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The split-field finite-difference time-domain (SF-FDTD) method for one-dimensionally periodic structures is
extended to include the coefficient-tensor description of second- and third-order nonlinear-optical media. A
set of nonlinear equations related to the split-field values of the electric field is established. An iterative
fixed-point approach for solving the coupled nonlinear system of equations needed to update the electric field
components in the SF-FDTD is then developed. The third-order nonlinear susceptibility dispersion is also con-
sidered by means of the Raman effect and its implementation in the SF-FDTD scheme. Different scenarios are
considered in order to verify the reliability of the method for simulating second- and third-order nonlinear-optical
media. First, second-harmonic generation and its efficiency are investigated in a homogeneous layer with and
without the quasi-phase-matching technique. Second, the nonlinear dispersion is analyzed by means of the
generation of solitons in Kerr media due to the Raman effect. Last, a set of binary phase gratings with nonlinear
pillars is considered under oblique incidence. Here the nonlinear refractive index is generated by different
physical mechanisms modeled with the nonscalar third-order susceptibility. © 2013 Optical Society of America
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1. INTRODUCTION
Nonlinear media have attracted a great deal of interest in the
last few decades [1,2]. In real materials, nonlinear effects are
typically weak, and hence a high incident intensity is often
required in order to observe nonlinear-optical effects. How-
ever, in optical nanostructures, remarkably lower input inten-
sities may be sufficient to trigger nonlinear effects due to high
field confinement [1,3]. In the last few years, nonlinear phe-
nomena have been investigated, e.g., to study how to control
light and to design all-optical ultrafast signal-processing devi-
ces such as waveguides combining linear and nonlinear media
[4], all-optical switching devices [5,6], or periodic structures
created from different nonlinear media [7].

Second-harmonic generation (SHG) has played an increas-
ingly important role in several near-field optics applications
such as the determination of surface magnetic and electric
properties [8,9], rough surface studies [10], and apertureless
scanning near-field microscopy [11]. Owing to the crucial role
of light polarization in many integrated-optical devices, aniso-
tropic properties of the nonlinear susceptibility must be taken
into account. An example of this is the coupling of a TM po-
larized incident field into a TE polarized second-harmonic
one. In third-order nonlinear materials, there is a cubic
dependence between electric polarization and electric field,
which implies that there is an intensity-dependent nonlinear

contribution to the refractive index [1]. This characteristic
in periodic structures gives rise to a wide range of phenomena
that have been applied to achieve new photonics applications
such as bistability [12], the zero-n gap based on alternating
positive and negative index material [13–16], and integrated
optoelectronics [17,18].

In order to design even more complex optical devices, it is
essential to have a time-efficient analysis tool. The initial
finite-difference time-domain (FDTD) method [19] has been
one of the most successful tools in calculating the time evo-
lution of electromagnetic fields in many different types of
structures. In the case of laterally periodic media, the FDTD
technique can be modified to take full advantage of the perio-
dicity of the problem. One such modification is the so-called
periodic boundary condition (PBC). However, in the case of
oblique illumination, the PBC requires a phase shift between
the periods, which significantly reduces the performance of
the approach.

The split-field finite-difference time-domain (SF-FDTD)
approach [20–26] is a powerful method for analyzing periodic
structures under oblique incidence, a situation in which
the ordinary FDTD approach encounter difficulties. In
SF-FDTD only one period is considered rather than the whole
structure, which has obvious advantages as far as numerical
efficiency is concerned. In particular, the outstanding studies
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by Shahmansouri and Rashidian have significantly improved
the SF-FDTD approach [27,28] by introducing the possibility
of analyzing dispersive media.

Even though the state of the art in classical FDTD formu-
lation also covers nonlinear media [29–35], the split-field ap-
proach must be thoroughly reformulated in such cases. In this
paper, an extension of the SF-FDTD approach for certain
second- and third-order nonlinear materials with tensorial
nonlinear susceptibilities is presented. In SF-FDTD for nonlin-
ear periodic media, the Floquet theorem is taken into account
as in the corresponding linear case. Furthermore, the nonlin-
ear dispersion of the third-order susceptibility is also included
in the formulation. The improvement is based on a recent pa-
per by the authors focusing on the SF-FDTD implementation
of the electro-optical and all-optical Kerr effect in periodic
media [36]. Since the materials are nonlinear, a coupled non-
linear system of equations must be solved in SF-FDTD. Here,
the iterative fixed-point procedure, discussed in detail in [36],
is applied to analyze a wide range of situations such as
the SHG under quasi-phase matching (QPM), the nonlinear
dispersion (Raman effect) in Kerr media, and different physi-
cal mechanisms that lead to a nonlinear refractive index in
third-order nonlinear materials.

