> 0)

 ->first().properties->first();

 };

 };

 };

 };

 };

 };

}

mapping ArgumentLink::ArgumentLink2FormElement() : SLStackPanel

{

 result.name := ("StackPanel_" + self.name + "_arg").getUniqueString();

 result.isEnabled := true;

 result.isHidden := false;

 result.width := 400;

 result.height := 30;

 result.isWidthAuto := true;

 result.isHeightAuto := true;

 result.horizontalAlign := true;

 result.widgets += object SLTextBlock

 {

 name := ("TextBlock_" + self.name + "_argName").getUniqueString();

298 Annex F. Transformation Rules

 width := 50;

 height := 30;

 text := self.name;

 };

 var newWidget : SLWidget;

 switch

 {

 case (self.argument.collectionType != CollectionType::None)

 {

 if (self.argument.type = PrimitiveType::OID)

 then

 {

 newWidget := object SLDataGrid

 {

 name := ("DataGrid_" + self.name +

"_argValue").getUniqueString();

 width := 250;

 height := 250;

 //navigation :=

inModel.rootObjects()[NavigationalModel].navigationalElem[TravesalLink]->select(t |

t.nodeOrigin.name = "Home" and

t.nodeTarget.oclAsType(NavigationalClass).referToClass = self.argument.typeObject)-

>asSequence()->first();

 //navType :=

navigation.oclAsType(TravesalLink).nodeTarget.oclAsType(NavigationalClass);

 properties += object WidgetProperty

 {

 name := "selectedOIDs";

 type := "OID";

 //collectionType := CollectionType::Hash; // Mal pero no

funciona CollectionType::List

 }

 }

 }

 else

 {

 newWidget := object SLListBox

 {

 name := ("ListBox_" + self.name +

"_argValue").getUniqueString();

 width := 150;

 isHeightAuto := true;

 style := getDefaultTextStyle();

 }

 }

 endif;

 }

 case (self.argument.type = PrimitiveType::Password)

 {

 newWidget := object SLPasswordBox

 {

 name := ("PasswordBox_" + self.name +

"_argValue").getUniqueString();

 width := 150;

 type := TypeTextBox::TextPassword;

 style := getDefaultTextStyle();

 properties += object WidgetProperty

 {

 name := "password";

 type := "String";

 };

Model-Driven Development of Rich Internet Applications on the Semantic Web 299

 };

 }

 case (self.argument.type = PrimitiveType::Date)

 {

 newWidget := object SLDatePicker

 {

 name := ("DatePicker_" + self.name +

"_argValue").getUniqueString();

 width := 150;

 displayDate := "";

 selectedDate := "";

 selectedDateFormat := 0;

 style := getDefaultTextStyle();

 properties += object WidgetProperty

 {

 name := "selectedDate";

 type := "Date";

 };

 }

 }

 case (self.argument.type = PrimitiveType::Boolean)

 {

 newWidget := object SLCheckBox

 {

 name := ("CheckBox_" + self.name + "_argValue").getUniqueString();

 width := 150;

 text := "";

 type := TypeButton::CheckButton;

 style := getDefaultTextStyle();

 properties += object WidgetProperty

 {

 name := "checked";

 type := "Boolean";

 }

 };

 }

 case (self.argument.type = PrimitiveType::Enum)

 {

 newWidget := object SLComboBox

 {

 name := ("ComboBox_" + self.name + "_argValue").getUniqueString();

 width := 150;

 style := getDefaultTextStyle();

 var newOptions : String := "";

 self.argument.typeEnum.enumerationLiterals->forEach(lit)

 {

 newOptions := newOptions + lit.name + "\n";

 };

 options := newOptions;

 properties += object WidgetProperty

 {

 name := "selectedValue";

 type := "Object";

 };

 };

 }

 else

 {

300 Annex F. Transformation Rules

 newWidget := object SLTextBox

 {

 name := ("TextBox_" + self.name + "_argValue").getUniqueString();

 width := 350;

 style := getDefaultTextStyle();

 properties += object WidgetProperty

 {

 name := "text";

 type := "String";

 };

 };

 }

 };

 newWidget.height := 30;

 newWidget.isEnabled := true;

 newWidget.isHidden := false;

 result.widgets += newWidget;

}

mapping SLStackPanel::List2EcaUpdateList() : ActionCall

{

 result.name := "";

 var action = self.methods->selectOne(m | m.name.find("RefreshContentData") <>

0);

 if (action != null)

 then

 {

 result.action := object ClientAction { wMethod := action };

 }

 endif;

}

mapping ServiceLink::ServiceLink2DestroyForm(in context : NavigationalClass, in

updatedList : SLStackPanel) : SLStackPanel

inherits ServiceLink::ServiceLink2Form

when {self.navOperation.referToOperation.operationType = OperationType::Destroy}

{

 /* Create destroy form */

}

mapping ServiceLink::ServiceLink2ModifyForm(in context : NavigationalClass, in

updatedList : SLStackPanel) : SLStackPanel

inherits ServiceLink::ServiceLink2Form

when {self.navOperation.referToOperation.operationType = OperationType::Modifier}

{

 /* Create modify form */

}

/* Helpers */

mapping inout SLStackPanel::StackPanel2ScrollViewer() : SLScrollViewer {}

helper addScrollViewer(inout sp : SLStackPanel) : SLScrollViewer {}

helper addExpander(inout sp : SLWidget) : SLExpander {}

helper String::getUniqueString() : String {}

helper getDefaultTextStyle() : String {}

Annex G. IMPLEMENTATION DETAILS

This annex describes all the aspects related to the processes of

generation and the implementation of Sm4RIA extension for OIDE that

were not detailed in Chapter 7 and Chapter 8.

G.1. STRUCTURE OF THE PROJECT GENERATED

The following table details the structure of the Visual Studio projects

proposed in order to contain the code generated.

Table G.7 Structure of the Visual Studio solution generated and the description of the

elements.

Project Project Element

InitializeDB/

CreateDB.cs

InitializeDB.csproj

Program.cs

Properties/

app.config

SilverlightCommon

<SolutionName>NHibernate

AppLib/

DAC/

BEC/

DTO/

Exceptions/

Mappings/

NHibernateHelper.cs

Properties/

Resources/

Utils/

app.config

hibernate.cfg.xml

<SolutionName>NHibernate.csproj

<SolutionName>_LinkedDataCom
mon

App.config

Assemblies/

Clients/

Entities/

Gateways/

Ontologies/

302 Annex G. Implementation Details

Project Project Element
Properties/

<SolutionName>_LinkedDataCommon.csproj

<SolutionName>_WCF

Assemblers/

AssemblersEN/

DTO/

Properties/

Service.svc / Service.svc.cs /

ServiceExternal.svc.cs

Web.config

<SolutionName>_WCF.csproj

clientaccesspolicy.xml

<SolutionName>Silverlight

App.xaml / App.xaml.cs

MainPage.xaml / MainPage.xaml.cs

Properties/

ResourceDictionary.xaml

Resources/

Service/

ServiceReferences.ClientConfig

<SolutionName>Silverlight.csproj

UIEntities/

ViewModels/

Views/

<SolutionName>Silverlight.We
b

Properties

Silverlight.js

<SolutionName>Silverlight.Web.csproj

Web.config

index.aspx

index.html

G.2. XPAND REFERENCE

This section briefly describes the elements of the Xpand language for

the definition of model-to-text transformation rules. For a more

complete explanation please check the following Web site:
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents

/core_reference.html

Table G.8 shows the main elements of the language and their

description.

Model-Driven Development of Rich Internet Applications on the Semantic Web 303

Table G.8. Description of the main elements of the Xpand language.

Xpand Element Description

«DEFINE rule FOR metaclass»

«ENDDEFINE»

Definition of a transformation rule for the

classes of a given metaclass.

«EXPAND rule FOREACH collection»

«EXPAND rule FOR object»

Invocation of a transformation rule

previously defined.

«PROTECT CSTART "opening" CEND

"closing" ID "idString"»

«ENDPROTECT»

Definition of a protected region, in which

the changes in the generated code are

preserved among generation processes.
«GLOBALVAR varName»

Use of a global variable. Global variables

are defined in the workflows that invoke

the transformation rules from the Eclipse

framework.
«IF condition»

«ELSEIF condition»

«ELSE»

«ENDIF»

If-else block

«LET expression AS variable»

«ENDLET»

Definition of a local variable.

