
Programming 1 Lecture 6
Structured data types. Arrays

Programming 1 – Department CCIA 2

Objectives

● Understand the difference between simple and
structured data types

● Manage the following structured data types:
one-dimensional and two-dimensional arrays

● Manage one-dimensional and two-dimensional
arrays in C language

Programming 1 – Department CCIA 3

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 4

Reminder: Simple data types

● All the variables that we have used so far are of
simple type

● A variable of simple type can only store one
unique value at a time
● For instance, if x is of integer type, only one integer

value can be stored at a time
– X = 7;
– X = 10;
– X = 2000;

Programming 1 – Department CCIA 5

Structured data types

● A variable of a structured type is a collection of data of
simple type

● A structured type can store more than one element (value)
at a time
● Array Type: all the elements stored in an array variable must

be of the same type
● Record or Struct Type: a struct variable can store elements

of several types
● Example: z is a variable to store the winning numbers in the

lottery. So, 6 values are stored at a time
● z = (1, 4, 6, 24, 13, 2);
● z = (3, 9, 12, 15, 23, 27);

In C language, the struct type is equivalent to the record type of other languages

Programming 1 – Department CCIA 6

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 7

The Array data type

● An array is a data structure to store a finite, homogeneous and
ordered collection of data:

● Finite: The maximum number of elements to be stored must be
determined

● Homogeneous: Every element is of the same type

● Ordered: the n-th element of the array can be determined

● To refer to a given element in an array, an index between
squared brackets [i] is used. It specifies the relative position in
the array

Last element in
the array

2 4 6 8 10 14 23

x [0] x [1] x [2] x [3] x [4] x [5] x [6]

indices

Example: x array of 7 elements

In C language, the first element in the array is placed in position (index) zero

Programming 1 – Department CCIA 8

Array classification

● Depending on the number of dimensions, the arrays can
be classified as:
● One-dimensional (vector)
● Two-dimensional (matrix)
● Multi-dimensional (three or more dimensions)

● The dimension of an array is the number of indices used to
make reference to any of its elements

One-dimensional Two-dimensional Multi-dimensional

Programming 1 – Department CCIA 9

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 10

One-dimensional arrays

● A one-dimensional array is a structured data type in which elements
are stored in consecutive memory positions, each position being
accessible through the use of an index

● Example: define the data type to store the mark of the Programming
1 exam for 50 students. The following steps are needed:

1. Allocate 50 memory positions

2. Give the array a name

3. Associate each position in the array to each student

4. Assign the mark for each position

marks

marks[0]

marks[1]

marks[2]

marks[49]

7.50

4.75

5.25

6.00

● ● ●

Array name

Memory address

X

X +1

X +2

X + 49

Stored valuesPositions in the array

Programming 1 – Department CCIA 11

Array declaration in C language

● First the array type variable (one-dimensional) must be
declared in order to use it.

● Syntax

● elements_type: indicates the type of each element in the
array; every element is of the same type

● array_name: indicates the name of the array; it can be any
valid identifier

● [num_elem]: indicates the maximum amount of elements in
the array; it must be an integer constant value

● Example: float marks [50];

elements_type array_name [num_elem] ;

Programming 1 – Department CCIA 12

Initialization and access to an array

● As any other variable type, an array must be initialized
before being used

● A possible way of initializing an array is accessing every
element by using a loop and assigning them a value

● To access an array position the following syntax is used:

● Example: access the mark of the student placed in 5th
position in the array: marks[4];

array_name [index] ;

Using values for the indices that are out of the range determined by the array size,
produces unwanted errors when executing the program. These errors are difficult to
detect.

Programming 1 – Department CCIA 13

Example 1: initializing an array

● If the values of every component of the array
are known when the array is defined, definition
and initialization can be done simultaneously:

// example array inicialization
#include <iostream>
using namespace std;

main () {
int vectorA[4] = {1, 5, 3, 9};
int vectorB [] = {1, 5, 3, 9};
int vectorC[10] = {1, 5, 3, 9};

}

The size of the array is
the number of values

The array can be
partially inizialized

Programming 1 – Department CCIA 14

Example 2: initializing an array

● An array can be initialized by the user entering
the data by keyboard, as follows:

// example array inicialization
#include <iostream>
using namespace std;

void inicialize_Array(float marks[]);

main () {
 float marks[50];

 inicialize_Array(marks);
}

// procedure to inicialize the array
void inicialize_Array(float marks[])
{
 int i;

 for (i=0 ; i < 50 ; i++) {
 cout << "Enter the mark “ << i << “:”;
 cin >> marks[i];
 }
}

In C language, the arrays are always
passed by reference when used as
parameters in a module.