This paper is organized as follows. First, we present the
theory for the split-field formulation with second-order non-
linear media and SHG. Second, we describe how the scheme
is extended to cover third-order nonlinear media, beginning
with the nonlinear dispersion behavior and concluding with
the tensorial formulation of the susceptibility. Third, we
present numerical examples for various types of structures
in order to illustrate the potential of this approach.

2. SPLIT-FIELD FINITE-DIFFERENCE
TIME-DOMAIN METHOD
In this section, we present the basis for the SF-FDTD
method and the implementation of the different extensions.
Figure 1(a) shows the basic geometry considered throughout
the paper. We assume that the structure is periodic in the x
direction, and that the input light field is a plane wave such
that the wave vector kinc forms an angle θ0 with the positive
z axis. The periodicity of the problem is taken into account by
applying the PBC at the periodic boundaries. To truncate the
problem in the z direction, we apply the uniaxial perfectly
matched layer (UPML) method [37,38] (UPML). The input
plane-wave source is excited in the structure following
the schemes proposed in [29,24] for both continuous and

time-limited pulsed waves. Our approach is restricted to
one-dimensional periodic structures, but an extension to two-
dimensional periodic structures is expected to be straightfor-
ward (cf. the split-field formulation for linear media in [27]).
The distribution of the field components within one unit cell is
illustrated in Fig. 1(b).

A. Basic Concepts
To facilitate the derivation of the new formulation, we next
recall the derivation of SF-FDTD from earlier studies. Here
we assume the media are nonmagnetic and nonconducting,
and hence Maxwell’s curl equations take on the form

∇ × E � −μ0
∂H
∂t

; (1)

∇ ×H � ∂D
∂t

; (2)

where μ0 is the permeability of free space, D is the electric
displacement vector in the space–time domain, and H is
the magnetic field. We split the electric displacement vector
into linear and nonlinear parts with

D � ϵ0ϵrE� FNL; (3)

where ϵ0 is the vacuum permittivity, ϵr denotes the relative
linear permittivity, and FNL is the nonlinear polarization.
Consequently, Eq. (2) can be rewritten as

∇ ×H � ϵ0ϵr
∂E
∂t

� JNL; (4)

where JNL is the nonlinear-polarization current density
defined by ∂FNL∕∂t.

Since we assume the material is illuminated by an obliquely
incident plane wave and that the structure is periodic in the x
direction, the field everywhere contains a linear x-dependent
phase term exp�jkxx�, where kx � �ω∕c� sin θ0 is the x com-
ponent of the wave vector in the phasor domain, c is the vac-
uum speed of light, and ω is the angular frequency. In the SF
formulation, we consider the split-field variables that elimi-
nate the effect of the phase term using the transformation

P̆ � Ĕe jkxx; (5)

Fig. 1. (a) Scheme of a two-dimensional computational space. (b) Yee cell for a two-dimensional SF-FDTD scheme.
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Q̆ � μ0cH̆ejkxx; (6)

where P̆ and Q̆ are the transformed vectors in the phasor do-
main. Analogous transformation can also be applied to the
nonlinear-polarization current [36].

Substituting the split-field components into Maxwell’s equa-
tions, performing some algebraic operations [36], and elimi-
nating the time-derivative terms ∂∕∂t⇔ jω, the basis for the
SF-FDTD with nonlinear-polarization terms can be expressed
as follows:

Px � Pxa − c2μ0κFNL
x ejkxx; (7)

Py � Pya � sin θ0κQz − c2μ0κFNL
y ejkxx; (8)

Pz � Pza − sin θ0κQy − c2μ0κFNL
z ejkxx; (9)

Qx � Qxa; (10)

Qy � Qya − sin θ0Pz; (11)

Qz � Qza � sin θ0Py; (12)

where the “a” field components are fully detailed in [36]. In the
following section, we discuss the implementation of the
polarization terms in Eqs. (7)–(9) for each specific scenario.