«FOREACH collection AS object»

«ENDFOREACH»

Foreach loop.

«REM»Comment«ENDREM»

Comment.

G.3. XTEXT GRAMMAR OF THE EXTENDED DOMAIN MODEL

EDITOR

This section contains the grammar rules used for the development of

the textual editor for the Extended Domain Model (see Table G.9). For

more details about the language for grammar defition, please check the

following Web site:
http://www.eclipse.org/Xtext/documentation.html#grammarLanguage

Table G.9. Grammar rules of the Xtext editor for the Extended Domain Model.

grammar es.ua.dlsi.ooh.sm4ria.extendedDomainModel.xtext.EdmText with
org.eclipse.xtext.common.Terminals

import
"platform:/resource/es.ua.dlsi.ooh.sm4ria.extendedDomainModel/model/ExtendedDomainM
odel.ecore"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

304 Annex G. Implementation Details

import
"platform:/resource/net.insidesoft.conceptualView/model/ConceptualView.ecore" as
conceptualView

EDModel returns EDModel:
 {EDModel}
 (imports+=Import)*
 'create'
 name=EString ';'

OntologyModel returns OntologyModel:
 OntologyModel_Impl | Source;

ModelRelation returns ModelRelation:
 OntoImport | Instance;

OntologyElement returns OntologyElement:
 Concept | Attribute_Impl | ObjectProperty | /*Individual |*/ Inheritance |
Association_Impl | RefAttribute | LinkedAssociation;

Property returns Property:
 Attribute_Impl | ObjectProperty | RefAttribute;

OntologyModel_Impl returns OntologyModel:
 {OntologyModel}
 (isLocal?='local')?
 'OntologyModel'
 name=EString
 ('<'
 uriBase=EString ('as' namespace=EString)?
 '>')?
 ('refersTo'
 conceptualModel=[conceptualView::ConceptualModel|Fqn])?
 (('{'
 ('desc' '=' description=EString)?
 (elements+=OntologyElement)*
 '}') | ';');

Import returns Import:
 'imports' importedNamespace=FqnWithWildCard;

Instance returns Instance:
 {Instance}
 'Instances' id=EString ':' base=[OntologyModel|Fqn] '->'
target=[Source|Fqn] ';'
 ;

OntoImport returns OntoImport:
 {OntoImport}
 'OntoImport' id=EString ':' base=[OntologyModel|Fqn] '->'
target=[OntologyModel|Fqn] ';'
 ;

Source returns Source:
 {Source}
 (isLocal?='local')?
 (type=SourceType)
 'Source'
 name=EString
 ('<' uriBase=EString '>')?
 (('{'
 ('desc' description=EString)?
 '}') | ';');

Inheritance returns Inheritance:
 {Inheritance}
 (visibility=Visibility)?
 'Generalisation'
 name=EString
 '('
 descendant=[OntologyElement|Fqn] '=>' ascendant=[OntologyElement|Fqn]
 ')'
 ('refersTo' conceptualInheritance=[conceptualView::Inheritance|Fqn])?
 (('{'
 ('desc' '=' description=EString)?
 '}') | ';');

Concept returns Concept:
 {Concept}
 (visibility=Visibility)?

Model-Driven Development of Rich Internet Applications on the Semantic Web 305

 'Concept'
 name=EString
 ('<' uri=EString '>')?
 ('refersTo' domainClass=[conceptualView::Class|Fqn])?
 (('{'
 ('desc' '=' description=EString)?
 (properties+=Property)*
 '}') | ';');

Attribute returns Attribute:
 Attribute_Impl | RefAttribute;

Attribute_Impl returns Attribute:
 {Attribute}
 (visibility=Visibility)?
 target=XmlDatatypes
 'Attribute'
 name=EString
 ('<' uri=EString '>')?
 ('min' minCardinality=EInt)?
 ('max' maxCardinality=EInt)?
 ('refersTo' domainAttribute=[conceptualView::Attribute|Fqn])?
 (('{'
 ('desc' '=' description=EString)?
 '}') | ';');

RefAttribute returns RefAttribute:
 (visibility=Visibility)?
 target=XmlDatatypes
 'RefAttribute'
 name=EString
 ('<' uri=EString '>')?
 ('min' minCardinality=EInt)?
 ('max' maxCardinality=EInt)?
 ('refersTo' domainAttribute=[conceptualView::Attribute|Fqn])?
 '->' refProperty=[Property|Fqn]
 (('{'
 ('desc' '=' description=EString)?
 '}') | ';');

ObjectProperty returns ObjectProperty:
 {ObjectProperty}
 (visibility=Visibility)?
 (isSymmetric?='symmetric')?
 (isTransitive?='transitive')?
 'ObjectProperty'
 name=EString
 ('<' uri=EString '>')?
 ('min' minCardinality=EInt)?
 ('max' maxCardinality=EInt)?
 ('refersTo' domainAttribute=[conceptualView::Attribute|Fqn])?
 (('{'
 ('desc' '=' description=EString)?
 ('joinText' '=' joinText=EString)?
 '}') | ';');

Individual returns Individual:
 {Individual}
 'Individual'
 name=EString
 '{'
 ('uri' uri=EString)?
 ('description' description=EString)?
 ('visibility' visibility=Visibility)?
 '}';

Association_Impl returns Association:
 (visibility=Visibility)?
 'Association'
 name=EString
 ('<' uri=EString '>')?
 '(' conceptOrigin=[Concept|Fqn] '=>' conceptTarget=[Concept|Fqn] ','
direct=[ObjectProperty|Fqn] ('<->' inverse=[ObjectProperty|Fqn])? ')'
 (('{'
 ('desc' '=' description=EString)?
 '}') | ';');

LinkedAssociation returns LinkedAssociation:
 (visibility=Visibility)?
 'LinkedAssociation'
 name=EString

306 Annex G. Implementation Details

 ('<' uri=EString '>')?
 '(' conceptOrigin=[Concept|Fqn] '=>' conceptTarget=[Concept|Fqn] ','
direct=[ObjectProperty|Fqn] ('<->' inverse=[ObjectProperty|Fqn])? ')'
 'refersTo' domainAssociation=[conceptualView::Association|Fqn]
 (('{'
 ('desc' '=' description=EString)?
 '}') | ';');

enum Visibility returns Visibility:
 Public = 'public' | Private = 'private';

enum XmlDatatypes returns XmlDatatypes:
 string = 'String' | boolean = 'Boolean' | decimal = 'Decimal' | float =
'Float' | double = 'Double' | duration = 'Duration' | dateTime = 'DateTime' | time
= 'Time' | date = 'Date' | gYearMonth = 'GYearMonth' | gYear = 'GYear' | gMonthDay
= 'GMonthDay' | gDay = 'GDay' | gMonth = 'GMonth' | hexBinary = 'HexBinary' |
base64Binary = 'Base64Binary' | anyURI = 'AnyURI' | QName = 'QName' | NOTATION =
'NOTATION' | integer = 'Integer';

enum SourceType returns SourceType:
 SPARQL = 'SPARQL' | SWS = 'SWS';

FqnWithWildCard returns ecore::EString:
 Fqn ('.*')?;

Fqn returns ecore::EString:
 EString ('.' EString)*;

EString returns ecore::EString:
 STRING | ID;

EBoolean returns ecore::EBoolean:
 'true' | 'false';

EInt returns ecore::EInt:
 '-'? INT;

Annex H. RESUMEN EN ESPAÑOL

Este anexo presenta un resumen en español de los principales

problemas que trata de solucionar esta tesis y de las contribuciones

realizadas con ese fin.

H.1. INTRODUCCIÓN

En las sociedades modernas las necesidades de información están

creciendo de forma exponencial. Durante las dos últimas decadas,

Internet ha experimentado una contínua, relativamente rápida,

evolución desde diferentes puntos de vista, cuyos objetivos se

superponen en algunos casos, orientados a satisfacer las necesidades de

información de los usuarios. Este hecho ha llevado a la creación de

diferentes tendencias centradas en satisfacer un subconjunto de los

requerimientos de usuario. Murugesan (Murugesan, 2008) indentificó

algunos de ellas: Web 1.0, Web 2.0, Rich Internet Applications, la Web

Semántica y la Web móvil (aunque podrían existir otras).

