
Programming 1 Lecture 7
Structured data types.
Structs (Records)

Programming 1 – Department CCIA 2

Objectives

● Understand the concept of struct (record) data
type

● Learn how to define and use complex data
structures, nesting structured data types: arrays
of structs

● Manage, read and display struct data types in C
language

Programming 1 – Department CCIA 3

Topics

1. Struct data type

2. Arrays of structs

3. Examples

4. Information sources

Programming 1 – Department CCIA 4

The struct or record type

● The struct type (C language) or record type (other
languages) is a data structure to store a finite collection of
heterogeneous elements (the data may belong to different
data types)

● A struct usually represents a set of attributes of an entity

● Every element in the record is called field

● To refer to an element in a record, use the record identifier,
followed by a dot '.' and the field identifier

● Example: record with two elements

code

price

product record identifier

field identifiers
integer type variable

float type variable

product.code

Programming 1 – Department CCIA 5

Examples: records

Address
street char array

post code char array

city char array

Date
day integer

month integer

year integer

Employee data
name char array

social security number char array

salary float

address record

birth date record

Book
author char array

title char array

borrowed boolean

Programming 1 – Department CCIA 6

Definition of structs (records) in C language

● To declare a variable of struct type, this type must be
previously defined. There are several ways:

● struct_name: name for the defined struct. Any valid identifier

● field_type: type for the corresponding struct field

● field_name: name for the corresponding struct field. There can
be as many fields as needed

typedef struct struct_name {
 field_type1 field_name1;
 field_type2 field_name2;
 ...
};

Programming 1 – Department CCIA 7

Example: struct declaration

typedef struct TProduct {
int code;
float price;

};

TProduct p1, p2;

typedef struct TBook {
bool borrowed;
char author [30];
char title [50];

} ;

TBook book1, book2;

p1 and p2 are variables of
struct type TProduct

book1 and book2 are variables of struct
type TBook

Nested structured data types: a char
array inside a struct

typedef struct TNif{
int number;
char letter;

};

typedef struct TClient{
TNif nif;
char name [30];

};

TClient client1;

Nested structs

Programming 1 – Department CCIA 8

Struct initialization and access

● To initialize a struct, all its fields must be initialized, having
access to each one

● To access a struct field, the operator '.' is used

● struct_name: struct identifier
● field_name: struct field name

● Example: accessing the code of product p1: p1.code;

● Example: accessing the book book1 author's initial letter: book1.author [0];

● Example: accessing the NIF letter of client client1: client1.nif.letter;

struct_name.field_name;

Programming 1 – Department CCIA 9

Example: struct initialization and access

typedef struct TProduct {
int code;
float price;

} ;

TProduct p1, p2;

p1.code = 3;
p1.price = 34.8;
p2 = p1;

strcpy(book1.author ,"Quevedo");
cin.getline(book1.title, 50-1);
book1.borrowed = true;
book1.borrow_date.day = 16;
book1.borrow_date.month = 11;
book1.borrow_date.year = 2010;

The structs can be nested, that
is, a struct field can be of
another struct type

Struct assignment is allowed in
C language

Typedef struct TBook {
bool borrowed;
char author [30];
char title [50];

 TDate borrow_date;
} ;

TBook book1, book2;

Programming 1 – Department CCIA 10

Topics

1. Struct data type

2. Arrays of structs

3. Examples

4. Information sources

Programming 1 – Department CCIA 11

Arrays of structs

● In an array of structs each element in the array
is a struct

typedef struct TProduct{
int code;
float price;

} ;

TProduct products [30];

code

price

TProduct

products[0]

• • •

products[1]

products[2]

products[29]

code

price

typedef TProduct TProductList [30];
TProductList products;

code

price

code

price

code

price

How would you access the third product code?
products[2].code

Programming 1 – Department CCIA 12

The structured data types can be nested (I)

● A struct field can be an array itself

typedef struct TProduct {
int code;
char name [15]

 float month_price[12];
}

TProduct products [30];

code

name

TProduct

products[0]

products[1]

products[29]

code

name

month_price

 How would you access the price in august of the fifth product?

month_price

code

name

month_price

code

name

month_price

• • •

Programming 1 – Department CCIA 13

The structured data types can be nested (II)

● A struct field can be a struct itself
typedef char TString[15];

typedef struct TAddress {
TString street;

 int number;
TString city;

} ;

street

city

TAddress

number

typedef struct TClient {
 TString name;
 TAdress addr;
 TDate register_date;
} ;

TClient

name

addr

register_date

TClient clients [20];

clients[0]

clients[1]

clients[19]

name

addr

register_date

name

addr

register_date

name

addr

register_date

 How would you access the last client's city?
clients[19].addr.city
 And to the year of the first client's registration?