B. Second-Order Nonlinear Media
It is well known that second-order nonlinear effects exist
in various noncentrosymmetric optical crystals. In such a
case, the polarization F can be expressed as a function of the
second-order nonlinear susceptibility χ�2�0 and the propagating
electric field components inside the structure. The nonlinear
response of the material leads to an exchange of energy be-
tween the fundamental field at frequency ωf and the second-
harmonic field at the double frequency ωs � 2ωf . In this
process the induced nonlinear-polarization term is defined
in terms of a third rank tensor d that can be represented in
a contracted form as a 3 × 6 matrix dμm:

d �
2
4 d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

3
5: (13)

Thus, using this contracted suffix notation, the polarization
term related to SHG can be defined by [39–42]

F
NL;ωf
m � 2ϵ0

X
σ;β

dmξE
ωf
σ Eωs

β ; (14)

FNL;ωs
m � ϵ0

X
σ;β

dmξE
ωf
σ E

ωf

β ; (15)

wherem � 1, 2, and 3 stand for x, y, and z, respectively. Suffix
ξ takes on values 1;…6 that are related to the Cartesian axes
by the rules given in Table 1 [1,39].

Taking into account the transformation into the split-field
domain, we find that

2
664
F
NL;ωf
x

F
NL;ωf
y

F
NL;ωf
z

3
775ejωf sin θ0x∕c � 2dϵ0

2
6666666664

P
ωf
x Eωs

x

P
ωf
y Eωs

y

P
ωf
z Eωs

z

P
ωf
z Eωs

y � P
ωf
y Eωs

z

P
ωf
z Eωs

x � P
ωf
x Eωs

z

P
ωf
x Eωs

y � P
ωf
y Eωs

x

3
7777777775
; (16)

and

2
664
FNL;ωs
x

FNL;ωs
y

FNL;ωs
z

3
775ejωs sin θ0x∕c � dϵ0

2
6666666664

P
ωf
x P

ωf
x

P
ωf
y P

ωf
y

P
ωf
z P

ωf
z

2P
ωf
z P

ωf
y

2P
ωf
z P

ωf
x

2P
ωf
x P

ωf
y

3
7777777775
: (17)

If we consider a two-dimensional crystal material with cubic
symmetry, which belongs to class 23 [1,39] with crystal axes
matching the principal axes, the only nonzero elements in the
coefficient tensor are d14 � d25 � d36. This scheme is suitable
for modeling GaAs-based structures, for instance.

Wemay nowwrite Maxwell’s equations for the fundamental
and the second-harmonic split fields as

P
ωf
x � P

ωf
xa − 2d14κP

ωf
z Eωs

y ; (18)

P
ωf
z � P

ωf
za − sin θ0κQ

ωf
y − 2d14κP

ωf
x Eωs

y ; (19)

Q
ωf
y � Q

ωf
ya − sin θ0P

ωf
z ; (20)

and

Pωs
y � Pωs

ya � sin θ0κQ
ωs
z − 2d14κP

ωf
x P

ωf
z ; (21)

Qωs
x � Qωs

xa; (22)

Qωs
z � Qωs

za � sin θ0P
ωs
y ; (23)

respectively. Again, the “a” fields in Eqs. (18)–(23) are defined
in [36]. The nonlinear-polarization terms require averaging
over the nearest nodes surrounding Pm [see Fig. 1(b)]. For
example, in Eq. (18), the values of P

ωf
z and Eωs

y must be
computed by means of the semi-implicit approximation as

Table 1. Contracted Matrix Notation

for dmξ Indices

ξ 1 2 3 4 5 6

zy zx xy
σβ xx yy zz

yz xz yx
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�1∕4��Pωf
z jei;k�1∕2 � P

ωf
z jei�1;k�1∕2 � P

ωf
z jei;k−1∕2 � P

ωf
z jek�1;k−1∕2�

and �1∕2��Eωs
y jei;k � Eωs

y jei�1;k�, respectively [24,43]. This
approximation assumes that the field component is simply
the arithmetic average of the stored values in the neighboring
cells. Equations (18), (19), and (21) make up a system of
equations of the form P � U�P� that is solved by a fixed-point
iterative process. This approach is based on solving the pth
equation in the original system for Pm. The next step is to
choose the initial guess P�0�, after which we compute the sub-
sequent iterations by

P�p�1� � U�P�p��; p � 0; 1; 2;… (24)

In this specific case we found empirically that 15 iterations are
required to obtain sufficient accuracy. However, we fixed the
number of iterations far beyond this value in order to ensure
the results converged. For example, with 25 iterations the re-
sults are very accurate and the computational time is not dra-
matically affected. The analysis of the convergence condition
for fixed-point iterative process and FDTD can be found
in [36,44].