De estas tendencias identificadas, esta tesis se centra en las Rich

Internet Applications (en español, aplicaciones enriquecidas de Internet),

es decir, aplicaciones creadas en la Web 2.0 en la misma época que las

aplicaciones sociales, cuya interfaz de usuario proveen funcionalidades

hasta aquel momento sólo vistas en interfaces de usuario de escritorio.

Basadas en tecnologías como Flex, Silverlight o jQuery (entre otras),

estas aplicaciones incluyen interfaces de usuario con un alto nivel de

interactividad y dinamicidad, que incluyen elementos multimedia y

pueden recuperar datos del servidor Web sin cambiar de página Web o

presionar un enlace o un botón.

Una cuestión de acceder y compartir datos: interoperabilidad de

datos en Rich Internet Applications.

Sin embargo, los buscadores Web actuales, los cuales son para

muchos usuarios el punto de entrada a la información de la Web, no

pueden acceder e indexar la información contenida en las Rich Internet

308 Annex H. Resumen en español

Applications. Como consecuencia, los usuarios no pueden encontrar

fácilmente el contenido que muestran. Este hecho puede hacer que los

desarrolladores software y las empresas eviten su uso a pesar de los

beneficios que tienen para la visualización de los datos.

El comportamiento de las interfaces RIA esta dirigido por los eventos

de usuario, es decir, muestran la información en base a las demandas de

los usuarios, expresadas por medio de ciertos eventos en los

componentes de la interfaz. Este proceso complica el acceso a los datos a

los agentes software independientemente de la tecnología que se haya

utilizado para desarrollar las aplicaciones. En este escenario, las RIAs

implementadas con HTML tienen una ventaja sobre las RIA

implemenetadas tecnologías orientadas a componentes (o plug-in), p.e.,

Silverlight o Flex, ya que los contenidos son visualizados por medio de

representaciones textuales en el código HTML, de forma similar a las

interfaces HTML tradicionales de la Web 1.0.

Reinvirtiendo los esfuerzos en la Web.

Dada la madurez de Internet y de las diferentes tecnologías

desarrolladas bajo su paraguas, la solución a los problemas encontrados

en las RIA podría obtenerse a partir de los esfuerzos ya realizados en

otras áreas de la Web. En este caso, más concretamente, pueden usarse

las técnicas y tecnologías para la gestión de conocimiento desarrolladas

en la Web Semántica. La Web Semántica (Berners-Lee et al., 2001)

considera los sistemas software como usuarios de primera clase que

ayudan a los usuarios humanos en sus tareas; no únicamente meras

herramientas para la gestion y visualización de la información, sino que

también pueden realizar tareas de adquisición y gestión de

conocimiento y participar en la toma de decisiones. Siguiendo este

objetivo, nuevas tecnologías y herramientas han sido desarrolladas para

proveer de un significado explícito y desambiguado a la información

que recorre la Web usando técnicas para la captura, representación y

gestión de conocimiento. Entender el significado del contenido de los

sitios Web mejora la interoperabilidad (a tres niveles: léxico, sintáctico y

semántico) de los componentes software de la Web, característica que

carecen las Rich Internet Applications.

Model-Driven Development of Rich Internet Applications on the Semantic Web 309

Retos de desarrollo y la ingeniería dirigida por modelos.

Para desarrollar aplicaciones que combinen características de las

diferentes tendencias existentes en la Web es necesario balancear

diferentes factores y asumir ciertos retos. Como Murugesan indicó

(Murugesan, 2008), todos estos se pueden resumir en un único reto:

“diseñar y desarrollar sistemas Web para una mejor a) usabilidad, diseño de

interfaz y navegación; b) comprensión; c) rendimiento; d) seguridad e

integridad; e) evolución, crecimiento y mantenibilidad; f) testeo; y g)

movilidad”.

El éxito de la solución propuesta para RIA y su aceptación

dependerán de forma directa en el coste de asumir estos retos, el cual es

normalmente alto en términos de recursos y tiempo debido a la

complejidad de las funcionalidades necesarias por las aplicaciones y la

dinamicidad del escenario Web. En esta última década, diversas

metodologías dirigidas por modelos para el desarrollo de aplicaciones

Web han tratado los retos mencionados facilitando los procesos de

creación de aplicaciones Web complejas. Estas metodologías proponen

procesos de desarrollo en los cuales las actividades están orientadas al

diseño de modelos software. Asimismo, definen una colección de

transformaciones para obtener nuevos modelos a partir de modelos

existentes o directamente los componentes software de la aplicación

diseñada. Este tipo de técnicas de desarrollo, junto con una herramienta

software que las implenente y soporte, pueden reducir los costes

asociados con el desarrollo de aplicaciones Web complejas.

No obstante, ninguna de las metodologias actuales combina de

forma efectiva los elementos necesarios para el desarrollo de una

solucion para los problemas detectados en RIA. Las metodologías

actuales (p.e., WebML) contienen parte de los elementos necesarios (p.e.,

desarrollo de interfaces ricas, ontologías o acceso a servicios Web) pero

inconexos. Además, las soluciones no están alineadas completamente

hacia nuevas iniciativas para gestionar y compartir conocimiento en la

Web Semántica, como la Web de Datos.

La investigación realizada en esta tesis intenta contestar a las

siguientes preguntas de investigación, planteadas a partir de los

problemas detectados en el escenario descrito:

310 Annex H. Resumen en español

RQ1 – ¿Es posible mejorar la interoperabilidad de las Rich Internet

Applications con otros sistemas software (como, por ejemplo, los

buscadores Web) usando técnicas, tecnologías y recursos de la Web

Semántica?

RQ2 – ¿Cómo pueden las actuales metodologías dirigidas por modelos ser

extendidas para desarrollar la solución propuesta a los problemas

detectados en las Rich Internet Applications?

RQ3 – ¿Cómo se pueden implementar las soluciones propuestas en una

herramienta software CASE?

Para cada una de las cuestiones planteadas, se define un conjunto de

objetivos que deben de ser cumplidos para poder contestar a las

preguntas. Los objetivos propuestos para cada pregunta son los

siguientes:

Objetivo 1) Mejorar la interoperabilidad de las Rich Internet Applications

con los sistemas de la Web que usan el texto como entrada (e.g.,

buscadores o lectores para invidentes).

O1.1) Mejorar la exportabilidad de los datos contenidos en Rich

Internet Applications.

O1.2) Mejorar el acceso a la información relativa a los elementos

multimedia.

O1.3) Combinar técnicas, tecnologías y recursos ya existentes en la

Web Semantica con tecnologías para la creación de Rich

Internet Applications.

O1.4) Desarrollar una colección de casos de estudio para evaluar la

validez de la solución propuesta.

Objetivo 2) Diseñar una metodología de desarrollo software dirigido por

modelos para el desarrollo de la solución propuesta.

O2.1) Facilitar el desarrollo de la solución propuesta en O1.

O2.2) Mejorar la mantenibilidad de la solución propuesta en O1.

O2.3) Extender una metodología existente para el desarrollo de RIA.

Objetivo 3) Desarrollar una herramienta software CASE que soporte los

elementos de la metodología diseñada.

Los siguientes apartados introducen las principales contribuciones

de la tesis, desarrolladas para cumplir con los objetivos propuestos.

Model-Driven Development of Rich Internet Applications on the Semantic Web 311

H.2. RICH INTERNET APPLICATIONS EN LA WEB SEMÁNTICA

En la última decada, diversos autores (Meliá et al. 2008; Linaje et al.

2007; Fraternali, Comai, et al. 2010) han tratado de especificar un

conjunto de requisitos deseables para cualquier RIA y la forma en que

deberían ser desarrollados utilizando técnicas de desarrollo dirigidos

por modelos. No obstante, la combinación de técnicas de la Web

Semántica con metodologías para el desarrollo de RIA no ha sido

estudiada en profundidad. Dado que las tecnologías de la Web

Semántica están especializadas en representar y compartir

conocimientos, la alianza entre las dos aproximaciones puede solventar

los problemas encontrados en las RIA independientemente de la

tecnología RIA empleada, es decir, que podría ser aplicada en cualquier

tipo de RIA.

En este apartado se presenta la primera contribución de esta tesis: el

concepto de Semantic Rich Internet Application (SRIA), que define a un

nuevo tipo de RIA que usa de forma extensiva las técnicas, tecnologías y

recursos de la Web Semántica para compartir sus propios datos y reusa

datos de otras fuentes para enriquecer su propio contenido.

