
Programming 1 Lecture 8
Evaluating the temporary
cost of an algorithm

Programming 1 – Department CCIA 2

Objectives

● Understand the concept of efficiency of an
algorithm

● Learn how to analyse the temporary cost of an
algorithm

● Learn how to use the temporary cost as a
criterium to guide the design of an algorithmic
solution

Programming 1 – Department CCIA 3

Topics

1. Efficiency of an algorithm

2. Methods to calculate the efficiency

3. Temporary cost of an algorithm

4. Cost analysis by step counting

5. Exercises

Programming 1 – Department CCIA 4

Efficiency of an algorithm

● Sometimes there are several algorithms to
solve a given problem, which one must we
use?

● A criterium to choose an algorithm can be
its efficiency

● The efficiency of an algorithm is related to
the amount of resources needed by the
algorithm:
● Execution time
● Storing space

Which one
is the best?

In Programming 1, only the efficiency from the point of view of the
execution time will be studied

Programming 1 – Department CCIA 5

Execution time of an algorithm

● The execution time of an algorithm depends on:
● The size of data to be processed
● Computer speed
● Quality of the code generated by the compiler or

interpreter

Programming 1 – Department CCIA 6

Topics

1. Efficiency of an algorithm

2. Methods to calculate the efficiency

3. Temporary cost of an algorithm

4. Cost analysis by step counting

5. Exercises

Programming 1 – Department CCIA 7

Empirical or a posteriori method

● It consists of programming the
algorithms and testing them on a
computer. The time and space are
then measured

● Disadvantages
● It does not allow to compare the

algorithm in several supports
● It requires the effort of programming

each algorithm to choose the best one
● The comparison can only be done for

few problem sizes

Programming 1 – Department CCIA 8

Empirical method: example

● Empirical measurement of temporary efficiency
for several sorting algorithms for arrays

10.000 50.000 100.000 500.000

Insertion 0,34 9,38 37,82 918

Selection 0,70 18,19 73,65 1740

Bubble 0,88 22,24 98,27 2068

Shell Sort 0,01 0,04 0,06 0,32

Quick Sort 0,01 0,02 0,04 0,23

Heap Sort 0,01 0,02 0,05 0,27

Array size

Sorting
algorithms

Execution
time in

seconds

Programming 1 – Department CCIA 9

Analytical or a priori method

● It consists of mathematically calculating
the amount of resources consumed by
the algorithm according to the problem
size

● Advantages
● It consists of analysing the algorithm

instead of the program → the results are
independent from the machine or the
language

● The mathematical expression for the
execution time depends on the problem
size

● The algorithms are not programmed

Programming 1 – Department CCIA 10

Topics

1. Efficiency of an algorithm

2. Methods to calculate the efficiency

3. Temporary cost of an algorithm

4. Cost analysis by step counting

5. Exercises

Programming 1 – Department CCIA 11

Problem size

● The problem size is any parameter from which
the problem complexity can be expressed
● It is generally related to the volume of input data to

be managed

● Examples

Problem Problem size

Array sorting Amount of elements in the
array

Searching an element in a
two-dimensional array

Amount of elements in the
array (=rows*columns)

Calculate the factorial of a
number

The value of the number

Programming 1 – Department CCIA 12

Calculating the temporal complexity of an algorithm

● T(n): Function of the problem size. It returns the
execution time of an implementation of the
algorithm for a given problem size n

● T(n) is calculated counting the number of
elemental operations or program steps done by
the algorithm

● The result of T(n) is so independent from the
specific machine

Programming 1 – Department CCIA 13

Example

● Which algorithm is more efficient for the same
problem, if T

1
(n) = 100n2 and T

2
(n) = 5n3 ?

n 100n2 5n3

1 100 5

… … …

10 10000 5000

… … …

20 40000 40000

… … …

30 90000 135000

… … …

40 160000 320000

… … …

Problem size (n)

Temporary complexity of two algorithms

A
m

o
u

n
t

o
f

el
em

en
ta

l o
p

er
at

io
n

s
T

(n
)

100n2 = 5n3

100/5 = n3/ n2

20 = n
100n2

5n3

Programming 1 – Department CCIA 14

Asymptotic analysis

● It is the study of complexity for large problem sizes

● It allows the comparison of temporary cost of the
algorithms according to their magnitude order of
complexity

● The temporary complexity is analysed independently
from the computer speed where their implementation
is run

● The complexity functions that only differ from a
constant factor are considered identical in terms of
temporary cost (asymptotic criterium)