C. Dispersive Media with Third-Order Nonlinearity
In this section, we describe the extension of the SF-FDTD
scheme for third-order nonlinearity with dispersion. In such
a case, the third-order nonlinear polarization can be defined
as a linear superposition of the form [45]

FNL � FK � FR; (25)

where FK is the Kerr nonlinearity contribution and FR is the
nonlinear dispersion due to the Raman effect. These two
terms are fully detailed in the literature (cf. nonlinear media
and the standard FDTD approach [31,32,45]). The definition of
the Kerr nonlinearity contribution is

FK�t� � αϵ0χ
�3�
0 jEj2E; (26)

where χ�3�0 is the scalar nonlinear coefficient and α is a factor
that parametrizes the relative strengths of the Kerr and Raman
interactions.

The polarization due to the Raman effect is given by

FR�t� � ϵ0E�χ�3�Raman � jEj2�; (27)

where � denotes the convolution and χ�3�Raman, fully defined in
[45], accounts for nonresonant third-order processes, includ-
ing phonon interactions and nonresonant electronic effects.
We introduce an auxiliary variable S to facilitate the handling
of the Raman model in SF-FDTD. After some mathematical
operations, detailed in [45], and taking into account that
jEj2 � jPj2, we obtain the equation for updating S:

Se�1∕2 � 2 − �ωRΔt∕2�2
1� γRΔt∕2

Se � γRΔt∕2 − 1
1� γRΔt∕2

Se−1∕2

� �1 − α�χ�3�0 �ΔtωR∕2�2
1� γRΔt∕2

jPej2; (28)

where e stands for the step and

ωR �
���������������
τ21 � τ22
τ21τ

2
2

s
; γR � 1

τ2
: (29)

The time resolution of SF-FDTD is denoted by Δt, and τ1 and
τ2 are chosen to fit the Raman-gain spectrum [31,32,45].

We may next apply the field transformation to Eq. (27),
which gives us

Fe�1
R ejkxx � ϵ0Se�1Pe�1: (30)

This term can now be included in Eqs. (7)–(9) analogously to
the Kerr currents in [36]

Px � Pxa − κ�αχ�3�0 jPxj2Px � SxPx�; (31)

Py � Pya � sin θinc κQz − κ�αχ�3�0 jPyj2Py � SyPy�; (32)

Pz � Pza − sin θinc κQy − κ�αχ�3�0 jPzj2Pz � SzPz�: (33)

Equations (31)–(33) form a nonlinear system of equations and
hence, when updating the SF-FDTD equations, we need to
employ an iterative process in each time step. Here we choose
to use the fixed-point iteration, detailed in [36]. In this case,
the main equation for the fixed-point iteration is essentially
similar to the one used with the Kerr model. However, here
the update coefficients Cm that appear in [36] are substituted
by new update coefficients that include both the Kerr and the
Raman effects.

The update step of the total fields given in Eqs. (7)–(12) can
be reformulated removing the dependencies properly:

Pz �
Pza − κ sin θ0Qya

1� κ�χ�3�0 jEzj2 � Sz − sin2 θ0�
� CzP̂za; (34)

Qy � Qya − sin θ0 Pz; (35)

Px � Pxa

1� κ�χ�3�0 jExj2 � Sx�
� CxPxa; (36)

Py � Pya � κ sin θ0Qza

1� κ�χ�3�0 jEyj2 � Sy − sin2 θ0�
� CyP̂ya; (37)

Qz � Qza � sin θ0Py; (38)

where Cm are defined by

Cx � 1

1� κ�χ�3�0 Ix � Sx�
; (39)

Cy � 1

1� κ�χ�3�0 Iy � Sy − sin2 θ0�
; (40)
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Cz �
1

1� κ�χ�3�0 Iz � Sz − sin2 θ0�
; (41)

and

I � jEj2: (42)

The general equation for the fixed-point iteration is
Ijp�1 � Pjp�Pjp��, which can be extended for each space
coordinate