H.2.1. REQUISITOS

La definición de un conjunto concreto de requisitos de una aplicación

Web facilita la identificación de sus principales metas y componentes

software. En este caso, los requisitos también permiten apreciar de

forma más sencilla las diferencias entre las RIA tradicionales y este

nuevo tipo. Los requisitos para el desarrollo de SRIA combinan aspectos

de RIA y otros aspectos relacionados con las aplicaciones Web

semánticas de tal forma que las aplicaciones resultantes pueden ser

consideradas como una combinación de ambas.

Este apartado propone una lista específica de requisitos para

caracterizar a las SRIAs, centrándose en aquellos requisitos que no

considerados en el desarrollo de RIA tradicionales. Esta lista toma en

consideracion los estudios realizados por otros autores, tales como

Brambilla y Facca (Brambilla and Facca, 2007) y Roval et al. (Rovan et al.,

2011), centrados en el desarrollo de aplicaciones de la Web Semántica,

312 Annex H. Resumen en español

así como la arquitectura de la Web Semántica y los principios de Linked

Data, descritos en el apartado 2.1.2 (página 19).

Las características propuestas pueden resumirse en dos requisitos no

funcionales de alto nivel. El cumplimiento de estos primeros requisitos

está asociado al cumplimiento de una serie de requisitos funcionales,

que restringen las funcionalidades de las aplicaciones resultantes. La

lista de requisitos propuesta es la siguiente:

R1) Alto nivel de exportabilidad y reusabilidad del contenido de la

aplicación. La aplicación tiene que ser capaz de proveer sus

contenidos de una forma desambiguada y estructurada a los agentes

software o incluso a otras RIA semánticas.

Rf1.1) La aplicación tiene que usar ontologías como formalismo para la

representación de conocimiento. Todos los datos almacenados y

gestionados por una SRIA tienen que ser representados por

medio de ontologías, que son el estándar para la representación

de conocimiento en la Web Semántica.

Rf1.2) La aplicación tiene que proveer anotaciones semánticas del

contenido. Las ontologías proveen un método para representar y

estructurar el conocimiendo utilizado por una SRIA. Sin

embargo, es también necesario mapear los datos de la aplicación

en instancias de la ontología y anotar algunos fragmentos de

información para representar de forma efectiva que información

se esta mostrando en un momento determinado. Esta

información se define en el modelo de anotación (Bettencourt et

al., 2006) propuesto para SRIAs.

R2) Alto nivel de reusabilidad del conocimiento externo a la

aplicación. Siguiendo la filosofía de la Web Semántica y los

principios de Linked Data en la Web de Datos, los contenidos de la

aplicación deben de ser enriquecidos con conocimiento de otras

fuentes. La aplicación no tiene que ser aislada sino capaz de obtener

conocimiento de diferentes fuentes de la Web Semántica. Este

requerimiento puede alcanzarse por medio de los siguientes

subrequerimientos:

Rf2.1) La aplicación tiene que reusar ontologías existentes. Como

resultado, será posible interconectar conocimiento entre una red

de aplicaciones. Además puede simplificar los procesos de

Model-Driven Development of Rich Internet Applications on the Semantic Web 313

compartir conocimiento (R1) y los procesos de desarrollo de

aplicaciones similares a partir de una aplicación.

Rf2.2) La aplicación tiene que reusar bases de conocimiento existentes.

Con las instancias obtenidas desde otras fuentes en la Web, sería

posible enriquecer los contenidos que se muestran a los usuarios

por medio de agregaciones de datos. De forma inicial, para

limitar la complejidad de la solución, solo dos tipos de fuentes de

conocimiento son tomadas en consideración:

Rf2.2.1) La aplicación tiene que reusar conocimiento disponible

en la Web de Datos como Linked Data. La aplicación utilizará

instancias de ontología de los conjuntos de datos de la

Web de Datos, que se encuentran repartidos por toda la

Web.

Rf2.2.2) La aplicación puede reusar conocimiento desde otras

aplicaciones. El contenido de las SRIA debería ser

compatible entre sí, es decir, el conocimiento compartido

por una aplicación debería poder ser consumido por otras

aplicaciones siguiendo los principios de Linked Data.

En esta lista de requisitos, ontologías y bases de conocimiento, que

contienen las instancias de ontología, son considerados elementos

diferentes, a pesar de que en diversos trabajos, p.e., Gomez-Perez et al.

(Gómez-Pérez et al., 2007), las instancias de una ontología son tratadas

como parte de la misma. Aunque puede parecer una decisión

controvertida, esta fue tomada en base a la definición de ontología de

Gruber (Gruber, 1995), que respalda Guarino (Guarino, 1998): “una

ontología sirve a un proposito diferente que un estado de una base de

conocimiento”. Mientras que las instancias contenidas en las ontologías

pueden ser consideradas como conocimiento compartido en el dominio,

las instancias contenidas en una base de conocimiento “pueden incluir el

conocimiento necesario para solucionar un problema o contestar preguntas

arbitrarias sobre un dominio”. Esta aproximación facilita la

conceptualización de aquellos repositorios que, con diferentes objetivos,

almacenan instancias de una misma ontología, lo cual no es inusual en la

Web Semántica o en la Web de Datos.

314 Annex H. Resumen en español

H.2.2. ESTRUCTURA

Una vez clasificados los requisitos de la aplicación, el siguiente paso

es la definición de una estructura de la aplicación, que represente los

principales modulos software de la SRIA y sus funcionalidades. La

Figure H.17 representa un esquema con la propuesta de aplicación SRIA

incluyendo las asocicaciones con otros componentes de la Web.

Figure H.17. Esquema de la estructura de una Semantic Rich Internet Application.

De forma similar a las RIA, las SRIA se desarrollan utilizando una

arquitectura cliente-servidor cuyos clientes, que contienen interfaces de

usuario ricas, invocan los servicios ofertados por los servidores por

medio de procesos de comunicacion asíncronos. De esta forma, los

clientes y los servidores pueden ser totalmente desacoplados.

El servidor SRIA reusa parte de los componentes originales de la

RIA, más específicamente, aquellos componentes que realizan las

operaciones básicas sobre datos:

Model-Driven Development of Rich Internet Applications on the Semantic Web 315

1) Base de datos, que gestiona el almacenamiento persistente de los

datos.

2) Lógica de negocio, que incluye todos los componentes que

realizan las principales tareas de la aplicación y gestionan los

datos recuperados de la base de datos.

3) Interfaz de servicios Web, que ofrece un conjunto de servicios

desde el servidor a la interfaz que usuario. Dichos servicios

proporcionan acceso a los datos del servidor y a las funciones de

la lógica de negocio.

En cuanto a los clientes SRIA, sus interfaces reutilizan la mayor parte de

los componentes de las interfaces de usuario de las RIA tradicionales. En

base a la tecnológica de implementación, el cliente (S)RIA puede ser

clasificado en dos categorías: orientado a plugin (Figure H.17, SRIA) o

orientado al navegador (SRIA-2), de la misma forma que los clientes RIA

tradicionales. La clasificación de los clientes RIA se explicó en el

apartado 2.1.1 (página 14).

Como muestra la figura, a parte de los módulos heredados de las

RIA, las SRIA incluyen un conjunto de nuevos módulos software para

satisfacer los requerimientos propuestos. Estos módulos realizan

funciones relacionadas con la reutilización de conomiento. Los módulos

pueden ser descritos de la siguiente forma:

4) Base de conocimiento (módulo de servidor). Este módulo

gestiona la base de conocimiento de la aplicacion, la cual

almacena las instancias de la ontologia usada por la aplicacion

(basada en RDF, Resource Description Framework). Dada la

necesidad de reutilizar conocimiento de la Web Semántica, las

SRIA necesitan una base de conocimiento, que puede ser

implementada sobre la base de datos existente.

5) Servicio de Linked data (módulo de servidor). Este módulo

ofrece un servicio para acceder a parte del conocimiento

almacenado en la base de conocimiento de la SRIA. En este caso,

esta aproximación esta alineada con los principios de Linked Data

y el protocolo SPARQL para RDF (World Wide Web Consortium,

2008b). No obstante, en función de los requisitos de la aplicación,

esta interfaz podría ser cambiada por otra, por ejemplo, basada

en servicios Web semánticos. Dado que la estructura de la

consulta puede afectar de forma directa el rendimiento del

316 Annex H. Resumen en español

servicio, en esta propuesta, el servicio SPARQL puede limitar el

acceso a un determinado número de clases o instancias de una

clase en base a las preferencias de los desarrolladores.