In C language, functions cannot
return an array type. For the array
to be modified, it must be passed as
a parameter.

Programming 1 – Department CCIA 15

Linear search of an element in an array

● When the elements in the array are not sorted

● To search an element in the array a linear search can be used
– The array is accessed consecutively from the first position until the searched

element is found

// Linear search
// Function to find an element "elem" in an array with MAX_SIZE elements
// It returns the position of "elem" in the array if it is found, or -1 otherwise
int Linear_Search(int name_array[], int elem)
{
 int pos;
 bool found;

 pos = 0;
 found = false;
 // the search is finished if the array end is achieved or if the element is found
 while (pos < MAX_SIZE && ! found) {
 if (name_array[pos] == elem)
 found = true;
 else
 pos = pos +1;
 }
 if (! found)
 pos = -1;

 return(pos);
}

Programming 1 – Department CCIA 16

Binary search of an element in an array

● When the elements in the array are sorted
● To search an element in a sorted array a binary, dichotomic or

half-interval search can be used
– The search is reduced dividing the array in two, so that the search interval is

smaller depending on the value to be searched
// Binary search of an element in an array of size MAX_SIZE. The elements are sorted in an ascending order
int Binary_Search(int array_name[], int elem) {
 int pos_begin, pos_end, pos_half;
 bool found;

 // [pos_begin, pos_end] = current search interval
 pos_begin = 0; // begin position in the array
 pos_end = MAX_SIZE -1; // end position in the array
 found = false;
 while (pos_begin <= pos_end && ! found) {
 pos_half = (pos_begin + pos_end) / 2; // half position in the array
 if (elem == array_name[pos_half]) // element found at pos_half
 found = true;
 else if (elem > array_name[pos_half])
 pos_begin = pos_half +1; // the element must be searched in the upper half
 else
 pos_end = pos_half -1; // the element must be searched in the lower half
 }
 if (! found)
 pos_half = -1;

 return(pos_half);
}

Programming 1 – Department CCIA 17

Search (temporary cost)

● Linear search: linear execution time
● Binary search: logarithmic execution time

Execution time of searching algorithms

Time
T(n)

Input size (n)

Programming 1 – Department CCIA 18

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

 3.1 Character strings

 3.2 Examples

 3.3 Array sorting

3. Two-dimensional arrays

4. Type definition using typedef

5. Information sources

Programming 1 – Department CCIA 19

Character strings

● A character string (or just string) is a finite sequence
of consecutive characters

● We will use character arrays to store them

● A character array can store:
● Words
● Sentences
● People's names, city names...
● Alphanumeric codes
● etc.

In C++ language, a special type called string exists. Nevertheless, we will
not use it in P1

Programming 1 – Department CCIA 20

Character strings in C language

● In C language, a character string is written between
double quotation marks

● In C language, the character strings must always finish
with the null character '\0' that must be stored in the array
next to the last character in the string

● Example: string “hola”

● It is stored in a character string of size 10
● It is made of 4 characters (length=4) but it occupies 5

characters in the array, because the character '\0' is also
stored

“hola”

‘h’ ‘o’ ‘l’ ‘a’ ‘\0’

 0 1 2 3 4 5 6 7 8 9

Programming 1 – Department CCIA 21

Functions in C to manage character strings

Function Description Use
cin.getline(string, SIZE) Read a character string by keyboard up to the

end of the line or until reaching the maximum
size specified by SIZE (positive integer). The
read sequence of characters is stored in string
(character array of size ≤ SIZE)

As a
procedure

strcpy(destination_string,
origin_string)

Copy the string. It copies the content of
origin_string into destination_string

As a
procedure

strcmp(string1, string2) Alphabetic comparison of strings
If string1 < string2
 then return a number < 0
If string1 == string2
 then return 0
If string1 > string2
 then return a number > 0

As a function

strlen(string) Return a number of type int that indicates the
length of the character string specified as a
parameter, that is, the amount of valid
characters of string (up to the special character
of string end '\0', not including it)