Programming 1 – Department CCIA 15

Complexity order of an algorithm

● An algorithm requires a time of order T(n) to be executed,
if a positive constant c exists and there is an
implementation of the algorithm so that it can solve all the
cases of size n in a time ≤ cT(n)

● T(n) depends on the algorithm, c depends on the
implementation

● Example

● The execution time of an algorithm is

 T(n) = 32n2 + 78n +54

● As n≤n2 and 1≤n2 for every value of n≥1

 T(n) = 32n2 + 78n +54 < 32n2 + 78n2 +54n2 = 164n2

● This algorithm has a quadratic execution time, that is, in n2

order

Programming 1 – Department CCIA 16

Complexity orders and efficiency

● The most common complexity orders, sorted
from higher to lower efficiency, are:

Order T(n)

logarithmic log(n)

linear n

quasi-lineal n log(n)

quadratic n2

polynomial (a > 2) na

exponential (a ≥ 2) an

factorial n!

Programming 1 – Department CCIA 17

Exercise

● We can use a computer during 1000 seconds to solve a
given problem. 4 different algorithms can be executed, in
which execution times in seconds are T(n)=100n, T(n)=
5n2, T(n)=n3/2 and T(n)=2n

T(n) n2

100n 100

5n2 45

n3/2 27

2n 12

Which is the maximum problem
size that can be solved for each
algorithm?

If the computer speed is increased
10 times, which are the sizes now?

T(n) n1

100n 10

5n2 14

n3/2 12

2n 10

As long as the computer speed is increased,
how do the problem sizes increase?

T(n) n2 / n1

100n 10

5n2 3,2

n3/2 2,3

2n 1,3

Programming 1 – Department CCIA 18

Temporary cost for several complexity orders

Problem size (n)

A
m

o
u

n
t

o
f

el
em

en
ta

l o
p

er
at

io
n

s
T

(n
) 2n

n3 / 2
5n2

100n

Temporary cost of the 4 algorithms

Programming 1 – Department CCIA 19

Worst case, best case and average case

● Worst case: when the higher amount of elemental operations are
needed

● Best case: when the lower amount of elemental operations are needed

● Average case: when the amount of elemental operations is the
expected value (the probability distribution of the input data must be known)

● Example: sequential search of an element in an array
● Best case: the element is in the first position (one comparison)

● Worst case: the element is in the last position (n comparisons)

● Average case: the element is in a middle position (n/2 comparisons)

Usually (we will do so in P1), in the analytical method for studying the complexity of an algorithm, the most
important is the worst case. Then, the asymptotic criterium is used to obtain the temporary complexity,
expressed in terms of the mathematical notation O()

X

X

X

Programming 1 – Department CCIA 20

Topics

1. Efficiency of an algorithm

2. Methods to calculate the efficiency

3. Temporary cost of an algorithm

4. Cost analysis by step counting

5. Exercises

Programming 1 – Department CCIA 21

Program steps

● A program step is an elemental operation that is
performed in an algorithm

● To analyse the temporary cost of an algorithm,
the function T(n) is calculated counting the
amount of program steps done by this
algorithm

Programming 1 – Department CCIA 22

Program steps: elemental operations

● The following are the elemental operations and
the amount of steps

Statement Steps

Assignment statement S; Cost(S) = 1 step

Input statement S; Cost(S) = 1 step

Output statement S; Cost(S) = 1 step

Return statement in a function S; Cost(S) = 1 step

Logic expression E (not included in the
previous statements)

Cost(E) = 1 step

Arithmetic expression E (not included in the
previous statements)

Cost(E) = 1 step

Programming 1 – Department CCIA 23

Program steps: control statements

Statement Steps

Sequence of statements
 {S

1
; S

2
}

Cost(S
1
) + Cost(S

2
)

Selection statement
 if (condition) {S

1
} else {S

2
}

Cost(condition) +
MAXIMUM (Cost(S

1
),Cost(S

2
))

Loop with initial condition
 while (condition) {S}

[Cost(condition) + Cost(S)]
* num_iterations + Cost(condition)

Loop with final condition
 do {S} while (condition)

[Cost(S) + Cost(condition)]
* num_iterations

Counter-controlled loop
 for (init; cond; incr) {S}

Cost(Init) + [Cost(cond) + Cost(S)
+ Cost(incr)] * num_iterations +
Cost(cond)

Module call from an elemental operation
 module_name (...)