6) Cliente de servicios de la Web Semántica (módulo de servidor).

Este cliente es en realidad una combinación de diferentes tipos

de clientes: servicios Web (SOA, RES), servicios Web semánticos

y servicios de Linked Data. Este modulo posibilita el acceso bajo

demanda a otras ontologías y bases de conocimientos de la Web

(incluso a otras SRIA).

7) Generador de anotaciones semánticas (módulo de cliente,

interfaces orientadas al navegador). En SRIAs orientadas al

navegador, el cliente puede incluir un módulo software que

integre anotaciones RDFa, que enlacen el contenido mostrado en

la interfaz de usuario con las instancias de ontología contenidas

en la base de conocimiento o en fuentes de conocimiento

externas. En el caso de SRIAs orientadas a plug-in, los usuarios

podrían acceder a este conocimiento a través del servicio de

Linked Data o the la vista HTML+RDFa, generada por el módulo

siguiente.

8) Generador de la interfaz HTML (módulo de servidor). Este

módulo genera una representación HTML de las instancias de

ontologías contenidas en la base de conocimiento. Esta vista esta

anotada utilizando código RDFa, que hace referencia a las

instancias almacenadas en la base de conocimiento. A diferencia

de las interfaces RIA, esta interfaz puede ser fácilmente

procesada por los buscadores Web. El punto de acceso a esta

interfaz es la URL incluida en la cabecera de la página Web

HTML que contiene al cliente RIA. En esta intefaz, la

comunicación entre el cliente y el servidor de la SRIA sigue un

proceso síncrono, al igual que en las interfaces Web tradicionales.

H.2.3. CASOS DE ESTUDIO

Las RIA semánticas con una plataforma genérica para el desarrollo

de diferentes aplicaciones que ofrece una solution independiente de la

tecnologia a los principales problemas de las RIA. La evaluación de la

Model-Driven Development of Rich Internet Applications on the Semantic Web 317

propuesta fue realizada por medio del desarrollo de un conjunto de

casos de estudio. El análisis cualitativo de las aplicaciones desarrolladas

ayudo a mejorar la aproximación en un proceso iterativo. Cada uno de

los casos de estudios fue validado de forma externas en conferencias

nacionales e internacionales, así como en revistas internacionales. Este

apartado introduce los cuatro casos de estudio desarrollados en el

proceso de evaluación:

1) El desarrollo de un reproductor multimedia, inspirado por el

caso de studio presentado por Brambilla y Facca (Brambilla and

Facca, 2007). Este caso de estudio fue presentado inicialmente por

Hermida et al. (Hermida et al., 2011b) y se describe en el Annex

C.

2) El desarrollo de una red social en la Web Semántica, tal y como

definen Kinsella et al. (Kinsella et al., 2009). Los detalles de esta

aplicación se encuentran en el apartado 3.4.1. Este caso de

estudio fue presentado inicialmente por Hermida et al. (Hermida

et al., 2011a)

3) El desarrollo de una aplicación SRIA orientada a la Inteligencia

de Negocio. La aproximación SRIA también fue aplicada en el

campo de la Inteligencia de Negocio en un nuevo caso de estudio

que consistió en el desarrollo de una aplicación para la gestión de

empleados y procesos por medio de una red social. Este caso se

describe en el apartado 3.5.2.

Los casos de estudio fueron desarrollados utilizando la plataforma

.NET (C#) y, en especial, los frameworks Windows Communication

Foundation (WCF, para los components de servidor) y Silverlight (para

los componentes de cliente).

H.3. UNA METODOLOGÍA PARA EL DESARROLLO DE

SEMANTIC RICH INTERNET APPLICATIONS

Durante la última década, las metodologías de desarrollo Web

dirigidas por modelos han probado su validez para llevar a cabo todas

las fases del desarrollo de aplicaciones Web, incluso para RIA,

facilitando el diseño y la generación sistematica de aplicaciones Web

gracias a las herramientas CASE. Este tipo de metodologías puede ser

318 Annex H. Resumen en español

una solución apropiada para el desarrollo de SRIA, dada la complejidad

de su estructura, ya que pueden reducir el coste de desarrollo en

términos de tiempo y recursos, minimizando de esta forma el riesgo de

que el proyecto de desarrollo fracase. Estos factores son relevantes

cuando se desarrollan aplicaciones en un entorno empresarial.

Estas metodologías son relativamente modernas y uno de los

aspectos todavía no soportados es el desarrollo de RIAs capaces de

gestionar información proveniente de la Web Semántica. Para facilitar el

desarrollo de SRIAs, como segunda contribución, esta tesis presenta la

metodología Sm4RIA, que se basa en la metodología OOH4RIA (Meliá et

al. 2008), especializada en el desarrollo de RIAs tradicionales. El objetivo

de esta metodología es cubrir todas las fases del desarrollo de las SRIA:

desde el diseño de las entidades de datos y la interfaz de usuario hasta

la generación de los módulos software.

Para cumplir los requisitos de las SRIA, la metodología Sm4RIA

define nuevos procesos y artefactos, no incluidos en OOH4RIA:

(i) Dos nuevos metamodelos MOF, creados como una extensión del

OMG Ontology Definition Metamodel (Object Modeling Group

2009), que definen dos nuevos modelos ontológicos;

(ii) Un conjunto de transformaciones modelo a modelo que pueden

crear esbozos de los diferentes modelos Sm4RIA, los cuales

pueden ayudar a los diseñadores en el proceso de creación de un

modelo a partir otro;

(iii) Un conjunto de transformaciones modelo a texto que generan los

nuevos módulos SRIA a partir de los modelos Sm4RIA.

Asimismo, la metodología Sm4RIA extiende el proceso de desarrollo

de OOH4RIA:

(i) Incluyendo nuevos mecanismos de modelado a los modelos

funcionales de OOH4RIA como una extensión del metamodelo

MOF de OOH4RIA;

(ii) Adaptando las actividades que define OOH4RIA añadiendo

nuevas tareas y modificando las existentes.

La Figure H.18 muestra una vista preliminar del proceso de

desarrollo de Sm4RIA utilizando un diagrama de clases SPEM2, acorde a

una extensión del metamodelo de SPEM2 que incluye aspectos no

Model-Driven Development of Rich Internet Applications on the Semantic Web 319

considerados en el metamodelo original, p.e., la representación de los

motores de transformación (llamados Model Transformers en el modelo)

utilizando el estereotipo ProcessRole y la representación de las

transformaciones MDA utilizando una nueva colección de estereotipos

que extienden la metaclase TaskDefinition, definida en SPEM, p.e.,

PIM2PIM, PIM2PSM, etc.

Figure H.18. Diagrama SPEM2 con el proceso de desarrollo Sm4RIA.

Los siguientes apartados explican cada uno de los componentes que

aparecen en la figura: los roles de usuario, los modelos y el proceso de

desarrollo. El resultado final del proceso, es decir, la SRIA, ha sido

explicado en el apartado anterior.

H.3.1. LOS ROLES DE USUARIO EN SM4RIA

Hay cinco tipos de rol de usuario involucrados en las diferentes

actividades del proceso (ver Figure H.18):

a) Diseñador del servidor. El diseñador del servidor crea los

componentes del servidor de la SRIA, p.e., la base de datos, los

servicios web, etc.

b) Diseñador de la interfaz de usuario. El diseñador de la interfaz

de usuario realiza aquellas tareas relacionadas con la

construcción de la interfaz de usuario de la SRIA y la invocación

de los servicios que provee el servidor SRIA.

