
Programming 1 Lecture 3
Control Statements

Programming 1 – Department CCIA 2

Objectives

● Understand the concept of algorithm
● Understand the need to design algorithms in

order to analyse and solve problems
● Understand and manage the different types of

existing control statements in a structured
programming language

● Understand the syntax and how the control
statements work in C language

Programming 1 – Department CCIA 3

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 4

The concept of Algorithm

Algorithm

Ordered sequence of instructions to solve a
problem in a finite number of steps

The algorithms are independent both from the programming
language and the computer that executes them

Programming 1 – Department CCIA 5

The concept of Program

Program

Set of ordered instructions (statements or
sentences) written in a programming language for

a computer to perform a particular task

The programs codify algorithms in a programming language,
and are executed in a computer

Programming 1 – Department CCIA 6

State of a program

● The state of a program at a given instant is the
value of each variable at this instant

PROGRAM = State + Executable statements

Variables that store
the state

Statements that modify
the state

Programming 1 – Department CCIA 7

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 8

Control flow of an algorithm

● The control flow defines the order followed by
the algorithm instructions

● The control flow is determined by the several
types of algorithmic structures

Programming 1 – Department CCIA 9

Types of algorithmic structures

Algorithmic
structures

Sequential

Selection

Iteration

 Assignment

 Input

 Output

 Simple

 Double

 Multiple

 Loop with initial condition

 Loop with final condition

 Loop with counter

Programming 1 – Department CCIA 10

Sequential structure

● The actions (instructions) are consecutively
performed one after another.

Enter the current year by keyboard

Enter your birth year by keyboard

age = current_year – birth_year

Display on the screen the value of age

Programming 1 – Department CCIA 11

Selection structure

● It allows you to make decisions between different
alternative actions depending on the value of a condition

Display on the screen the price of the ticket

age < 18

Display on the screen

“You have a discount”

true

Display on the screen

“You have no discount”

false

price = 5.0 * (18 - age) / 100 price = 5.0

If the condition is true Then

 <action1>

Else

 <action2>

End_selection_statement

Programming 1 – Department CCIA 12

Iterative structure

● It allows you to repeat actions depending on the
value of a condition

Display on the screen

“The capacity of the theatre is complete”

free_seats > 0
true false

Sell ticket

While the condition is true Do

 <action>

End_Iterative_Statement

Programming 1 – Department CCIA 13

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 14

Execution flow of a program

● The execution flow defines the order in which
the program statements are executed

● The execution flow is determined by the
different types of programming structures
(control statements)

Programming 1 – Department CCIA 15

Types of control statements

Control
statements

Sequential

Selection

Iteration

 Assignment Operator '='

 Input cin >>

 Output cout <<

 Simple if

 Double if-else

 Multiple switch or nested if-else

 Loop with initial condition while

 Loop with final condition do-while

 Loop with counter for

Programming 1 – Department CCIA 16

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 17

Simple sequential statements

• Assignment statement

• Input statement (read data)

• Output statement (write data)

variable = value ;
x = 20;
y = 3;
quotient = x / y;
remainder = x % y;

cin >> variable ; cin >> x;
cin >> y;

cout << datum ;
cout << “This text is written on the screen”;
cout << quotient;
cout << “\n”;

Programming 1 – Department CCIA 18

Sequence of statements in C and C++ languages

● A sequence of statements is made up of N
statements, N ≥ 0

● When N > 1, the sequence of statements must
be written between curly brackets ({ })

{
 sequence of statements
}

{ // beginning of the sequence

 cout << “Enter two integer numbers”;
 cin >> x >> y;
 quotient = x / y;
 remainder = x % y;
 cout << “The quotient is: “ << quotient << endl;
 cout << “The remainder is: “ << remainder;
 cout << endl;

} // end of sequence

Remember: all the statements in C and C++ end with a semicolon ;

Programming 1 – Department CCIA 19

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 20

Select one alternative: if statement

● Decide whether a sequence of statements is executed

● If the result of evaluating logic_ expression is true
then the sequence of statements associated with the if
statement is executed

● If the value of logic_ expression is false then the
sequence of statements is not executed and the
statement following the if is executed

if (logic_ expression) {
 sequence of statements
}

if (speed > 120) {
 cout << “WARNING: you may be fined”;
} // end of if statement

cout << “your current speed is: “;
cout << speed << endl;

In C and C++, the parentheses enclosing the logical expression are required

Programming 1 – Department CCIA 21

Select between two alternatives: if-else statement

● Select between two different sequences of statements

● If the value of logic_ expression is true then the sequence
of statements associated with the if is executed (sequence
of statements 1)

