A

GRUPDS DE ALTO RENDIMIENTO ACADEMICO

Lecture 7

Structured data types.
Structs (Records)

Programming 1

e Dpnt. de Ciéncia de la Computacia i Intel-ligéncia drtificial
Dpto. de Ciencia de la Computacion e Inteligencia drtificial




Objectives

» Understand the concept of struct (record) data
type

* Learn how to define and use complex data
structures, nesting structured data types: arrays
of structs

 Manage, read and display struct data types in C
language



Topics

1. Struct data type
2. Arrays of structs
3. EXampleS

4. Information sources

1



The struct or record type

* The struct type (C language) or record type (other
languages) is a data structure to store a finite collection of

heterogeneous elements (the data may belong to different
data types)

e A struct usually represents a set of attributes of an entity
 Every element in the record is called field

 To refer to an element in a record, use the record identifier,
followed by a dot '." and the field identifier

 Example: record with two elements

product.code product <« record identifier

\:,:' code > Integer type variable
field identifiers -~
[ price - > float type variable
\ J

Programming 1 — Department CCIA




Examples: records

Address Book

street char array author

char array

post code char array title

char array

city char array borrowed

Employee data

boolean

name

char array

integer

: social security number
integer y

char array

integer salary

float

address

record

birth date

Programming 1 — Department CCIA

record




Definition of structs (records) in C language

* To declare a variable of struct type, this type must be
previously defined. There are several ways:

typedef struct struct_name {
field_type1 field _name1;
field_type2 field _name2;

N

« struct_name: name for the defined struct. Any valid identifier
» field_type: type for the corresponding struct field

« field_name: name for the corresponding struct field. There can
be as many fields as needed

Programming ) — Department CCIA 1



Example: struct declaration

int code;
float price;

|

TProduct p1, p2; —_

typedef struct TProduct{ ——— p1 and p2 are variables of
struct type TProduct

Nested structured data types: a char

-

typedef struct TNif{
int number;
char letter;

%

\

typedef struct TClient{
TNIf nif;
char name [30];

X

TClient client1;

Programming 1 — Department CCIA

typedef struct TBook { o
bool borrowed: array inside a struct
char author [30]; :
char title [50]; — book1 and book2 are variables of struct
Y type TBook
TBook book1, book2;

— » Nested structs

/



Struct initialization and access

* To initialize a struct, all its fields must be initialized, having
access to each one

 To access a struct field, the operator '.' is used

struct_name.field _name;

e struct name: struct identifier
» field name: struct field name

 Example: accessing the code of product p1: p1.code;
 Example: accessing the book book1 author's initial letter: book1.author [0];

 Example: accessing the NIF letter of client client1: client1.nif.letter;

Programming ) — Department CCIA



Example: struct initialization and access

typedef struct TProduct{ | — . p1.code = 3; : |
int code; p1.price = 34.8; B
float price; _
¥ p2|= p1; =
Struct assignment is allowed in
TProduct p1, p2;
C language
//

—— The structs can be nested, that ’ B

is, a struct field can be of

Typedef struct TBook { another struct type
bool borrowed;

char author [30] — strepy(book1.author ,"Quevedo");
char title [50]; ) . .
cin.getline(book1.title, 50-1);
}: book1.borrowed = true;
book1.borrow_date.day = 16;
book1.borrow_ date.month = 11;
book1.borrow_date.year = 2010;

TBook book1, book?2;

Programming 1 — Department CCIA



Topics

1. Struct data type

2. Arrays of structs

3. Examples
4. Information sources

U

10



Arrays of structs

po

E

* |n an array of structs each element in the array

IS a struct

typedef TProduct TProductList [30];
TProductList products;

TProduct products [30];

pa—

typedef struct TProduct{
iInt code;
float price;
| products[0]
products[1]
TProduct
4 code h products[2]
price
- /
products[29]

( code

price

]
)

code

price

code

[
\
[
\

price

]
)
]
)

code

SR

price

— |

How would you access the third product code?

products[2].code

Programming 1 — Department CCIA

11



The structured data types can be nested (l)

)\

» A struct field can be an array itself ) 4
TProduct products [30];

typedef struct TProduct {
int code; [ code )
float month_price[12]; month_price
) N 7
4 code b
TProduct ductsl name
/ code \ products{1] month_price
N 7
name o 06 o
4 code h
month_price products{29] name
\month_pricg
/2

]
} é How would you access the price in august of the fifth product?

Programming ) — Department CCIA VY



The structured data types can be nested (ll)

e A struct field can be a struct itself

typedef char TString[15]; > TAddress TClient clients [20];
4 street h P N
typedef struct TAddress { — name
TString  street; number clients[0] addr
I'Pétring cty: e oty e
} ’ 4 name b
_ addr
typedef struct TClient { — TClient clients[1] tor dat
TString name; \fegister_da%y
TAdress addr; ( name < e e
TDate  register date; addr e N
}; _ name
register_datej clients[19] addr
o \register_das
D

# 6 How would you access the last client's city?
clients[19].addr.city
é And to the year of the first client's registration?