<<WorkDefinition>>
“Proceso de desarrollo Sm4RIA”

Transformador
modelo a modelo

Diseñador
del

servidor

Transformador
modelo a texto

Diseñador de
ontologías

Diseñador
de la interfaz

Diseñar el
servidor SRIA

Diseñar el
cliente SRIA

Generar
una SRIA

Modelo de
Dominio

Modelo de
Navegación
Extendido

Modelo de
Orquestación

Extendido

Modelo de
Presentación

Extendido

Modelo
Ontológico de
Visualización

<<performs,
primary>>

<<output,
mandatory>>

<<output,
mandatory>>

<<output,
mandatory>>

<<input,
mandatory>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

<<output,
mandatory>>

<<performs,
primary>>

<<input, mandatory>>

<<input, mandatory>>

<<input, mandatory>>

<<input,
mandatory>>

<<input,
mandatory>>

<<output,
mandatory>>

<<output,
optional>>

SRIA

<<performs,
primary>>

Modelo de
Dominio

Extendido

<<output,
mandatory>>

320 Annex H. Resumen en español

c) Diseñador de ontologías. El diseñador de ontologías realiza las

tareas relacionadas con la interconexión de la aplicación con

fuentes de conocimiento externo. Estas tareas pueden ser

realizadas también por el diseñador del servidor dependiendo de

su perfil.

d) Transformador de modelo a modelo. Este rol corresponde al

motor de transformaciones capaz de convertir un modelo en otro.

e) Transformador de modelo a texto. Este último rol corresponde al

motor de transformaciones capaz de convertir el contenido de un

modelo en código fuente de software.

H.3.2. LOS MODELOS SM4RIA

Son seis los modelos involucrados en el proceso de desarrollo de una

SRIA, que modelan diferentes cuestiones:

1. Modelo de dominio (Domain Model, modelo independiente de la

plataforma). El modelo de Dominio, importado de OOH4RIA sin

ningún cambio, define las principales estructuras de datos de la

aplicación (en términos de clases y propiedades), las relaciones entre

ellas y las operaciones que pueden realizarse. Las operaciones que se

pueden definir se clasifican en dos grupos: operaciones CRUD

(crear, leer, actualizar y borrar), que son las operaciones básicas

sobre los datos, y las operaciones personalizadas o custom, que

pueden ser definidas libremente por el diseñador. Asimismo, el

modelo de Dominio permite definir mapeos entre los objetos de

datos y las tuplas de la base de datos.

2. Modelo extendido de dominio (Extended Domain Model, EDM;

modelo independiente de la plataforma). El EDM define ontologías

ligeras que pueden representar las entidades del dominio de la

aplicación y las relaciones entre ellas. Además, este modelo puede

capturar las ontologías importadas desde otras fuentes y las bases de

conocimiento disponibles para cada una de las ontologías

modeladas. Los objetivos específicos de este modelo son los

siguientes:

a. Representar la ontología de dominio de la aplicación;

b. Establecer relaciones entre la ontología de la SRIA y

ontologías externas, alineando de esta forma los elementos

Model-Driven Development of Rich Internet Applications on the Semantic Web 321

del dominio con elementos externos (o incluso reutilizando

elementos externos en ontologías locales);

c. Definir las fuentes externas que serán disponibles a los

usuarios de la SRIA.

d. Definir las reglas de mapeo entre los elementos de la

ontología y los datos definidos en el modelo de Dominio;

e. Definir operaciones entre las instancias de la ontología (p.e.,

para filtrar búsquedas de instancias externas).

3. Modelo de navegación extendido (Extended Navigational Model,

ENM; modelo independiente de la plataforma). El modelo de

navegación extendido es una extensión del modelo de navegación de

OOH4RIA. El ENM especifica la forma por la cual los usuarios son

capaces de acceder a los datos y a las instancias de ontología de la

aplicación, definidas en los dos primeros modelos. Para cada rol de

usuario de la aplicación, es posible definir un modelo de navegación

diferente que filtre la información del servidor y los servicios que

pueden ser invocados. El ENM también captura la forma en la que

las SRIA publican su propio conocimiento de forma estructurada y

conectan su información con otras fuentes de conocimiento de la

Web.

4. Modelo de presentación extendido (Extended Presentation Model,

EPM, modelo específico de la plataforma). El EPM extiende el

modelo de presentación de OOH4RIA. Este modelo define la

estructura del cliente de la SRIA representando las pantallas, paneles

y widgets de la interfaz de usuario así como sus principales

características: posición, tamaño y estilo (fuente, color, color de

fondo, etc.). En contraste con el resto de modelos, este modelo es

WYSIWYG, en el cual la visualización de la interaz de usuario es

completamente equivalente a la de la interfaz posteriormente

generada. En este modelo es posible incluir anotaciones basadas en

las ontologías de dominio sobre los elementos estáticos de la interfaz

de usuario.

5. Modelo de orquestación extendido (Extended Orchestration Model,

EOM; modelo específico de la plataforma). El EOM es una extensión

del modelo de orquestación de OOH4RIA. El EOM está

representado como una colección de reglas Evento-Condición-

Acción que especifican el comportamiento de la interfaz de usuario

322 Annex H. Resumen en español

acorde con los eventos producidos por los usuarios durante la

interacción con la interfaz de usuario. Este modelo conecta los

eventos producidos en la interfaz con las acciones que puede realizar

el servidor, especificadas en el EDM y ENM.

6. Modelo de visualización ontológico (Visualisation Ontology Model,

VOM; modelo independiente de la plataforma). El modelo de

visualización ontológico combina el conocimiento contenido en el

EPM y en el EOM para crear las instancias de la ontología de

visualización, previstas en el modelo de anotación para las SRIA.

Este modelo debería ser creado automáticamente por medio de una

transformación modelo a modelo.

H.3.3. EL PROCESO DE DESARROLLO SM4RIA

De forma similar a OOH4RIA, el proceso de desarrollo Sm4RIA esta

dividido en tres actividades principales, que agrupan tareas y elementos

de modelado con una misma finalidad:

1. Diseñar los elementos del servidor SRIA;

2. Diseñar los elementos del cliente SRIA; y

3. Generar la aplicación SRIA por medio de un conjunto de

transformaciones modelo a texto.

El proceso de desarrollo Sm4RIA comienza con el diseño del servidor

SRIA. En esta actividad, los diseñadores modelan todos los aspectos que

serán usados durante el proceso de generación de la última actividad. La

primera tarea de esta actividad, llevada a cabo por el diseñador del

servidor, es la definición del modelo de Dominio, que, como se ha

descrito en el apartado anterior, especifica las principales estructuras de

datos de la aplicación, las relaciones entre ellas y las operaciones que se

pueden aplicar sobre las mismas. A continuación, el diseñador de

ontologías crea el EDM, que contiene la ontología de dominio, define

que ontologías y bases de conocimiento externas son importadas y

mapea las instancias de ontología y las estructuras de datos de la SRIA.

Ambos modelos de dominio son la entrada de la tarea de definición

del modelo de navegación, en la que el diseñador del servidor especifica

la forma en la cual los usuarios serán capaces de navegar por las

estructuras de datos y las instancias de ontologías (locales o externas).

Asimismo, el diseñador define que operaciones del servidor podrán ser

Model-Driven Development of Rich Internet Applications on the Semantic Web 323

invocadas por la interfaz de usuario o por clientes externos. En esta tarea

el diseñador también concreta que servicios externos de la Web

Semántica podrán ser invocados, previamente definidos en el EDM.

En la segunda actividad, se diseña el cliente SRIA y la interfaz de

usuario. En una primera fase, el modelo de navegación extendido se

transforma en el EPM de forma automática, y posteriormente, en el

EOM por medio de dos transformaciones modelo a modelo llamadas

Nav2Pres y Nav&Pres2Orch. Estas transformaciones son opcionales y

crean el esqueleto de ambos modelos, que tendrá que ser completado

por el diseñador de la interfaz. A continuación, en una segunda fase, el

diseñador de ontologías (o el diseñador de la interfaz, dependiendo de

su perfil) puede incluir anotaciones semánticas en la interfaz y enlazar

los elementos de la interfaz con las fuentes de conocimiento externas,

definidas en el EDM. Una vez completados el EPM y el EOM, el modelo

ontológico de visualización es generado a partir de la información

contenida en ellos por medio de la transformación modelo a modelo

Pres&Orch2Visu, combinando de esta forma información acerca de la

estructura y del comportamiento de la interfaz.

Finalmente, en la última actividad del proceso, los modulos software

de la SRIA son generados por medio de un conjunto de

transformaciones modelo a texto a partir de los modelos obtenidos en

las dos primeras actividades. Estos procesos no pueden generar toda la

aplicación a partir de los modelos, p.e., las operaciones personalizadas

no pueden ser generadas automáticamente. Parte del código generado

tendrá que ser completado por los desarrolladores.