As a function

Programming 1 – Department CCIA 22

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

 3.1 Character strings

 3.2 Examples

 3.3 Array sorting

3. Two-dimensional arrays

4. Type definition using typedef

5. Information sources

Programming 1 – Department CCIA 23

Example: character string

● Function to return the length of a character
string

// Return the length of a character string

// this function is equivalent to the predefined function of C strlen()
int String_Length(char str[])
{
 int len;

 len = 0;
 while (str[len] != ‘\0’)
 len++;

 return(len);
}

Programming 1 – Department CCIA 24

Example: one-dimensional arrays (I)

● Procedure to display the
content of an array of
elements of type double

● Function to calculate the
average mark of the all the
students

// Display the element of an array of elements

// of double type
void print_Array(double a[], int len)
{
 int i;

 for (i=0; i < len; i++)
 cout << “[“ << i << “] = “ << a[i] << endl;
}

// Average of "len" marks if type float
float calculate_Average(float a[], int len)
{
 int i;
 float sum;

 sum = 0.0;

 for (i=0; i < len; i++)
 sum = sum + a[i];

 // assume len > 0
 return(sum / len);

}

Programming 1 – Department CCIA 25

Example: one-dimensional arrays (II)

● Given an array of LMAX integers, move all its
elements one position to the right. The displacement is
circular, that is, the last element will become the first
one

void move_Circular (int v[])
{
 int i, last;

 // store the value in the last position of the array (LMAX is the assumed length)
 last = v[LMAX-1];

 // move all the elements one position to the right, but the last one
 for (i=LMAX-1; i > 0; i--)
 v[i] = v[i-1];

 // store the last element in the first position
 v[0] = last;
}

Programming 1 – Department CCIA 26

Example: one-dimensional arrays (III)

● Given an array of LMAX integers, return the greatest value, the
amount of occurrences of this value, and the first and last
position where this value is stored

void Occurrencies(int v[], int &greatest, int &amount_occur, int &pos_first, int &pos_last)
{
 int i;

 greatest = v[0]; // initially, the greatest value is the one in the first position
 amount_occur = 1;
 pos_first = 0;
 pos_last = 0;

 // access the elements in the array: from the second position to the last one (assumed constant LMAX)
 for (i=1; i < LMAX; i++) {
 if (v[i] > greatest) { //a new greatest is found
 greatest = v[i];
 amount_occur = 1;
 pos_first = i;
 pos_last = i;
 }
 else if (v[i] == greatest) {
 // a new occurrence of the current greatest value is found
 amount_occur = amount_occur +1;
 pos_last = i;
 }
 }
}

Programming 1 – Department CCIA 27

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

 3.1 Character strings

 3.2 Examples

 3.3 Array sorting

3. Two-dimensional arrays

4. Type definition using typedef

5. Information sources

Programming 1 – Department CCIA 28

Array sorting algorithms

● The operation of sorting an array is frequent and interesting

● Example: maintain the array of marks sorted, so that the best
five marks can be obtained quickly. The array can be sorted
in descending order, and access the first five positions in the
array

● There are a lot of sorting algorithms for arrays. An efficient
algorithm is the Direct Insertion Algorithm. For
descending order:

● Each element is compared with the ones on its left and it is
inserted in its correct position
– The correct position is reached when the element on the left is greater

or when the left end of the array is found

● During the search for the correct position, each lesser
element is scrolled one position to the right

Programming 1 – Department CCIA 29

Example: array sorting algorithm (I)

● The Direct Insertion Sorting
Algorithm can be compared with the
sorting in a hand of cards

● Each time a card is taken from the
table, it is inserted in the correct
position among the ordered cards
that you have in your hand

● The arrays are divided into two parts:

● The first one (that represents the cards in your hand) is
ordered and it grows as the sorting algorithm is performed

● The second one (the cards on the table) is not ordered
and it decreases as the sorting algorithm is performed

Programming 1 – Department CCIA 30

Trace: Direct Insertion Sorting Algorithm

Initial array

Sorted
part

Unsorted
part

Sorted array

84 69 76 86 94 91
84 69 76 86 94 91

84 69 76 86 94 91

84 76 69 86 94 91

86 84 76 69 94 91

94 86 84 76 69 91

94 91 86 84 76 69

Programming 1 – Department CCIA 31

Implementation: Direct Insertion Sorting Algorithm

// Sort an array in DESCENDING order using DIRECT INSERTION

void Sort_Array(int elem[], int amount_elem)
{
 int left; // position on the left of the inserted element in the sorted part
 int right; // position of the first element of the currently unsorted part
 int current; // first element in the currenly unsorted part. The one to be inserted
 bool pos_found;