Ixjp�1 � Cxjp�Cxjp��jPxaj2; (43)

Iyjp�1 � Cyjp�Cyjp��jP̂yaj2; (44)

Izjp�1 � Czjp�Czjp��jP̂zaj2; (45)

where

Cxjp � 1

1� κ�χ�3�0 Ixjp � Sx�
; (46)

Cyjp � 1

1� κ�χ�3�0 Iyjp � Sy − sin2 θ0�
; (47)

Czjp � 1

1� κ�χ�3�0 Izjp � Sz − sin2 θ0�
�48�

are updated in each iteration.
It is worth noting that here the subindex p is an integer re-

lated to the iteration step for the fixed-point iteration process,
and not for the spatial dimension. The updating process per-
formed by the fixed-point iterations takes up most of the
computation time in SF-FDTD calculations. Therefore, this
process should be avoided whenever both Kerr and Raman
effects can be disregarded. Regarding convergence, the
fixed-point iteration establishes an inequality that depends
on the nonlinear parameters, and also on the input-field
amplitude. This expression can easily be derived from [36]
by adding the Raman contribution. An in-depth analysis of
this issue can be found in [44].

D. Tensorial Description of Third-Order Nonlinear
Media
In the preceding analysis, the nonlinear third-order effects
were described by a scalar susceptibility χ�3� value. However,
the third-order susceptibility is a fourth-rank tensor, and it is
characterized by 81 elements. In this section, we shall deal
with isotropic media, in which case the number of indepen-
dent elements can be reduced dramatically due to the spatial
symmetry [39,46]. In particular, semiconductor materials
such as silicon or GaAs, which are crystals belonging to
class 32, have cubic symmetry, and hence their nonlinear

Fig. 2. (a) Second-harmonic field amplitude as a function of space. (b) Time-domain results for the fundamental (thin blue line) and second-
harmonic (thick green line) fields at a point along the device at the center of the simulation grid. (c) Second-harmonic intensity along the nonlinear
media with (thick red line) and without QPM (thin blue line).
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susceptibilities can be described by a tensor with only two
independent components [1]. The relative magnitude of these
parameters depends on the nature of the physical process be-
hind the nonlinearity.

The nonlinear-polarization term for third-order materials
with the physical characteristics mentioned below can be
simplified to [1]

FNL � ϵ0A�E · E��E� 1
2
ϵ0B�E · E�E�: (49)

The ratio between B and A accounts for different physical
mechanisms that lead to the nonlinear behavior of materials.
In particular,

• B∕A � 6 for molecular orientation,
• B∕A � 1 for nonresonant electronic response,
• B∕A � 0 for electrostriction.

If we develop the polarization terms pertaining to the
TM polarization in the split-field domain, we obtain the
expressions

FNL
x � ϵ0

��
A� 1

2
B
�
jExj2Ex � AjEzj2Ex �

1
2
BE2

zE�
x

�
; (50)

FNL
z � ϵ0

��
A� 1

2
B
�
jEzj2Ez � AjExj2Ez �

1
2
BE2

xE�
z

�
: (51)

In Eqs. (50) and (51), the terms with the squared field ampli-
tude values can be written in the following form:

E2
zE�

x � jEzj2ej2Φz
Ex

Ex
E�
x � jEzj2Exe−j2Φ; (52)

E2
xE�

z � jExj2ej2Φx
Ez

Ez
E�
z � jExj2Ezej2Φ (53)

with Φ�t� � Φx�t� −Φz�t� being the phase difference [46].
Equations (50) and (51) in the split-field domain yield

FNL
x ejkxx � ϵ0

��
A� 1

2
B
�
jPxj2 �

�
A� 1

2
Be−j2Φ

�
jPzj2

�
Px;

(54)

FNL
z ejkxx � ϵ0

��
A� 1

2
Bej2Φ

�
jPxj2 �

�
A� 1

2
B
�
jPzj2

�
Pz;

(55)

which can be substituted into Eqs. (7) and (9), respectively.
This yields a new nonlinear system of equations that can also
be solved by an iterative fixed-point procedure with Px and Pz

as unknowns, and Eqs. (7)–(9) as U�P�.