Programming ) — Department CCIA



Topics

1. Struct data type
2. Arrays of structs
3. Examples

4. Information sources

U

V¢



Example 1

* Define the necessary data structures to store and
process the following information:

* Arent-a-car company wants to manage information
about its car fleet (up to 200 vehicles): registration
number, brand, model, purchase date and the amount
of kilometres done each month during a year. The aim
IS to obtain vehicles which do the highest average
amount of kilometres during a year (there can only be
one car or several cars with the same average)

Programming 1 — Department CCIA

15



Example 1: Data structures

* Define the necessary data structures to store and
process the following information:

e Arent-a-car company wants to manage information
about its car fleet (up o 200 vehicles): registration
number, brand, niodel, purchase date and the
amount of Kilometres done each month during a year
The aim is to obtain vehicles which do the highest
average amount of kilometres during a year (there can
only be one car o several cars with the same average)

[ Registration number — char array
Brand — char array
vehicle < Model — char array
Purcharse date — struct: day, month, year

array with 200 | km monthly x 12 months — array with 12 integers
vehicles

Programming 1 — Department CCIA

16



Example 1: Our aim is ...

* Define the necessary data structures to store and
process the following information:

* Arent-a-car company wants to manage information
about its car fleet (up to 200 vehicles): registration
number, brand, model, purchase date and the amount
of kilometres done each month during a year. The aim
IS to obtain vehicles which do the highest average
amount of kilometres during a year (there can only be
one car o several cars with the same average)

array with the index of the vehicles with the highest average ( 200)

Programming 1 — Department CCIA

17



Example 1: Data design

-

vehicle <

\

array with 200

registration number —array of 9 chars
brand — char array
model — char array

typedef char TRegistration[9];

purchase date — struct: day, month, year
km monthly x 12 months  — array with 12 integers

typedef char TString[20];

vehicles const int N_CARS = 200;
typedef TVehicle TCars[N_CARS];
TCars cars;
typedef struct TVehicle{ Cars with the

TRegistration registration;
TString brand;

TString model;

TDate purchase date;

TKm_month km_month;

typedef struct TDate {
int day;
int month;
int year;

|5

highest average ?

typedef int TKm_month [12];

typedef int THigherAverageCars[N_CARS];
THigherAverageCars higher_average cars; / position in array cars[ ]
int n_higher_average cars; // amount of cars with highest average

Programming 1 — Department CCIA

18




Example 2

» Define the necessary data structures to store and process
the following information:

* |In a washing machine factory a computerized quality control
wants to be established to check its prototypes. Each
machine has a numerical code and a set of features:
capacity (in kg), model, loading type (top/front) and the result
of 10 control tests. Each control test can only have two
possible results: accepted or rejected. Moreover, we need to
know the inspector for each control test. We have the
following information for each inspector: numerical code,
name, department where he/she belongs to. The factory
manufactures 25 prototypes each year.

Programming ) — Department CCIA K|



Example 2: Revise the text

* Define the necessary data structures to store and process the
following information:

* Ind@ washing machinefactory a computerized quality control
wants toe established to check its prototypes. Each machine
has ahumerical code and a set of features: capacity (in kq),
model, loading type (top/front) and the result of 48<control tests.
Each control test can only have two _pessible results: accepted or
rejected. Moreover, we need toknow the inspector for each
control test. We have thefollowinginformation for each inspector:
numerical code, nanie, depaitment where he/she belongs to.
The factory manufactures 25 prototypes each year.

machine

array with 25
prototypes

code — integer

capacity /— integer
model +~— char/array
load —7* char aor enum

controls .Ok boolean code —» mteger
} iInspector » ( hame —»char array
array with 10 controls dept — char array

gramming-1— Department CCIA 20



Example 2: Data design

code — integer
capacity — integer
machine | model — char array
load — char

ok — boolean

g

code — integer

controls ¢ .
inspector » Name& —» char array
array with 25 dept — char array
prototypes  array with )
10 controls
typedef struct TControl{ typedef struct TInspector{
boolean ok; int code;
constint N CTRL =10; int code_inspector; TString name;
typedef struct TMachine { }; /lthe information about TString dept;
int code; the inspector is not >
int capacity; repeated for each control
char model[40];
char load; const int N_MACHINES = 25;
TControl controls[N_CTRL]; typedef TMachine TPrototypes[N_MACHINES];
1 TPrototypes machines;

Programming 1 — Department CCIA

21



Topics

1. Struct data type
2. Arrays of structs

3. Examples

4. Information sources

Yy



Information sources

Fundamentos de Programacion
Jesus Carretero, Félix Garcia, y otros
Thomson-Paraninfo 2007. [ISBN: 978-84-9732-550-9

v Capitulo 9 (Apartados 9.1.1; 9.1.2; 9.3)

Problemas Resueltos de Programacion en Lenguaje C
Félix Garcia, Alejandro Calderodn, y otros
Thomson (2002) ISBN: 84-9732-102-2

v Capitulo 2 (Apartados 7.1.1; 7.1.2; 7.2)

Resolucion de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

v Capitulo 6 (Apartado 6.1) |

Programming 1 — Department CCIA

23



	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23

