
 1

Programming 1 Lecture 2
Simple Data Types

Programming 1 – Department CCIA 2

Objectives

● Understand the use of data in a program
● Know the simple data types in a programming

language
● Learn to manage, read and display the simple

data types in the C language (C++)

Programming 1 – Department CCIA 3

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 4

Data in a program

● Datum: fact or value from which a conclusion can be
inferred (information)

● Data in a program: data which the computer operates with

● Input data are a starting point to obtain knowledge (output
data)

● The program may also need auxiliary data (internal) to
obtain the result

PROGRAM

(includes
AUXILIARY DATA)

INPUT DATAINPUT DATA OUTPUT DATA
(INFORMATION)
OUTPUT DATA

(INFORMATION)

Programming 1 – Department CCIA 5

Example: data in a program

● Program: calculate the arithmetic mean of n numbers

● Input data: a set of n numbers

● Output data: arithmetic mean of the n numbers

● Auxiliary data:
● Addition of the numbers
● Amount of numbers

PROGRAM to
calculate the

arithmetic mean
of n numbers

INPUT DATA OUTPUT DATA

3

7

15

4

23

10,4
AUXILIARY DATA

5 52

Programming 1 – Department CCIA 6

Data Types in a Program

● Data Type = Values + Operations
● Set of values that a datum can take in the program

– If a value not included in the set is tried to be given, the
program must produce an error message

● Set of operations that can be defined with the data

Programming 1 – Department CCIA 7

Example: Data Type

● Boolean Data Type
● Values = {true, false}
● Operations = {and, or, not}

a b not a a and b a or b

false false true false false

true false false false true

false true false true

true true true true

Programming 1 – Department CCIA 8

Simple Data Type

● They are elementary types that are not derived
from other types

● Each particular value of a simple data type is
specified by a literal
● For instance, the integer literals can be expressed

as a:
– Decimal (base 10): 255
– Octal (base 8): 0377 (3*82+7*81+7=255)
– Hexadecimal (base 16): 0xff (15*161+15=255)

Programming 1 – Department CCIA 9

Predefined Simple Data Types in C

Type Meaning Bytes

Character
char character 1

unsigned char unsigned character 1

Numerical

Integer

int integer 2-4

short short integer 2

long long integer 4

long long long integer 8

unsigned unsigned integer 2-4

unsigned short unsigned short integer 2

unsigned long unsigned long integer 4

unsigned long long unsigned long integer 8

Real

float floating point (real numbers) 4

double double precision floating point 8

long double extended double precision floating point 16

Boolean bool boolean 1

The bool type doesn't exist in standard ANSI C (It is emulated using int type: 0 means false;
≠ 0 means true.
We will use bool type (belonging to C++ and standard C99)

Programming 1 – Department CCIA 10

Values for Simple Data Types in C

Type Bytes Meaning Precision

char 1 Alphabetic: 'a', 'b', …'z'
 'A', 'B', …'Z'
Digits: '0', '1', '2', …'9'
Special: '+', '-', '/', '=', '(', ...

int 4 -2.147.483.647 .. 2.147.483.647

short 2 -32.767 .. 32.767

float 4 Approx. 10-38 .. 1038 7 digits

double 8 Approx. 10-308 .. 10308 15 digits

bool 1 true, false

Programming 1 – Department CCIA 11

User-defined Data Types

● Generally, programming languages have:
● Predefined Data Types
● User-defined Data Types

● In C language:
● The user can define enumerated data types made up of

a set of identifiers representing an integer value.
● There is no impression format for these types. The first

element has an associated value of 0, the second
element of 1 and so on.

enum T_WeekDay {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

enum T_Primary_Colour {red, green, blue};

Programming 1 – Department CCIA 12

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 13

Variables and Constants in a Program

● Common features:
● They both represent data in a program
● They use a memory space, reserved to store a

value of a data type
● They are identified by a name

● Differences:
● The value of a variable can change during the

program execution
● The value of a constant never changes during the

program execution

Programming 1 – Department CCIA 14

Representation of variables in the memory

● The memory is a list of
numerated positions (bytes)