3. RESULTS
A. Second-Harmonic Generation
We first consider a GaAs-based homogenous layer in order to
analyze the SHG in nonlinear media. The excitation field is a
continuous-wave TM signal at a fundamental wavelength of

2.25 μm, θ0 � 30 deg, and amplitude 12πΩ A∕m in the split-
field domain (132.63 mW∕m2). For the sake of illustration,
two matching scenarios are considered. First, no matching
technique is used so the level of coupling between the input
and the generated waves depends entirely on the phase shift
between them. This phase shift is defined by the difference
between the effective indices of the two propagating modes.

Second, a QPM based on a periodically poled material is
assumed. A periodically poled material is a structure that is
fabricated in such a manner that the orientation of one of
the crystal axes is inverted periodically as a function of the
position within the material [1]. Here it is assumed that the
period Λ of the alteration of the axis is equal to twice the co-
herent buildup length of the nonlinear interaction. This length
can easily be identified visually in Fig. 2(c), where the effi-
ciency of the second-harmonic wave without QPM has an
oscillatory behavior. Figure 2(a) shows the increase and de-
crease in the second-harmonic amplitude (Ey) as a function of
the space without QPM. Figure 2(b) represents the time-
domain transverse profiles of both fundamental and second
harmonics at a point along the structure. The simulation
verifies the coupling of second-harmonic energy on the first
odd TE mode. The results clearly show the relative frequency
between the two propagating waves.

B. Dispersive Third-Order Nonlinear Materials
Let us next study the results based on the analysis of disper-
sive third-order nonlinearity. In order to validate the method
discussed here, the interaction of a pulsed optical source with
a material having nonlinear dispersive properties is shown.

Fig. 3. (a) Snapshots of the electric field RfEyg in different kinds of
media detected from left to right at times t � 2000Δt (thin blue line)
and 4000Δt (thick green line), respectively. (a) Linear dispersive
Lorentz medium. (b) Nonlinear Lorentz and Kerr media. (c) Nonlinear
Lorentz, Kerr, and Raman media.
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The optical pulse is switched on at t � 0 at the surface z � 0
of a material. The amplitude of the pulse has a maximum ab-
solute value of 1.1 V∕m (80.24 mW∕m2) with a carrier fre-
quency f c � 1.37 × 1014 Hz (λ � 2.19 μm). Here we consider
an ideal model in which the whole pulse consists of three
carrier cycles only. In this example, we fix the spatial resolu-
tion of the simulation at 52.5 nm (≈λ0∕40). In FDTD compu-
tations with nonlinear media, it is very common to scale both
the susceptibility term and the input intensity to trigger the
nonlinearity with lower input fields, thus reducing roundoff
errors [29–32]. The dispersive characteristics are given by the
following.

• Linear dispersion: ϵs � 5.25, ϵ∞ � 2.25, ωL �
4 × 1014 s−1, γL � 2 × 109 s−1.

• Nonlinear dispersion: χ�3�0 � 7 × 10−2 �V∕m�−2, α � 0.7,
τ1 � 12.2 fs, τ2 � 32 fs.

Figure 3 depicts the results of the dispersive and nonlinear
dispersive SF-FDTD computations. In Fig. 3(a), the computed
pulse propagating from left to right in a linear Lorentz disper-
sive medium is shown at n � 2000 and 4000 steps. A broad-
ening of the computed pulse along the material can be seen
with a reduction in its amplitude and carrier frequency modu-
lation due to the linear dispersion.

Figure 3(b) illustrates the situation in which there is disper-
sive nonlinearity. As can be seen in the figure, a temporal sol-
iton is formed, and the amplitude and width of the main pulse
remain essentially unchanged. The transient third-harmonic
generation can be identified as a small-amplitude precursor
pulse. Figure 3(c) shows the pulse propagation when the
Raman effect is taken into account. The Raman contribution
is based on a retarded response of the nuclei of the atoms,
which is approximated by the response function of damped
oscillation having a characteristic frequency 1∕τ1 and a
damping time constant τ2. Thus, the dispersion in this case
is stronger than in Fig. 3(b).

Fig. 4. Frequency spectrum for the case of a pulse propagating in
nonlinear dispersive media. Sampling plane at z � 1500Δ.