H.4. SM4RIA EXTENSION FOR OIDE

Para evaluar la metodología Sm4RIA y facilitar a su vez su adopción,

todos sus elementos fueron implementados como una extensión de la

herramienta software OIDE 54 llamada Sm4RIA Extension for OIDE

(Hermida, Meliá, J.-J. Martinez, et al. 2012; Hermida, Meliá, Montoyo, et

al. 2012b), que es la última contribución de esta tesis. Esta herramienta

implementa los modelos Sm4RIA y automatiza los procesos de

54 OOH4RIA Integrated Development Environment, Entorno de Desarrollo Integrado OOH4RIA

324 Annex H. Resumen en español

transformación (modelo a modelo y modelo a texto) necesarios para la

generación de SRIAs.

OIDE es una aplicación basada en el entorno Eclipse, es decir, está

desarrollada como un conjunto de plugins de Eclipse (la Figure H.19

muestra la pantalla principal de la aplicación). Esta aplicación define los

metamodelos OOH4RIA usando el metamodelo EMOF y su sintaxis

gráfica concreta por medio de los framework EMF y GMF. En OIDE los

modelos de presentación y orquestación están integrados en un único

modelo: el modelo de presentación OIDE.

La extensión definida sobre esta herramienta fue desarrollada para

evaluar de forma cualitativa la validez de la metodología Sm4RIA. Para

ello, en cada ciclo de desarrollo de la herramienta, se desarrolló uno de

los casos de estudio para detectar posibles carencias o inconvenientes

del método. Cuando el desarrollo se encontraba en sus etapas finales, la

herramienta fue evaluada externamente en dos foros (uno nacional y el

otro internacional), en los cuales las opiniones vertidas por los expertos

fueron tomadas en consideración para refinar la metodología y la

herramienta software que la implementa.

Figure H.19. Pantalla principal de la herramienta OIDE y de la extensión para Sm4RIA.

Esta herramienta implementa los editores de los modelos Sm4RIA, las

reglas de transformación entre modelos y los flujos de trabajo que

gestionan la generación de las aplicaciones SRIA utilizando los

Model-Driven Development of Rich Internet Applications on the Semantic Web 325

frameworks que provee el entorno Eclipse (p.e., EMF, GMF, Xtext,

Xpand, QVT operational o MWE). Los siguientes apartados describen

brevemente las nuevas funcionalidades y los nuevos elementos

incorporados en la herramienta.

H.4.1. EDITORES DE MODELOS

Dos nuevos editores de modelos han sido implementados: el editor

del modelo extendido de dominio y el editor del modelo ontológico de

visualización; y dos editores han sido extendidos a partir de la

implementación para la metodología OOH4RIA: el editor para el

modelo de navegación extendido y el editor del modelo de presentación

OIDE. Además, nuevos asistentes han sido desarrollados para ayudar a

los usuarios en la creación de los modelos. Los editores incluidos en la

herramienta son los siguientes:

 Extended Domain Model, desarrollando utilizando el framework

EMF (para la sintaxis abstracta y concreta del metamodelo) y

Xtext (para implementar una segunda sintaxis concreta del

metamodelo).

 Extended Navigational Model, desarrollado utilizando los

framework EMF (para la sintaxis abstracta del metamodelo) y

GMF (para la sintaxis concreta del metamodelo.

 Extended OIDE Presentation Model, desarrollado utilizando los

framework EMF (para la sintaxis abstracta del metamodelo) y

GMF (para la sintaxis concreta del metamodelo.

 Visualisation Ontology Model, desarrollado utilizando los

framework EMF (para la sintaxis abstracta y concreta del

metamodelo).

 OOH4RIA Domain Model. Reusado de OIDE sin modificación.

H.4.2. TRANSFORMACIONES

Sm4RIA extension for OIDE implementa todos los procesos de

transformacion del proceso de desarrollo Sm4RIA:

 Transformaciones modelo a texto. Para generar los componentes

software de las SRIA, esta extensión incluye los procesos de

transformación que se definen en la tercera actividad del proceso

326 Annex H. Resumen en español

Sm4RIA. Para definir las reglas de transformación utiliza el

lenguaje Xpand, que es interpretado por el motor de

transformaciones Xpand de Eclipse.

 Transformaciones modelo a modelo. La herramienta

implementa las reglas de transformación definidas en QVT

operational y las ejecuta utilizando el motor de transformaciones

QVTo de Eclipse. Las transformaciones incluidas en esta

herramienta son las siguientes:

o Transformación Domain2EDM: Modelo de dominio –

modelo de dominio extendido.

o Transformación EDM2Domain (beta): Modelo de dominio

extendido – Modelo de dominio.

o Transformación EDM2ENM: Modelo de dominio

extendido – Modelo de navegación extendido.

o Transformación Navigation2Presentation: Modelo de

navegación extendido – Modelo de presentación.

H.4.3. NUEVOS PROCESOS

Los nuevos artefactos y procesos presentados en los dos apartados

anteriores facilitan la adaptacion de la metodologia Sm4RIA a nuevos

procesos de modernización y generación. Los procesos más relevantes

desarrollados son los siguientes:

 Generación automática de interfaces de usuario para administradores.

Usando las transformaciones modelo a modelo ya

implementadas es posible generar automáticamente (o al menos

la mayor parte de los módulos software) de una aplicación SRIA

a partir del modelo de dominio o del modelo de dominio

extendido.

 Generación de interfaces RIA para fuentes de Linked Data. Por medio

de dos nuevas transformaciones texto a modelo y modelo a

modelo que obtienen el modelo de dominio extendido a partir de

una ontología OWL, es posible especificar un servidor RIA que

gestione los datos externos de una fuente de Linked Data así

como un cliente RIA que los visualice.

Model-Driven Development of Rich Internet Applications on the Semantic Web 327

H.5. CONCLUSIONES Y TRABAJO FUTURO

H.5.1. CONCLUSIONES

En base a los contenidos de esta tesis y a las contribuciones que se

han presentado, este apartado trata de contestar las preguntas

planteadas en la introducción, formuladas a partir de los problemas

detectados.

RQ1 – ¿Es posible mejorar la interoperabilidad de las Rich Internet

Applications con otros sistemas software (como, por ejemplo, los

buscadores Web) usando técnicas, tecnologías y recursos de la Web

Semántica?

Esta pregunta de investigación fue afirmativamente contestada con

la propuesta de Sematic Rich Internet Application, presentada en el

segundo apartado de este anexo. Las SRIAs han sido diseñadas como

una extensión de las RIA tradicionales que utilizan las tecnologías de la

Web Semántica para representar y compartir el conocimiento que

utilizan en la Web. El uso de los principios de Linked Data, que son un

estándar de-facto soportado por el W3C, y las tecnologías para

representar y compartir conocimiento basadas en la representación de

ontologías (en OWL) facilitan que el conocimiento compartido pueda ser

fácilmente reutilizado. Esta aproximación permite que los clientes Web

puedan acceder a todo el contenido de la SRIA de una forma

independiente a la tecnología de implementación de la SRIA,

solventando la principal limitación de las RIA tradicionales.

La principal limitación de la solución es que para su diseño no se han

considerado aspectos relacionados con el rendimiento de la aplicación

en escenarios reales con diferentes cargas de trabajo. A pesar de que

para la evaluación de la plataforma SRIA se utilizaron casos de estudio

reales, sería necesario medir empíricamente el rendimiento de la

aplicación bajo diferentes condiciones y consultas de información para

validar la arquitectura software propuesta.

Otro aspecto no evaluado de forma empírica en esta tesis es el

beneficio del modelo de anotación propuesto para la generación de

anotaciones semánticas en las SRIA.

328 Annex H. Resumen en español

RQ2 – ¿Cómo pueden las actuales metodologías dirigidas por modelos ser

extendidas para desarrollar la solución propuesta a los problemas

detectados en las Rich Internet Applications?

Para contestar a esta segunda pregunta de investigación, se diseñó la

metodología Sm4RIA, como una extensión de la metodología OOH4RIA,

para el desarrollo de la propuesta SRIA. La aproximación Sm4RIA

introduce un conjunto de artefactos y procesos para el desarrollo de

SRIAs, incorporando las primitivas necesarias para modelar los

componentes de la SRIA que permiten representar y compartir

conocimiento en la Web.