● If the value of logic_ expression is false then the sequence
of statements associated with the else is executed
(sequence of statements 2)

if (logic_expression) {
 sequence of statements 1
}
else {
 sequence of statements 2
}

if (number % 2 == 0) {
 cout << “the number is even”;
}
else {
 cout << “the number is odd”;
} // end of if-else statement

cout << endl;
cout << “enter another number:”;

Programming 1 – Department CCIA 22

Select from multiple alternatives: nested if-else statement

● Select from several sequences of statements

● Only the sequence of statements associated with the first logic
expression that is evaluated as true is executed

● If every logic expression is false

● The sequence of statements following the whole nested if-else is executed

● Unless the last alternative is associated with an else. In this case, this
branch is executed.

if (logic_expression_1) {
 sequence of statements 1
}
else if (logic_expression_2) {
 sequence of statements 2
}
else if (logic_expression_3) {
 sequence of statements 3
}

if (mark >= 9 && mark <= 10)
 cout << “your mark is SOBRESALIENTE”;
else if (mark >= 7 && mark < 9)
 cout << “your mark is NOTABLE”;
else if (mark >= 5 && mark < 7)
 cout << “your mark is APROBADO”;
else if (mark >=0 && mark < 5)
 cout << “your mark is SUSPENSO”;
 else // last alternative of nested if-else
 cout << “your mark is not correct”;

// here is the next sentence
// after the nested if-else

Programming 1 – Department CCIA 23

Select from multiple alternatives: switch statement

● Select from several sequences of statements

● Only the sequence of statements associated with the case is
executed, which has a value that corresponds to the result of the
expression in switch.

● If the value of the expression in switch is not in any case, the
sequence of statements associated with the branch default is
executed (this branch is optional)

switch (expression) {
 case value_1 : sequence of statements 1;
 break;
 case value_2 : sequence of statements 2;
 break;
 case value_3 : sequence of statements 3;
 break;
 default : sequence of statements 4;
}

switch (operator) {
 case ‘+’ : res = x + y;
 break;
 case ‘-’ : res = x - y;
 break;
 case ‘*’ : res = x * y;
 break;
 case ‘/’ : res = x / y;
 break;
} // en of switch statement

cout << “Result of the operation : ”;
cout << res;

Programming 1 – Department CCIA 24

Exercises

1. Write a program to read two different numbers from the keyboard and display a
text message on screen indicating which is the greatest one.

2. Write a program to read a figure in seconds and display this figure as hours,
minutes and seconds.

3. Write a program to read the coordinates of three points in a plane and display
whether they make up an equilateral triangle.

4. Write a program to display three menu options and let the user select one of
them. After that, a message should appear on the screen that shows the
selected option or an error message if the option is incorrect:

1. Menu option 1

2. Menu option 2

3. Menu option 3

Enter a menu option: 2

The selected menu option is 2

1. Menu option 1

2. Menu option 2

3. Menu option 3

Enter a menu option: 4

The selected menu option is incorrect

Execution example 1 Execution example 2

Programming 1 – Department CCIA 25

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 26

Loops

● A loop is a programming structure made up of a
sequence of statements, called the loop body, that
can be repeated several times

● Each execution of the loop body is an iteration

● The number of times the loop body is executed is
controlled by a condition (logic expression)

● Therefore, when designing and implementing a loop,
we must take into account two aspects:

1. Which one should be the loop body?

2. How many times must the loop body be iterated?

Programming 1 – Department CCIA 27

Loop types

● Depending on where the condition that controls
the execution of the loop body is, the following
types of loops can be distinguished:
● Loops with initial condition

– While statement
– For statement (repeat with counter)

● Loops with final condition
– Do-while statement

Programming 1 – Department CCIA 28

Loops with initial condition: while statement

● Repeat zero or more times the execution of a
sequence of statements while the condition is true

● While the result of evaluating the logic_expression is
true, the sequence of statements (loop body) will be
executed repeatedly

while (logic_expression) {
 sequence of statements
}

sweets = 0;
cout << “Do you want a sweet?:”;
cin >> answer;
while (answer == ‘Y’ || answer == ‘y’) {
 sweets=sweets+1;
 cout << “Do you want another sweet?:”;
 cin >> answer;
} // end of while statement

cout << “You have ”<< sweets <<” sweets”;

Programming 1 – Department CCIA 29

Loops with final condition: do-while statement

● Repeat once or more times the execution of a
sequence of statements while the condition is true

● First, the loop body (sequence of statements) is
executed, and then the logic_expression is evaluated