Table 2. Setup Parameters of SF-FDTD

for Results in Figs. 5 and 6

λ0 (nm) Δu (m) Δt (s) rx (cells) rz (cells) rPML (cells) esteps

633 λ0∕30 Δu∕�
���
2

p
c0� 600 300 15 1000

Fig. 5. Transmission diffraction efficiencies as a function of the normalized depth of the pillars. The minus first, zeroth, and first-orders are
represented in the first (a)–(c), second (d)–(f), and third (g)–(i) rows of the graphs, respectively. Each column of graphs belongs to a different
value of the ratio B∕A. (a), (d), (g) B∕A � 1. (b), (e), (h) B∕A � 6. (c), (f), (i) B∕A � 0.

Francés et al. Vol. 30, No. 6 / June 2013 / J. Opt. Soc. Am. B 1717



The frequency spectra of the input and output pulses, after
they have traveled some distance in the nonlinear medium,
are represented in Fig. 4. As expected, in the case of linear
dispersion, the spectrum remains almost unchanged. On
the contrary, there is a shift and a sharpening of the spectrum
due to Raman effects. Moreover, there is a gain due to the Kerr
effect. These results reproduce those reported in the literature
[30,32,35]. In all cases, we assume a plane-wave illumination,
instead of a hyperbolic-secant transverse profile normally
considered in this type of simulations. This factor may influ-
ence the amplitude of the precursor pulse, which differs from
the results described in the literature since the latter are not
obtained considering an infinite plane of incidence.

C. Third-Order Nonlinear Media
Finally, we consider the full tensorial approach applied to
third-order nonlinear media. We study the diffraction efficien-
cies of binary dielectric gratings with an oblique angle of in-
cidence as a function of the thickness of the pillars. The input
intensity is increased to trigger the nonlinear effect, and also
the ratio B∕A is modified based on the phenomena detailed in
Subsection 2.D.

The parameters of the SF-FDTD method are summarized in
Table 2. The period of the grating is fixed at Λ∕λ � 20, and
the materials considered for the binary phase grating are
the following.

• Pillar material: GaAs with n0 � 3.47 and
A � 1.4 × 10−18 �V∕m�2.

• Substrate: fused silica with n0 � 1.47.

The diffraction efficiencies for the binary phase grating
with nonlinear material in the pillars are shown in Fig. 5.
The zero and first diffraction orders are represented as a func-
tion of the thickness of the nonlinear material for different
physical mechanisms of the third-order nonlinear material.
As can be seen, the most relevant discrepancies between
the linear and nonlinear curves are found when B∕A � 6.
In this case, at higher values of input intensity, the shift of
the sidelobes can easily be identified with a considerable
modification in the shape of the diffraction efficiencies. In
all cases, the nonlinear effects arise when the thickness of

the pillars increases, since the quantity of nonlinear material
is increased.

In order to exemplify the differences that are also found in
the cases B∕A � 1 and B∕A � 0, the electric field components
in the x and z directions are represented in Fig. 6. Specifically,
the absolute difference between each component is repre-
sented for the same structures and time steps but with differ-
ent B∕A values.

4. CONCLUSIONS
In this paper, we extended the SF-FDTD method to periodic
optical media with second- and third-order nonlinear materi-
als. The nonlinear dispersive behavior in the third-order sus-
ceptibility was also considered by means of the Raman
contribution. Compared with the previous analysis in [36],
the third-order scheme is extended to full tensorial descrip-
tion. This enables a wide range of nonlinear periodic devices
to be modeled accurately, which is particularly important in
numerous areas of nonlinear optics. In this method, the
third-order susceptibility is included using the concept of
polarization current, which involves solving a nonlinear sys-
tem of equations. Hence a fixed-point iterative procedure
was adapted to each scenario in order to compute the com-
ponents of the transformed split-field variables related to the
electric field.

We validated the method numerically by comparisons to
already-known structures and phenomena, including SHG
and temporal solitons in a homogeneous medium. We then
showed the efficiency of the method by quantitatively analyz-
ing the diffraction efficiency of binary phase gratings with a
tensor-form third-order susceptibility in the grating pillars at
oblique incidence.

In general, all finite-difference approaches are computa-
tionally intensive. In this paper, the nonlinear system of equa-
tions requires an additional iterative process in each SF-FDTD
time step to update the electric field, which increases the time
and resources required. Thus, the authors are considering in-
cluding numerical acceleration strategies based on multicore
CPUs and GPU computing in order to extend this scheme to
two-dimensional nonlinear periodic structures.
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