 // Initially, the ordered part (left part) is made up of the first position only,
 // so, the search begins with the first element of the unsorted part (right part)
 // from the second position (index=1)
 for (right = 1; right < amount_elem; right++) {
 current = elem[right];
 left = right -1;
 pos_found = false;
 while (left >= 0 && !pos_found) {
 if (current > elem[left]) {
 elem[left+1] = elem[left]; // the lesser elements are scrolled to the right
 left = left -1;
 }
 else
 pos_found = true;
 }
 // insert the first element of the unsorted part in its correct position
 // within the currently sorted part
 elem[left+1] = current;
 }
}

Programming 1 – Department CCIA 32

Another array sorting algorithm

● Another method to sort arrays is the Direct
Selection Sorting Algorithm

● To sort an array in descending order:
● Step 1: search and select the greatest element

among the ones that are not sorted yet
● Step 2: exchange the positions of this element and

the one on the very left side of the unsorted part

Programming 1 – Department CCIA 33

Trace: Direct Selection Sorting Algorithm

Initial array

Sorted
part

Unsorted
part

Sorted array

84 69 76 86 94 91
84 69 76 86 94 91

94 69 76 86 84 91

94 91 76 86 84 69

94 91 86 76 84 69

94 91 86 84 76 69

94 91 86 84 76 69

Programming 1 – Department CCIA 34

Direct Selection Sorting Algorithm (ascending order)
 BEGIN

k=0

k<n-1?

i=k
j=k+1

j < n?

aux=v[k]
v[k]=v[i]
v[i]=aux

END

 v[j]<v[i]?

i=j

FALSE

TRUE

TRUE

FALSE

j=j+1

FALSE

TRUE

k=k+1

Programming 1 – Department CCIA 35

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 36

Two-dimensional arrays: matrices

● Two indices are needed to access any element
● Example: two-dimensional array to store the

marks of 7 groups of P1, each one having 25
students

marksP1

array name

0 1 2 ... 24
0
1
2
3

 4
5
6group

student

7.2

marksP1[1][2]: mark of group 1, student 2

Programming 1 – Department CCIA 37

Two-dimensional array declaration in C language

● First a variable of two-dimensional array type
must be declared in order to use it.

● Syntax

● type: type of each element in the array; every
element is of the same type

● array_name: array name
● [n_elemR]: amount of rows (first dimension)
● [n_elemC]: amount of columns (second dimension)

type array_name [n_elemR] [n_elemC] ;

Programming 1 – Department CCIA 38

Initialization and access to a two-dimensional array

● As any other variable type, an array must be initialized before being
used

● A possible way of initializing an array is accessing every element by
using two loops (one loop for each dimension) and assigning them a
value

● To access an array position the following syntax is used:

● array_name: array_name
● [indexR]: position in the first dimension (row) to be accessed. It is

a value in the interval 0 .. n_elemR-1
● [indexC]: position in the second dimension (column) to be

accessed. It is a value in the interval 0 .. n_elemC-1
● Example:

● marksP1[6][24]; //mark of student 24 of group 6

● marksP1[6]; //all the marks of group 6 (one-dimensional array made of row 6)

array_name [indexR][indexC] ;

Programming 1 – Department CCIA 39

Example 1: two-dimensional array initialization

● If the values are known, a two-dimensional
array can be initialized as follows:

// two-dimensional array initialization
#include <iostream>
using namespace std;

const int N_ROWS = 4;
const int N_COLUMNS = 2;

main () {
 float matrix[N_ROWS][N_COLUMNS] = {{3.6, 6.7},

{2.9, 7.6},
{8.9, 9.3},
{1.9, 0.2}};

Int matrix2 [][N_COLUMNS] = {{3, 6},
{9, 7},
{8, 3},
{1, 0}};

}

In C language, it is not
necessary to specify the
size of the first
dimension of the array

Programming 1 – Department CCIA 40

Example 2: two-dimensional array initialization

● An array can be initialized by the user entering the data by keyboard,
as follows: // two-dimensional array initialization