● While the result of evaluating the logic_expression is
true, the sequence of statements (loop body) will be
executed repeatedly

do {
 sequence of statements
} while (logic_expression);

do {
 cout << “Enter the menu option:”;
 cin >> option;
} while (option < 1 || option > 4);

Programming 1 – Department CCIA 30

Loops with initial condition: for statement

● Repeat a given number of times the execution of a
sequence of statements

● The number of the loop iterations is controlled by a
variable, used as a counter
for (counter initialization ; logic_expression ; counter increment) {
 sequence of statements
}

In C and C++, the i++ statement is an assignment statement equivalent to i = i+1

for (i = 1; i <= 10; i++) {
 cout << “This is the iteration number “ << i;
}

The counter increment can be any other number than 1, for instance: i = i+2; i = i*2; …

The counter can also be decremented: i = i-1

Programming 1 – Department CCIA 31

How does the for statement work?

● Step 1: The counter initialization statement is
executed (only once)

● Step 2: The logic expression is evaluated:
● If its value is true, then the loop body is executed
● If its value is false, then the for statement execution

is finished

● Step 3: After executing the loop body, the
counter increment statement is executed

● Step 4: Go back to step 2

Programming 1 – Department CCIA 32

The for loop vs. the while loop. Equivalence

● Any for loop can be rewritten as a while loop

for (expression_1 ; expression_2 ; expression_3) {
 sequence of statements;
}

for (i = 1; i <= 10; i++) {
 cout << “This is the iteration num.“ << i;
}

Can be rewritten as

expression_1 ;
while (expression_2) {
 sequence of statements;
 expression_3;
}

i = 1;
while (i <= 10) {
 cout << “This is the iteration num.“ << i;
 i++;
}

Programming 1 – Department CCIA 33

What type of loop should I use?

Must the loop body be executed at least once?

No Yes

Is the number of iterations
controlled by a counter?

do-while loop

No Yes

while loop for loop

Programming 1 – Department CCIA 34

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 35

Comments in the source code

● A comment is a short explanation to provide information for
people who read the code

● They facilitate the program maintenance

● In C++ language, the symbols // are used

● The text between // and the end of line is a comment

● In C and C++ languages, the symbols /* and */ are also used

● The text between /* and */ is a comment

float partial_mark; // mark of a partial exam (input datum)

// Calculate the average mark and display it on the screen

/* Enter the marks of every partial exam and sum them up
 (only when the entered datum is correct) */

Programming 1 – Department CCIA 36

Comments

● A comment must clearly and shortly explain what a code
section in a program does, but not how it is done (that is
the code itself)

● For the following code …

● … what do you think about the following comment?

for (x=1; x <= 10; x++)
 for (y=1; y<=10; y++)
 cout << x << “*” << y << “=“ << x*y << endl;

/ * We have two nested for loops that are each repeated 10 times
 In the inner loop a message is printed on the screen to
 indicate the product of the two variables used as counters in the for loops
 A total amount of 100 lines are printed on the screen * /

Think of a more adequate
comment

Programming 1 – Department CCIA 37

Comments: where and how many?

● Where must I include a comment?
● In a module definition (what does the module do?)
● At the beginning of a code section that makes an

important action or which has a meaning that is not
obvious by itself

● At the beginning of a program (a heading with the
program name, author, date, program description...)

● How many comments must I include in my
program?
● Too many comments are just as bad as having too

few

Programming 1 – Department CCIA 38

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 39

Program trace concept

● A program trace is a sequence of states
through which the program passes, that is, the
value taken by the variables as the program is
executed

● The trace is carried out through a sequential
manual execution of the program statements

● The traces are mainly used for debugging the
program

The variables store the program state, and the executable statements modify this state

Debugging a program is correcting the execution errors that are detected during the
execution.

Programming 1 – Department CCIA 40

Debugging a program using a trace

// Let N > 0 be a number, calculate the addition

// all the odd numbers that are less than N

#include <iostream>

using namespace std;

main() {

 int num; // read number (input datum)
 int sum; // addition result (output datum)
 int i; // loop counter (auxiliary datum)

 cout << “Enter a number, greater than 0:”;
 cin >> num;

 // calculate the addition and display on screen
 sum = 0;
 for (i=1; i < num; i++) {
 if ((num % 2) != 0)
 sum = sum + i;
 }

 cout << “The result is: ” << sum << endl;
}

num sum i
cin 5

Initialize sum 5 0

Initialize counter 5 0 1

1st for iteration 5 1 1

Counter increment 5 1 2

2nd for iteration 5 3 2

Counter increment 5 3 3

3rd for interation 5 6 3

Counter increment 5 6 4

4th for iteration 5 10 4

Counter increment 5 10 5

Why does it
not work?