• • •

Programming 1 – Department CCIA 14

Topics

1. Struct data type

2. Arrays of structs

3. Examples

4. Information sources

Programming 1 – Department CCIA 15

Example 1

● Define the necessary data structures to store and
process the following information:
● A rent-a-car company wants to manage information

about its car fleet (up to 200 vehicles): registration
number, brand, model, purchase date and the amount
of kilometres done each month during a year. The aim
is to obtain vehicles which do the highest average
amount of kilometres during a year (there can only be
one car or several cars with the same average)

Programming 1 – Department CCIA 16

Example 1: Data structures

● Define the necessary data structures to store and
process the following information:
● A rent-a-car company wants to manage information

about its car fleet (up to 200 vehicles): registration
number, brand, model, purchase date and the
amount of kilometres done each month during a year.
The aim is to obtain vehicles which do the highest
average amount of kilometres during a year (there can
only be one car o several cars with the same average)

vehicle

Registration number

Brand

Model

Purcharse date

km monthly x 12 months

char array

char array

char array

struct: day, month, year

array with 12 integersarray with 200
vehicles

Programming 1 – Department CCIA 17

Example 1: Our aim is ...

● Define the necessary data structures to store and
process the following information:
● A rent-a-car company wants to manage information

about its car fleet (up to 200 vehicles): registration
number, brand, model, purchase date and the amount
of kilometres done each month during a year. The aim
is to obtain vehicles which do the highest average
amount of kilometres during a year (there can only be
one car o several cars with the same average)

array with the index of the vehicles with the highest average (� 200)

Programming 1 – Department CCIA 18

Example 1: Data design

vehicle

registration number

brand

model

purchase date

km monthly x 12 months

array of 9 chars

char array

char array

struct: day, month, year

array with 12 integers

array with 200
vehicles

typedef char TRegistration[9];

typedef char TString[20];

typedef struct TDate {
int day;

 int month;
int year;

};

typedef int TKm_month [12];

typedef struct TVehicle{
TRegistration registration;
TString brand;

 TString model;
TDate purchase_date;
TKm_month km_month;

};

const int N_CARS = 200;
typedef TVehicle TCars[N_CARS];
TCars cars;

typedef int THigherAverageCars[N_CARS];
THigherAverageCars higher_average_cars; // position in array cars[]
int n_higher_average_cars; // amount of cars with highest average

Cars with the
highest average ?

Programming 1 – Department CCIA 19

Example 2

● Define the necessary data structures to store and process
the following information:

● In a washing machine factory a computerized quality control
wants to be established to check its prototypes. Each
machine has a numerical code and a set of features:
capacity (in kg), model, loading type (top/front) and the result
of 10 control tests. Each control test can only have two
possible results: accepted or rejected. Moreover, we need to
know the inspector for each control test. We have the
following information for each inspector: numerical code,
name, department where he/she belongs to. The factory
manufactures 25 prototypes each year.

Programming 1 – Department CCIA 20

Example 2: Revise the text

● Define the necessary data structures to store and process the
following information:

● In a washing machine factory a computerized quality control
wants to be established to check its prototypes. Each machine
has a numerical code and a set of features: capacity (in kg),
model, loading type (top/front) and the result of 10 control tests.
Each control test can only have two possible results: accepted or
rejected. Moreover, we need to know the inspector for each
control test. We have the following information for each inspector:
numerical code, name, department where he/she belongs to.
The factory manufactures 25 prototypes each year.

machine

code
capacity
model

load

controls
array with 25
prototypes

integer
integer

char array
char or enum
ok code integer

name char array
dept char arrayarray with 10 controls

inspector
boolean

Programming 1 – Department CCIA 21

Example 2: Data design

const int N_CTRL = 10;
typedef struct TMachine {
 int code;
 int capacity;
 char model[40];
 char load;
 TControl controls[N_CTRL];
};

typedef struct TControl{
boolean ok;

 int code_inspector;
}; //the information about
the inspector is not
repeated for each control

typedef struct TInspector{
int code;
TString name;

 TString dept;
};

const int N_MACHINES = 25;
typedef TMachine TPrototypes[N_MACHINES];
TPrototypes machines;

machine

code
capacity
model
load

controls

array with 25
prototypes

integer
integer

char array
char

code integer
name char array
dept char array

array with
10 controls

ok
inspector

boolean

Programming 1 – Department CCIA 22

Topics

1. Struct data type

2. Arrays of structs

3. Examples

4. Information sources

Programming 1 – Department CCIA 23

Information sources

 Capítulo 9 (Apartados 9.1.1; 9.1.2; 9.3)

Fundamentos de Programación
Jesús Carretero, Félix García, y otros
Thomson-Paraninfo 2007. ISBN: 978-84-9732-550-9

Resolución de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

 Capítulo 6 (Apartado 6.1)

Problemas Resueltos de Programación en Lenguaje C

Félix García, Alejandro Calderón, y otros

Thomson (2002) ISBN: 84-9732-102-2

 Capítulo 2 (Apartados 7.1.1; 7.1.2; 7.2)

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23