● A variable represents a portion
of the memory made up of a
consecutive amount of bytes

● A variable in the memory is
determined by:

● The address: place of the first
byte dedicated to this variable

● The type: it determines how
many bytes are required to
store this variable

…

1000

1001

1002

1003

1004

1005

1006

1007

…

address

int num;

Free memory

char car;
Space reserved
for the value in
binary of
variable ‘car’

Space
reserved for
the value in
binary of
variable ‘num’

Free memory

Programming 1 – Department CCIA 15

Variables and Constants: example

A football club X, owner of a stadium Y, needs to calculate the income of each
match played in its stadium. There are three types of tickets, depending on the
kind of seat: back seats (stands behind the goals), general seats (uncovered
side stands) and preferential seats (covered side stands). Throughout the
season, the price of a back seat ticket is half of a general ticket, and the
preferential ticket price is double of a general one. For each match, the football
club sets a price for the general tickets, and it also establishes discounts for
children (80%) and pensioners (50%) for the whole season.

● What would you use to store …

● … the price of a general ticket?

● … the discount for children?

● … the amount of sold preferential tickets?

● … the type of a ticket?

● … whether a discount can be applied or not?

● … the price of a preferential ticket?

Real Variable

Constant

Integer Variable

Programming 1 – Department CCIA 16

Identifiers

● An identifier is a name used by the programmer to make
reference to the data and other program elements

● General rules to construct an identifier:

1. It must be significant

2. It cannot match reserved words belonging to the programming
language

3. Its length should not be too long

4. It should begin with an alphabetic character or the underscore
symbol. It can contain alphabetic characters, digits and the
underscore symbol

5. It cannot be accentuated

6. Depending on the programming language, it may be used
interchangeably or not, in uppercase or lowercase

C and C++ are case sensitive

Programming 1 – Department CCIA 17

Variable and Constant Identifiers

● Widespread notations among most programmers:
1.Variables in lowercase, constants in uppercase
2.Identifiers made up of several words:

– Lowercase, separating words with underscores
 nombre_alumno

– Uppercase, separating words with underscores
 NOMBRE_ALUMNO

– Initials in uppercase, the remaining lowercase
 NombreAlumno

– Same length words
 nom_alu

Important: don't change notation arbitrarily. Follow only one notation
to keep your programs consistent, readable and understandable

Programming 1 – Department CCIA 18

Identifiers: Example

● Right
● distance
● euclidean_distance
● _date
● dateOfBirth
● NUMBER_PI
● number1
● number_2

● Wrong
● euclidean-distance
● 3books
● Number$1
● More_questions?
● número

The following identifiers are different in C:

Car_colour car_colour CAR_COLOUR car_Colour Car_Colour

Programming 1 – Department CCIA 19

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 20

Managing variables and constants

Step 1: Declaration
● Give them a name and determine the data type for the

compiler to reserve space in the memory to store a value of
this data type

Step 2: Initialization
● Assign the first value before using them

Step 3: Use
● Use them in the allowed places (sentences), following the

syntactic rules of the programming language

Step 4: Destruction
● The compiler frees the space in memory that was previously

reserved
● Usually, this is done by the compiler, but the programmer

must take it in account, so that they are not used once
destroyed

Programming 1 – Department CCIA 21

Variable declaration in C

● A data type must be associated to the variable,
so that it can store any value of this data type

char letter_dni; // variable to store the letter of the dni of any person

int pages; // variable to store the amount of pages of any book

float salary; // variable to store the salary of any person

bool passed; // variable to store whether a student has passed an exam or not

type identifier ;

