
Programming 1 Lecture 4
Modular Programming

Programming 1 – Department CCIA 2

Objectives

● Use a top-down design to solve relatively
complex problems

● Understand the differences between
procedures and functions

● Modularize programs in C language

Programming 1 – Department CCIA 3

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 4

Top-down design

● Decomposition of a problem into some other smaller problems
(subproblems)

● The problem decomposition is done in a set of levels or consecutive
refinement steps, so that a hierarchical structure is obtained

● Each level in the hierarchy includes a higher level of detail

Prepare the food

Route to
City X

Buy the
ingredients

Meet a friend, who lives in city X, at his house, and bring the food

Plan the route to the friend's house

Cook Route to his
street

Search the
building
number

Go to the
supermarket

Search the
recipe in the
cook book

Follow the
steps in the

recipe

Search
for road

map

Search for
street map

Connect
to

Internet

Connect
to

Internet

Take
some

money

Programming 1 – Department CCIA 5

Concept of Module

● In a large and complex program, all the code should
not be included in the main program (function main() in
C language)

● A module or subprogram...
● is a block of code that is written separate to the main

program
● is responsible for performing a specific task that solves

a partial problem of a major problem
● can be invoked (called) from the main program or from

other modules
● hides the details of the solution of a partial problem

(Black Box)

Programming 1 – Department CCIA 6

Black Box

● Each module is a black box for the main program or for
other modules

● To use a module from the main program or from other
modules …

● we need its interface, that is, its inputs and outputs

● we do not need to know the internal details of operation

Input Output

How does it do it?

What does it do?

Programming 1 – Department CCIA 7

Modules: example

main() {
 int n1, n2; // numbers entered by keyboard (input data)
 int greater; // the greater of the entered numbers (output data)
 int lesser; // the lesser of the entered number (output data)

 cout << “Enter two integer numbers: “;
 cin >> n1 >> n2;
 greater = maximum(n1, n2);
 lesser = minimum(n1, n2);
 cout << “The greater number is:” << greater;
 cout << “The lesser number is:” << lesser;
 cout << endl;
}

// This module returns the greater of two numbers

int maximum(int a, int b)

{
 int m; // the grater of two numbers (output datum)

 if (a > b)
 m = a;
 else
 m = b;
 return(m);
}

// This module returns the lesser of two numbers

int minimum(int a, int b)

{
 int m; // the lesser of two numbers (output datum)

 m = a;
 if (b < m)
 m = b;
 return(m);
}

What does the module
“maximum()” do?

How does
it do it?

Programming 1 – Department CCIA 8

Modules: declaration, definition and call

Module declaration

Module_name (parameter_declaration)

int maximum(int a, int b)

{
 int m;

 if (a > b)
 m = a;
 else
 m = b;
 return(m);
}

int maximum(int a, int b);

Module definition

 Module_name (parameter_declaration)

 Local_variable_declaration

 Body_of_module: executable statements

Fin_del_módulo

Module call

 Module_name (parameter_list) greater = maximum (n1, n2);

Programming 1 – Department CCIA 9

Advantages of modular programming

● Easier top-down design and structured programming
● Reduction of programming time

● Reusability: structure in specific libraries (modules library)
● Division of the programming task among a team of

programmers
● Smaller size of the whole program

● A module is written only once and it can be used several
times from different parts of the program

● Easier error detection and correction
● By testing the individual modules

● Easier program maintenance
● The programs are easier to modify
● The programs are easier to understand (more readable)

Programming 1 – Department CCIA 10

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 11

Transfer of the control flow

● When a module A calls (invokes) another module B, the
control flow (execution flow) passes to module B

● When the execution of module B is finished, the control
flow continues in module A, from the statement following
the call to the module B

Body of Module A

Call to Module B

Body of Module B

End of Module BNext statement

1

2

3

4
5

The main program can be considered as a module that can call other modules,
but that cannot be called by any other module

Programming 1 – Department CCIA 12

Transfer of information

● Transferring information between modules is
carried out through the use of parameters
(arguments)

● A module can have input and/or output
parameters

Input
parameters

Module A Module B

Output
parameters

Module A can provide input
data to module B, when A
calls B

Module B can receive input
data from module A and
provide output data to A

Programming 1 – Department CCIA 13

Actual and formal parameters

● Actual parameters (or arguments)
● The ones appearing in the call statement to the module

● Formal or fictitious parameters (or parameters)
● The ones appearing in the module declaration

● Relation between actual and formal parameters

 number of parameters
 type of parameters
 order of parameters

 name of parameters

Module_name (pr1, pr2, …, prN) greater = maximum(n1, n2);

Module_name (type1 pf1, type2 pf2, …, typeN pfN) int maximum (int a, int b);

Programming 1 – Department CCIA 14

Pass-by-value parameters

● The module receives a copy of the data value (actual
parameter), passed by the calling module

● The actual parameter can be any expression that can
be evaluated at the moment of the call