#include <iostream>
using namespace std;

const int N_ROWS = 10;
const int N_COLUMNS = 20;
void initialize_Matrix(float matrix[][N_COLUMNS]);

main () {
 float matrix[N_ROWS][N_COLUMNS];

 initialize_Matrix(matrix);
}

// procedure to initialize the matrix
void initialize_Matrix(float matrix[][N_COLUMNS])
{
 int i, j;

for (i=0 ; i < N_ROWS ; i++) {
cout << “row “ << i << “:” << endl;

 for (j=0; j < N_COLUMNS; j++) {
 cout << “column “ << j << “:”;

 cin >> matrix[i][j];
 }

}
}

In C language, when
declaring or defining a
module, it is not
necessary to specify the
size of the first
dimension of the array

Programming 1 – Department CCIA 41

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

4.1 Examples

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 42

Example: two-dimensional arrays (I)

● Calculate and display the average mark for each student.
There are 25 students and each one takes 7 subjects.

#include <iostream>
using namespace std;

const int N_STUDENTS = 25;
const int N_SUBJECTS = 7;
void display_Average_Students(float marks[] [N_SUBJECTS]);

main () {
 float marks [N_STUDENTS][N_SUBJECTS];

 display_Average_Students(marks);
}

// calculate the average mark for each student and display on the screen
void display_Average_Students(float marks[] [N_SUBJECTS]) {
 int i;

 for (int i=0; i< N_STUDENTS; i++)
 cout << “Student ” << i << “ has an average mark “ << calculate_Average(marks[i], N_SUBJECTS) << endl;
}

This function was defined
in a previous example

Programming 1 – Department CCIA 43

Example: two-dimensional arrays (II)

● Given a squared matrix of integers, display in the following order: the
elements of the diagonal, the elements of the upper triangle (above the
diagonal) and the elements of the lower triangle (below the diagonal),
accessing the rows and then the columns

// Version 1: the matrix is accessed three times
void Display_Matrix_3 (int matrix[][LMAX])
{ int i, j;

 // Display diagonal
 for (i=0; i < LMAX; i++) // access rows
 for (j=0; j < LMAX; j++) // access columns
 if (i == j)
 cout << matrix[i][j];
 // Display upper triangle
 for (i=0; i < LMAX; i++)
 for (j=0; j < LMAX; j++)
 if (j > i)
 cout << matrix[i][j];
 // Display lower triangle
 for (i=0; i < LMAX; i++)
 for (j=0; j < LMAX; j++)
 if (j < i)
 cout << matrix[i][j];
}

// Version 2: the matrix is accessed only once
void Display_Matrix_1(int matrix[][LMAX])
{ int i, j;

 // Display diagonal
 for (i=0; i < LMAX; i++) // access rows
 cout << matrix[i][i];

 // Display upper triangle
 for (i=0; i < LMAX-1; i++)
 for (j=i+1; j < LMAX; j++)
 cout << matrix[i][j];

 // Display lower triangle
 for (i=1; i < LMAX; i++)
 for (j=0; j < i; j++)
 cout << matrix[i][j];
}

Programming 1 – Department CCIA 44

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 45

User-defined data types in C language

● The reserved word typedef is used to define
structured data types (such as arrays and structs)

● It is useful to create new data types and to improve the
readability of the programs

// Data types definitions

typedef int T_integer[20];

typedef float T_marks[50];

typedef char T_string[30];

typedef int T_matrix[3][3];

// Variable declaration

T_marks marks_P1, marks_P2;

T_string name_student1, name_student2;

T_matrix matrix1, matrix2;

// If no data types are defined,
// the declaration of variables of type
// array would be:

float marks_P1[50];

float marks_P2[50]

char name_student1[30];

char name_student2[30];

int matrix1[3][3];

int matrix2[3][3];

Programming 1 – Department CCIA 46

Topics

1. Structured data types

2. Array data type

3. One-dimensional arrays

4. Two-dimensional arrays

5. Type definition using typedef

6. Information sources

Programming 1 – Department CCIA 47

Information sources

 Capítulo 8

Fundamentos de Programación
Jesús Carretero, Félix García, y otros
Thomson-Paraninfo 2007. ISBN: 978-84-9732-550-9

Resolución de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

 Capítulo 10 (excepto apartado 10.4)
 Capítulo 11 (apartado 11.1)

Problemas Resueltos de Programación en Lenguaje C

Félix García, Alejandro Calderón, y otros

Thomson (2002) ISBN: 84-9732-102-2

 Capítulo 6

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47