Data type for
the variable

Variable name
‘;’ end of the
declaration sentence

Programming 1 – Department CCIA 22

Constant declaration and initialization in C/C++

#define HOURS_DAY 24 // constant to store the number of hours in a day

In C language

#define identifier value

It indicates that
it is a constant
declaration

Constant name
Constant value

const type identifier = value ;

Constant
data type

Constant
name

‘;’ end of sentence

In C++ language

Reserved word for
constants in C++

const int HOURS_DAY = 24; // constant to store the number of hours in a day

‘=’ assignment
operator

Programming 1 – Department CCIA 23

Variable initialization in C

● Using the assignment statement

letter_dni = ‘A’; // store the ‘A’ character in variable letter_dni

pages = 365; // store the number 365 in variable pages

salary = 1000.20; // store the real number 1000.20 in variable salary

passed = true; // store the value true in variable passed

identifier = value ;

Variable
name ‘;’ end of assignment

statement

Assignment
operator

Value assigned
to the variable

In C language

In C and C++, the variables can be initialized in the declaration. For example: int pages = 365;

Programming 1 – Department CCIA 24

Using variables and constants in C language

● A variable is used …
● On the left side of an assignment statement
● In an arithmetic of logic expression
● In the input and output statements

● A constant is used …
● In an arithmetic of logic expression
● In an output statement

Why not a constant on the
left side of an assignment?

Why not a constant in an input
data statement?

Programming 1 – Department CCIA 25

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 26

Assignment statement: syntax

pages_bookA = 430; // store the number 430 in variable pages_bookA, previously declared as type int

salary = 35616.44; // store the real number 35616.44 in variable salary, previously declared as type float

Identifier = value ;

Variable
name ‘;’ end of the

assignment statement

Assignment
operator

Value assigned
to the variable

In C language

Programming 1 – Department CCIA 27

How does the assignment statement work?

● Step 1: Evaluate the right side of the assignment operator

● Step 2: Assign the value of the right side to the left side of
the assignment operator

In C language

What is the value stored
in variable final_price?

// supose variables price_carA and price_carB declare as type float

price_carA = 10500.00; // store the number 10500.00 in variable price_carA

price_carB = 40200.00; // store the number 40200.00 in variable price_carB

final_price = price_carA + price_carB;

Programming 1 – Department CCIA 28

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 29

Arithmetic and logic expressions

● An expression in a program is a combination of variables, constants,
operators, brackets and function identifiers, whose evaluation produces a value

● Expressions can be written in any place in the program in which its evaluation value
can be used

● An arithmetic expression …
● Is built using arithmetic operators
● Returns a numerical value

● A logic expression …
● Is built using relational and logical operators
● Can also contain arithmetic operators
● Returns a boolean value

 (x_rad * 360) / (2 * PI) It calculates the degrees corresponding to a value in
radians stored in variable x_rad, using the constant PI

(year modulus 4 == 0) AND (NOT (year modulus 100 == 0) OR (year modulus 400 == 0))

??

Programming 1 – Department CCIA 30

Operators in C language

Arithmetic operators Meaning Operand types Result type

+ - * / Addition, subtraction,
multiplication, division

Integer or real Integer or
real

% Division remainder Integer Integer

Relational operators

< > <= >= Less than, greater than,
less than or equal to,
greater than or equal to

Simple types Boolean

== != Equal to, not equal to Simple types Boolean

Logic operators

&& Logic AND Boolean Boolean

|| Logic OR Boolean Boolean

! Logic NOT Boolean Boolean

Important: The assignment operator '=' is different from the equality operator '=='. Very often some people
wrongly use the operator '=' instead of '=='. It generates errors which are difficult to detect.

Important: Notice that the division operator '/', when the operands are of integer type, returns the integer
part of the division quotient. To obtain a result with a fractional part, some of the operands must be of real
type.