El desarrollo de los casos de estudio propuestos y el uso de la

metodología en dos proyectos, que siguen en marcha, ha demostrado los

potenciales beneficios de la metodología:

Dado que es una metodología de desarrollo dirigido por modelos: (a)

reduce el coste de desarrollo y mantenimiento de las SRIA y (b)

facilita la definición de la aplicación SRIA completa en tiempo de

diseño;

(c) facilita que desarrolladores no expertos utilicen las bases de

conocimiento disponibles en la Web y puedan crear nuevas;

(d) simplifica la creación y explotación de servicios de Linked Data

en RIA. La simplicidad de los procesos y los modelos definidos

deberían reducir la curva de aprendizaje y permitir que

diseñadores no expertos puedan utilizar las tecnologías de forma

sencilla.

RQ3 – ¿Cómo se pueden implementar las soluciones propuestas en una

herramienta software CASE?

Esta última pregunta de investigación fue contestada con la

implementación de la metodología Sm4RIA en la herramienta software

llamada Sm4RIA extension for OIDE. Esta herramienta extiende las

funcionalidades de la herramienta OIDE, que implementa la

metodología OOH4RIA. El hecho de reusar una herramienta existente y

el framework para modelado de Eclipse facilitó el desarrollo de los

modelos y las reglas de transformación.

Model-Driven Development of Rich Internet Applications on the Semantic Web 329

La herramienta fue evaluada de forma iterativa conjuntamente con

los elementos de la metodología con el desarrollo de los casos de

estudio.

Para resumir las contribuciones de esta tesis, la Table H.10 asocia los

objetivos introducidos en el primer apartado de este resumen,

planteados a partir de las preguntas de investigación, y las tareas

realizadas para poder cumplirlos.

Table H.10. Resumen de las tareas y contribuciones realizadas asociadas a cada objetivo.

Pregunta de

investigación
Objetivo Descripción Tareas realizadas

RQ1 O1 Mejorar la interoperabilidad de

las Rich Internet Applications

con los sistemas de la Web que

usan el texto como entrada (e.g.,

buscadores o lectores para

invidentes).

Desarrollo de una propuesta de

Semantic Rich Internet Application.

O1.1 Mejorar la exportabilidad de los

datos contenidos en Rich

Internet Applications.

 Las SRIA incluyen nuevos

módulos software en su

servidor para compartir

información como Linked Data

(p.e., la base de conocimiento o

el servicio SPARQL) de una

forma estándar.

 Las SRIA también pueden

incluir interfaces HTML con

anotaciones semánticas

basadas en el modelo de

anotación propuesto.

O1.2 Mejorar el acceso a la

información relativa a los

elementos multimedia.

Las ontologías de dominio y

visualización, incluidas en el

modelo de anotacion propuesto

para las SRIA, pueden ser usadas

para compartir información de los

elementos multimedia por medio

de los módulos software.

O1.3 Reusar técnicas, tecnologías y

recursos ya existentes en la Web

Semántica.

 La propuesta SRIA reutiliza

parte de la arquitectura de la

Web Semántica y los principios

de Linked Data para compartir

datos por medio de Internet.

 El uso de ontologías para

representar el conocimiento

utilizado por una SRIA.

 El uso de los lenguajes

estándar OWL, RDF y

330 Annex H. Resumen en español

Pregunta de

investigación
Objetivo Descripción Tareas realizadas

SPARQL para la

representación de ontologías,

instancias de ontologías y

consultas a las bases de

conocimiento,

respectivamente.

O1.4 Desarrollar una colección de

casos de estudio para evaluar la

validez de la solución

propuesta.

 Desarrollo de un reproductor

multimedia como una SRIA.

 Desarrollo de una red social

como una SRIA.

 Desarrollo de una red social

para empresas como una SRIA.

RQ2 O2 Diseñar una metodología de

desarrollo software dirigido por

modelos para el desarrollo de la

solución propuesta.

Desarrollo de la metodología

Sm4RIA dirigida por modelos para

el desarrollo de SRIA.

O2.1 Facilitar el desarrollo de la

solución propuesta en O1.

Diseño de nuevos modelos en

Sm4RIA adaptados a las nuevas

características de las SRIA:

 El modelo extendido de

dominio, para el diseño de

ontologías de dominio.

 El modelo extendido de

navegación, para especificar la

forma en que las instancias de

la ontología son utilizadas por

la aplicación.

 Los modelos de presentación y

orquestación extendidos, para

la visualización de las

instancias importadas desde

fuentes externas.

Diseño de una colección de

transformaciones modelo a

modelo que acelera la creación de

los esqueletos de los modelos para

los diseñadores.

O2.2 Mejorar la mantenibilidad de la

solución propuesta en O1.

Al ser una metodología dirigida

por modelos, los cambios en los

requerimientos de una aplicación

sólo implicarían modificaciones

en los modelos y la regeneración

del código fuente.

El framework Xpand protege el

código personalizado cuando se

reinvocan las transformaciones

modelo a texto.

Model-Driven Development of Rich Internet Applications on the Semantic Web 331

Pregunta de

investigación
Objetivo Descripción Tareas realizadas

O2.3 Extender una metodología

existente para el desarrollo de

RIA.

Diseñar Sm4RIA como una

extensión de OOH4RIA,

especializada en el desarrollo de

RIA.

RQ3 O3 Implementar los elementos de la

metodología diseñada en una

herramienta software CASE.

Desarrollo de una herramienta

software llamada Sm4RIA extension

for OIDE, que implementa

Sm4RIA.

Evaluar la herramienta en

reuniones científicas.

H.5.2. TRABAJO FUTURO

A partir de las conclusiones obtenidas, en este último apartado, se

definen las principales líneas de trabajo futuro. Relacionadas con el

campo de la Web Semántica, las siguientes líneas de trabajo permanecen

abiertas:

 Evaluación empírica del modelo de anotación propuesto

utilizando un motor de búsqueda de la Web Semántica.

 Extender un cliente software de la Web Semántica para explotar

el modelo de anotación propuesto. Los motores de búsqueda

actuales no se ajustan totalmente a las características del modelo

propuesto.

 Evaluación empírica de la arquitectura de la SRIA basada en

parámetros relacionados con el rendimiento.

 Repetir los procesos de evaluación con la propuesta SRIA para el

campo de la Inteligencia de Negocio.

Relacionadas con el campo de la Ingeniería Web, las líneas de

investigación futura son las siguientes:

 Evaluación empírica de los elementos de la metodología Sm4RIA.

El objetivo es analizar diferentes parámetros relacionados con la

usabilidad y la mantenibilidad de los modelos con un grupo real

de desarrolladores con el objetivo de detectar limitaciones de la

metodología y facilitar su adopción en escenarios de empresa.

Estos experimentos ya han comenzado

332 Annex H. Resumen en español

 Adaptar el modelo de arquitectura de OOH4RIA a Sm4RIA para

poder personalizar la arquitectura de las SRIA generadas.

 Continuar el estudio de los procesos de modernización para la

generación automática de interfaces RIA. Este estudio se centrará

en los métodos de visualización de datos y en la adaptación de

las transformaciones modelo a modelo.

 Estudiar los procesos de modernización para modelar

aplicaciones para móviles o intefaces Web que hagan uso de la

información de las SRIA.

 Estudiar la definición de líneas de producto para la generación

de SRIA. Estas líneas podrían personalizar la generación a partir

de unas opciones predefinidas.

 Estudiar las ventajas y las limitaciones de los modelos con una

sintaxis concreta gráfica respecto a aquellos con una sintaxis

concreta textual.

Finalmente, existen algunas cuestiones relacionadas con la

herramienta software desarrollada que deberían ser estudiadas o

completadas:

 Completar la implementación de las transformaciones modelo a

texto para el caso de estudio de SRIA para Inteligencia de

Negocio.

 Completar la implementación de los procesos de modernización

explicados.

 Mejorar la usabilidad general de la herramienta. A parte de

comprobar que las funcionalidades necesarias han sido

implementadas, los aspectos relacionados con la usabilidad de la

herramienta deberían ser estudiados e implementar las mejoras

necesarias en el proceso de diseño y generación.

 Mejorar la usabilidad de los editores de los modelos para mejorar

la eficiencia de los desarrolladores y la integración entre los

editores de modelos y los procesos de transformación.