Programming 1 – Department CCIA 41

Understanding a program using a trace

● A program trace can also be used to
understand what a program or a part of it does

#include <iostream>

using namespace std;

main() {

 float a, r;
 int b, i;

 cout << “Enter a real number:”;
 cin >> a;
 cout << “Enter an integer number:”;
 cin >> b;
 r = 1;
 for (i=0; i < b; i++)
 r = r * a;

 cout << “The result is: ” << r << endl;
}

What does this
program do?

Programming 1 – Department CCIA 42

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 43

What type of program must I be able to do?

#preprocesor directives

Constants declaration

main() {

 Variables declaration:

of simple data types

 Main body (executable statements)

Input and Output statements

assignment statements

selection statements

iterative statements

}

Programming 1 – Department CCIA 44

Program example

#include <iostream>
using namespace std;

const int NUM_PARTIALS = 5; // Number of partial exams

main() {
 float partial_mark; // mark of a partial exam (input datum)
 float sum; // total sum of marks (auxiliary datum)
 int i; // counter for 'for' loop (auxiliary datum)
 bool incorrect_mark; // true if the entered mark is incorrect (auxiliary datum)
 float final_mark; // average mark of all the partial exams (output datum)

 sum = 0;
 // Enter the marks of all the partial exams and add them up (only if the datum is correct)

 for (i=1; i <= NUM_PARTIALS; i++) {
 do {
 cout << “Enter the mark of partial number “ << i “:”;
 cin >> partial_mark;
 incorrect_mark = (partial_mark < 0.0 || partial_mark > 10.0);
 if (incorrect_mark)
 cout << “The entered mark is incorrect” << endl;
 } while (incorrect_mark);
 sum = sum + partial_mark;
 }

 // Calculate the average mark and display it on the screen

 final_mark = sum / NUM_PARTIALS;
 cout << “Your final mark is: ” << final_mark << endl;
}

Programming 1 – Department CCIA 45

Rules for a good style of writing programs

● The variables and constants names must suggest their use
● Use line breaks between parts that are logically separated
● Properly indent the code

A program written following a good programming style is easier to read (more
readable) and easier to modify (more maintainable)

#include <iostream>
using namespace std;

main() { float a, r; int
 b, i; cout <<
“Enter a real number:”; cin >>
a; cout <<
“Enter an integer number:”;
 cin >> b; r
 = 1; for
(i=0
; i < b;
i++) r = r * a;
 cout << “The result is: ” << r <<
 endl; }

#include <iostream>
using namespace std;

main() {
 float base, power;
 int exponent, i;

 cout << “Enter a real number:”;
 cin >> base;
 cout << “Enter an integer number:”;
 cin >> exponent;
 power = 1;
 for (i=0; i < exponent; i++)
 power = power * base;

 cout << “Power: ” << power << endl;
}

Do they do
the same?

Programming 1 – Department CCIA 46

Exercises

5. After executing each of the following program fragments, which is the
final value of variable x in each case?

6. Write a program that reads positive numbers and displays their
addition and the amount of input numbers.

7. Write a program that reads an integer number, greater than 0, and
displays all its divisors.

8. Modify the program from exercise 4 to add a fourth option called
“EXIT”. The program must continuously display the menu, let the user
select the option, and exit the program only when the option 4 is chosen.

x = 0;
n = 16;
while (n != 0) {
 x = x + n;
 n = n / 2;
}

z = 12;
x = 0;
if ((z % 4) == 0)
 for (j = 0; j < 10; j + 4)
 x = x + j;
else
 for (j = 0; j < 10; j + 2)
 x = x + j;

Case A Case B

Programming 1 – Department CCIA 47

Topics

1. Algorithms and Programs

2. Algorithmic structures

3. Programming structures

4. Sequential statements

5. Selection statements

6. Iteration statements

7. Comments

8. Program trace

9. General structure of a program

10. Information sources

Programming 1 – Department CCIA 48

Information sources

 Capítulo 5

Fundamentos de Programación
Jesús Carretero, Félix García, y otros
Thomson-Paraninfo 2007. ISBN: 978-84-9732-550-9

Resolución de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

 Capítulo 2 (Apartado 2.4)
 Capítulo 7

Problemas Resueltos de Programación en Lenguaje C

Félix García, Alejandro Calderón, y otros

Thomson (2002) ISBN: 84-9732-102-2

 Capítulo 3

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48