● If the corresponding formal parameter is modified
inside the module, the actual parameter is not changed
in the calling module

void rectangle(int wide, int high, int &area_rect, int &perim)

{

 area_rect = wide * high;

 perim = 2 * (wide + high);
}

main() {
 int base, height, area, perimeter;

 cout << “Enter the base of rectangle:”;
 cin >> base;
 cout << “Enter its height:”;
 cin >> height;

 rectangle(base, height, area, perimeter);

 cout << “Area: ” << area << endl;
 cout << “Perimeter: ” << perimeter;
 cout << endl;
}

Memory

base

height

wide

high

Pass-by-value
parameters

Programming 1 – Department CCIA 15

Pass-by-reference parameters

● The module receives the reference to the memory position
where the value is (memory address of the variable)

● The actual parameter must compulsorily be a variable
(which may or may not contain a value)

● If the corresponding formal parameter is modified inside
the module, the actual parameter is changed as the
memory content is changed

void rectangle(int wide, int high, int &area_rect, int &perim)

{

 area_rect = wide * high;

 perim = 2 * (wide + high);
}

main() {
 int base, height, area, perimeter;

 cout << “Enter the base of rectangle:”;
 cin >> base;
 cout << “Enter its height:”;
 cin >> height;

 rectangle(base, height, area, perimeter);

 cout << “Area: ” << area << endl;
 cout << “Perimeter: ” << perimeter;
 cout << endl;
}

Memory

Pass-by-reference
parameters

area

area_rect

perimeter

perim

Programming 1 – Department CCIA 16

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 17

Concept of Function

● A function returns a value associated with the
function name

● It is usually defined with N parameters (N≥ 1)

● Only pass-by-value parameters should be used

bool is_even(int n)

{
 return((n % 2) = = 0);
}

Data type of
the returned
value

Function
name

Parameters
declaration

Statement
to return the
value

if (is_even(3))

if (is_even(x) && (x > 10))

int x;
bool fin;

fin = is_even(x);

if (is_even(x) == true)

fin = is_even(4) || (x < 0);

Correct
function
calls

is_even(x);

Incorrect
function
call

Programming 1 – Department CCIA 18

Concept of Procedure

● It can be defined with N parameters (N ≥ 0)

● It can use pass-by-value and/or pass-by-reference
parameters

● It is called by using a statement made up of its name and
the list of actual parameters (the call is a statement itself)

void Write_character(char c, int n)

{
 int i;
 for (i=1; i <= n; i++)
 cout << c;
 cout << endl;
}

Indicates that the
values can only
be returned as
parameters

Procedure
name

Parameter
declaration

Correct
procedure
calls

Write_character(‘*’,20);

int num;
char c;

Write_character(c, num);

Write_character(‘c’, 5);

Programming 1 – Department CCIA 19

Must I use a procedure or a function?

Must the module return only one value?

Yes No

procedurefunction

Programming 1 – Department CCIA 20

About return statement

● It ends the execution of the function body
● It returns the return value of the function, after

evaluating the associated expression
● Recommendation: use a single return

statement within a function body
● It should be the last statement in the function

body

return (expression);

Programming 1 – Department CCIA 21

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 22

Concept of scope of a variable

● The scope of a variable defines its visibility, that
is, from where the variable can be accessed

main() {
 int n; // number entered by keyboard (input datum)

 cout << “Enter an integer number: “;
 cin >> n;
 if (is_prime(n))
 cout << “The number is prime”;
 else
 cout << “The number is not prime”;
 cout << endl;
}

// This module checks whether a number is prime or not

bool is_prime(int num)

{
 int count; // counter (auxiliary datum)
 bool prime; // is prime or not (output datum)

 prime = true;
 count = 2;
 while ((count < num) && prime) {
 // check if it is divisible by another number

 prime = ! (num % count == 0);
 count = count + 1;
 }
 return (prime);
}

Scope of n

Scope of
num, count, prime

Programming 1 – Department CCIA 23

Local and global variables

● Local variable
● Its scope is the body of the module where it is

declared
● It is created when it is declared, and it is destroyed

when the module completes its execution

● Global variable
● Its scope is the entire program (all modules and the

main program)
● It is created when it is declared, and it is destroyed

when the program completes its execution

Programming 1 – Department CCIA 24

Don`t use global variables

● The communication between the modules
must be done through parameters, never
through global variables

Global
variables

Programming 1 – Department CCIA 25

Side effect

● Any data communication between modules outside the
parameters and the returning of results is called a side effect

#include <iostream>
using namespace std;

int result; // declaration of a global variable

int Greater_Num(int n1, int n2);

main() {
 int n1, n2; // number entered by keyboard (input data)
 int greater; // the greater of two numbers (output data)

 cout << “Enter two integer numbers :”;
 cin >> n1 >> n2;
 result = n1 + n2;
 greater = Greater_Num (n1, n2);
 cout << “The addition of the two numbers is: “ << result;
 cout << “ and the greater number is:” << greater;
 cout << endl;
}

// function that returns the greater of two numbers
int Greater_Num(int n1, int n2)
{
 if (n1 > n2)
 result = n1;
 else
 result = n2;

 return(result);
}

Why does it
not work?

