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ABSTRACT

This work deals with the construction of difference
schemes for numerical solutions of initial-boundary-value
problems of the type

(1) ut(t,x)=a2uxx(l,x)+b2uxx(t—T,x), t>71,0<x<!
(2) u(2,0)=0,u(s,1)=0,20
(3) u(t,x)=@(t,x),0sx<1,0<t<T

where a and b are real constants.

We obtain highly efficient numerical schemes for partial
differential equations with delay, analyzing their
convergence properties, and showing numerical examples.

DIFFERENCE SCHEMES
We have used the following schemes, where

qu =u, , —2u, tu

i,p i,p+l
In Figure 1 we show the diagrams of these schemes.

Explicit
(4) Au,,=adu, , +ac’du
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Implicit Crank-Nicolson

tn,p i diu
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(5) B, = (S0, + B, ) + 2 G
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Implicit Richtmyer 12
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(6) EAtun,p—l +6Atun,p +EAtun,p+l :E(é'xzump 7 d;zunﬂ,p) i

+O;2u
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Initial-boundary conditions

The initial-boundary conditions for the three schemes
above are
(7) Upio =0, 1,4, =0, 120

u,,, = @(kn, ph), n=0,1,.,N,p=0,,..,P

Figure 1: Explicit scheme diagram (left). Implicit Crank-
Nicolson and Richtmyer 12 schemes diagram (right).
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RESULTS
Stability

It can be proved that, when ¢*> <1, if a<a, then the problem
defined by (4) and (7) is stable, however if a >a, then it is unstable,

=l =il

where g, =0.5(1+¢) " and @, =(4c"sin(0.57(P -1)/ P))

In Figures 2 and 3 we show a stable case and an unstable one. The
initial function in these examples is

e’'x 0<x<0.5

t,x)= , 0<r<1
¢( x) ef'(l—x) 0.5<x<l1

Figure 2: Approximate solution to problem (1)-(3) with 7 in [1190,1200]
obtained by using the difference scheme defined by (4) and (7): (left)
stable and (right) unstable cases.
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Figure 3: Harmonic analysis. Whole interval (upper left and right).
Frequency spectrum: initial function (bottom left) and end of interval
(bottom centre and right).

Order of accuracy

The following figure show that the implicit Richtmyer 12 scheme
has a higher order of accuracy than the (also implicit) Crank-Nicolson
one, while the explicit one has the lowest order of accuracy. The initial
function is given by g(r,x) =te™ sin(71x), 0 <t <1, 0<sx <1.
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Figure 4: Difference between the solution of problem (1)-(3) and the
solution of difference problems (4), (5) and (6) with initial-boundary
conditions (7) (left). Influence on the error of the value of 4 (right).
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