Programming 1 – Department CCIA 31

Operator Precedence and Associativity

● The precedence or priority of an operator indicates the order in which the
operations in an expression with several operands are executed

● The associativity of an operator indicates the order in which the operations
in an expression with several operands with the same priority are executed

Priority Operators Meaning Associativity

1 - ! Negative number, logic NOT From right to left

2 * / % Multiplication, division, division remainder From left to right

3 + - Addition, subtraction From left to right

4 < > <= >= Relational operators From left to right

5 == != Equality operators From left to right

6 && Logic AND From left to right

7 || Logic OR From left to right

Operator precedence in C language

Always use brackets '()' …
• when you have any doubt in the evaluation order
• to make the expression more readable
• to modify the evaluation order

Programming 1 – Department CCIA 32

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 33

Data input and output statements

● The input statements allow the variables to
store data that the user enters by keyboard

● The output statements allow the display of
data on the screen

● Variables can be used in input statements
● Variables, constants and expressions in general

can be used in output statements

The input and the output can be associated to several sources and
devices, such as files, printers, touchscreens, a mouse and so on.

We will mainly use the keyboard and the screen as input and output
of our programs. They are the default devices for input and output.

Programming 1 – Department CCIA 34

Output statement in C++

● It writes on the screen any combination of values of
variables, constants, expressions and text strings

cout << datum ; Reserved
word

Value of a variable or
expression

‘;’ end of
statement

Insertion
operator

cout << “The price of the laptop is “ << price << “ euros” << endl;
cout << “The total price is : “ << (price1 + price2);
cout << price;
cout << “this is a text string with no new line”;
cout << “this is a text string with new line\n”;
cout << endl;
cout << “\n”;

Examples

In C language, the data output is done by using the library function printf(). In
our case, we prefer to use the statement cout of C++, because of its easier use.

Programming 1 – Department CCIA 35

Input statement in C++

● It stores in variables the values entered by keyboard

cin >> variable ; Reserved
word

Variable
name

‘;’ end of statement

Extraction
operator

cout << “Enter your age:”;

cin >> age; // age is a variable, declared as type int

cout << “Enter the marks for the two practice exams:”;

cin >> mark1 >> mark2; // mark1 are mark2 are variables declared as type float or double

cout << “Would you like to enter more data? (Y/N) : ”;

cin >> answer; // answer is a variable, declared as type char

Examples

cin ignores whitespace and the newline character

In C language, the data input is done by using the library function scanf(). In
our case, we prefer to use the statement cin of C++, because of its easier use.

Programming 1 – Department CCIA 36

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 37

General structure of a program in C

#preprocessor directives

constant declaration

main() {

 variable declaration:

 simple types

 main body (executable statements)

 input and output statements

 assignment statements

}

#include <iostream>
using namespace std;

const float PI = 3.1415926;

main() {
 float area, radio;

 cout << “Enter the circle radius:”;
 cin >> radius;
 area = PI * radius * radius;
 cout << “The circle area is:” << area;
 cout << endl;
}

All the statements in C and C++ end with a semicolon ';'

Constant
declaration and
initialization

Two variables
declaration

Programming 1 – Department CCIA 38

Topics

1. Data types in a program

2. Variable and constant data

3. Managing variables and constants in a program

4. Assignment statement

5. Arithmetic and logic expressions

6. Data input and output statements

7. General structure of a program

8. Information sources

Programming 1 – Department CCIA 39

Information sources

 Capítulo 2 (Apartados 2.4)
 Capítulo 4 (Apartados 4.1; 4.2; 4.3; 4.4; 4.10)

Fundamentos de Programación
Jesús Carretero, Félix García, y otros
Thomson-Paraninfo 2007. ISBN: 978-84-9732-550-9

Resolución de Problemas con C++
Walter Savitch
Pearson Addison Wesley 2007. ISBN: 978-970-26-0806-6

 Capítulo 2

Problemas Resueltos de Programación en Lenguaje C

Félix García, Alejandro Calderón, y otros

Thomson (2002) ISBN: 84-9732-102-2

 Capítulo 2 (Apartados 2.1; 2.2; 2.3)

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39