How can it be

solved?

Programming 1 – Department CCIA 26

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 27

What type of program must I be able to do?

#preprocesor directives

Constants declaration

Procedures and functions declaration

main() {

 Variables declaration:

of simple data types

 Main body (executable statements)

control statements

calls to procedures and functions

}

Procedures and functions definition

Programming 1 – Department CCIA 28

Program example

#include <iostream>
using namespace std;

// Currency exchange to euros
const float US_DOLAR_EURO = 1,4696;
const float UK_POUND_EURO = 1,4696;

// Procedures and functions declarations
void Read_Amount(float &amount, char ¤cy);
float Change_In_Euros(float amount, char currency);

main() {
 float amount; // money amount (input datum)
 char currency; // currency type (input datum)
 char answer; // answer to continue (input datum)
 float euros; // equivalent amount in euros (output datum)

 do {
 Read_Amount(amount, currency);
 euros = Change_In_Euros(amount, currency);
 cout << “The change in euros is:” << euros << endl;
 cout << “Another amount? (Y/N) :”;
 cin >> answer;
 } while ((answer == ‘y’) || (answer == ‘Y’));
}

Remember to write a comment for every defined module, explaining what it
does

// Read amount and currency type from keyboard, validate
// the entered data until they are correct
void Read_Amount(float &amount, char ¤cy)
{
 bool correct_data;
 do {
 cout << “Enter an amount of money and currency (D/P):”;
 cin << amount << currency;
 correct_data = (amount > 0.0) &&
 (currency == ‘D’ || currency == ‘P’);
 } while (! correct_data);
}

// Return the equivalent change in euros, given an amount and
// a currency
float Change_In_Euros(float amount, char currency)
{
 switch (currency) {
 case ‘D’ : euros = amount * US_DOLAR_EURO;
 break;
 case ‘P’ : euros = amount * UK_POUND_EURO;
 }
 return (euros);
}

Programming 1 – Department CCIA 29

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 30

Libraries in C/C++ language

● Most programming languages provide a collection of
commonly used procedures and functions (libraries)

● In C / C + +, to make use of the modules included in a
library, the compiler directive #include is used

● There is a large amount of libraries available:
● Mathematical functions
● Characters and character strings management
● Input and output data management
● Time management (date, time, ...)
● And many others

Programming 1 – Department CCIA 31

Some predefined functions in C/C++ language

Library C++ Library C Function Description

<math.h> <math.h> double cos(double x) Returns the cosine of x

double sin(double x) Returns the sine of x

double exp(double x) Returns ex

double fabs(double x) Returns the absolute value of x

double pow(double x, double y) Returns xy

double round(double x) Returns the rounded value of x

double sqrt(double x) Returns the square root of x

<iostream> <ctype.h> int isalnum(int c) Returns true if the parameter is a letter or a digit

int isdigit(int c) Returns true if the paremeter is a digit

int toupper(int c) Returns the character in uppercase

<stdlib.h> int rand(void) Returns a random number between 0 and
RAND_MAX

Library C++ Library Constant Description

<iostream> <stdint.h> INT_MIN Lowest representable integer number

INT_MAX Greatest representable integer number

Programming 1 – Department CCIA 32

Exercises

1. In cold weather, meteorologists report a so called Wind Chill Factor that takes into
account wind speed and temperature. This factor can be approximated by the following
formula:

W = 13.12 + 0.6215 * t - 11.37 * s0.16 + 0.3965 * t * s0.016

where s = wind speed in m/s
 t = temperature in degrees Celsius: t ≤ 10
 W = wind chill factor (in degrees Celsius)

Design a module to request the value of the wind speed and temperature, and calculate
W, taking into account the restriction imposed for the temperature.

2. Design a module that receives a number n as a parameter, and displays a square of
asterisks of size nxn.

3. Improve exercise 2, adding another parameter representing the character to make up
the square.

4. How can exercise 3 be modified to indicate that the square is empty or solid?

5. Design a module to read and validate an input number so that its value is greater that 0
and lower than 100, and return the sum and the amount of figures between 1 and the
input value.

Programming 1 – Department CCIA 33

Topics

1. Modular decomposition

2. Communication between modules

3. Procedures and Functions

4. Scope of a variable

5. General structure of a program

6. Predefined functions in C language

7. Information sources

Programming 1 – Department CCIA 34

Information sources

 Capítulo 7

Fundamentos de Programación
Jesús Carretero, Félix García, y otros
Thomson-Paraninfo 2007. ISBN: 978-84-9732-550-9

Resolución de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

 Capítulo 4

Problemas Resueltos de Programación en Lenguaje C

Félix García, Alejandro Calderón, y otros

Thomson (2002) ISBN: 84-9732-102-2

 Capítulo 5

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34