Cost(module) + 1

Programming 1 – Department CCIA 24

Example 1: calculate the temporary cost

main() {
 int a, n, c;

 cin >> n;
 a = 1;
 while (a <= n) {

C = Calculate(n);
 a = a+1;
 }
}

int Calculate(int n) {
 int cal, i;

 cal = 1;
 for (i=1; i <= n; i++) {
 cal := cal * n;
 }
 return(cal);
}

1
1

1

1

1

1

T(n) = Cost(main) = 2 + Cost(while) =

2+3n2+7n+1 =3n2+7n+3 O(n2)

Cost(while) = [1+1+Cost(Calculate)+1]*n+1 =

[1+1+3n+4+1]*n+1 = 3n2+7n+1

Cost(Calculate) = 2 + Cost(for) = 2+3n+2 =
3n+4

Cost(for) = 1+[1+1+1]*n +1 = 3n+2

Programming 1 – Department CCIA 25

Example 2: calculate the temporary cost

int Binary_search(int name_array[], int elem) {
 int pos_init, pos_end, pos_middle;
 bool found;

 pos_init = 0;
 pos_end = SIZE_MAX -1;
 found = false;
 while (pos_init <= pos_end && ! found) {
 pos_middle = (pos_init + pos_end) / 2;
 if (elem == name_array[pos_middle])
 found = true;
 else if (elem > name_array[pos_middle])
 pos_init = pos_middle +1;
 else
 pos_end = pos_middle -1;
 }
 if (! found)
 pos_middle = -1;

 return(pos_middle);
}

T(n) = Cost(Search) = 4 + Cost(while)

+ Coste(if) = 4+ 4log(n)+1 +2 = 4log(n)

+7 O(log(n))

Cost(while) = [1+(1+Cost(if-

elseif)]*log(n)+1 = [1+1+2]*log(n)+1 =

4log(n) +1

Cost(if-elseif) = maximum(2,2,2) = 2

Cost(if) = 2

Programming 1 – Department CCIA 26

Topics

1. Efficiency of an algorithm

2. Methods to calculate the efficiency

3. Temporary cost of an algorithm

4. Cost analysis by step counting

5. Exercises

Programming 1 – Department CCIA 27

Exercise 1: calculate the temporary cost

main() {
 int n;

 do {
 cout << “ Enter a number:”;
 cin >> n;
 cout << “The result is “ << Test(n);
 } while (n > 0);
}

int Test(int n) {
 int i, acu;

 acu = 0;
 i = 1;
 while (i <=n) {
 if (n % i = = 0)
 acu = acu+1;
 i = i+2;
 }
 return(acu);
}

i=i+2 the loop
performs n/2 iteractions

Programming 1 – Department CCIA 28

Exercise 2: calculate the temporary cost

main()
{
 int row, col, n, m;

 cout << "Enter the number of rows:";
 cin >> n;
 cout << “Enter the number of columns:”;
 cin >> m;
 for (row=1; row<=n; row++) {
 for (col=0; col<m; col++) {
 if (row = = 1 || row = = n || col = = 0 || col = = m-1)
 cout << “@”;
 else
 cout << “*”;
 }
 cout << endl;
 }
}

Programming 1 – Department CCIA 29

Exercise 3: calculate the temporary cost

void Multiply_Matrices(int m1[N][N], int m2[N][N], int mres[N][N])
{
 int i, j, k;

 for (i=0; i < N; i++) {
 for (j=0; j < N; j++) {
 mres[i][j] = 0;
 for (k=0; k < N; k++) {
 mres[i][j] = mres[i][j] + (m1[i][k] * m2[k][j]);
 }
 }
 }
}

Programming 1 – Department CCIA 30

Exercise 4: calculate the temporary cost

main() {
 int a, b, c;

 cin >> c;
 do {
 c = c-1;
 cin >> a;
 b = Nd(a);
 cout << “answer = “, b;
 } while (c > 0);
}

int Nd(int m) {
 res = 0;
 n = 0;
 while (n <=m) {
 n = n+1;
 res = res + 10;
 }
 return(res);
}

Programming 1 – Department CCIA 31

Exercise 5: calculate the number of iterations of the loop

● Consider that n>0

i = 1;

do {
 i = i+1;
} while (i < n);

Loop_1

i = 0;

do {
 i = i+1;
} while (i < n);

Loop_2

i = n;

do {
 i = i/2;
} while (i > 0);

Loop_3

i = 2;

while (i <= 1) {
 i = i-1;
}

Loop_4

i = n-1;

while (i > 1) {
 i = i-1;
}

Loop_5

i = n;

while (i > 0) {
 i = i-2;
}

Loop_6

for (i=0; i <= n; i++) {
 cout << endl;
}

Loop_7
for (i=1; i < n; i++) {
 cout << endl;
}

Loop_8

for (i=1; i <= n; i--) {
 cout << endl;
}

Loop_9

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31

