On the construction of difference schemes for numerical solutions of generalized diffusion equations with delay

P. Garcia*, A. Sirvent & J.A. Martín

Dpto. Matemática Aplicada, Universidad de Alicante, Apdo. 99 E-03080, Alicante, Spain E-mail: Pedro.Garcia@ua.es

ABSTRACT

This work deals with the construction of difference schemes for numerical solutions of initial-boundary-value problems of the type

(1)
$$u_t(t,x) = a^2 u_{xx}(t,x) + b^2 u_{xx}(t-\tau,x), t > \tau, 0 \le x \le l$$

(2)
$$u(t,0) = 0, u(t,l) = 0, t \ge 0$$

(3)
$$u(t,x) = \phi(t,x), 0 \le x \le l, 0 \le t \le \tau$$

where a and b are real constants.

We obtain highly efficient numerical schemes for partial differential equations with delay, analyzing their convergence properties, and showing numerical examples.

DIFFERENCE SCHEMES

We have used the following schemes, where

$$\begin{split} \alpha &= a^2 \frac{k}{h^2}, \ c = \frac{b}{a}, \ hP = l, \ kN = \tau, \\ \Delta_i u_{n,j} &= u_{n+1,j} - u_{n,j}, \ \delta_x^2 u_{i,p} = u_{i,p-1} - 2u_{i,p} + u_{i,p+1} \end{split}$$

In Figure 1 we show the diagrams of these schemes.

Explicit

(4)
$$\Delta_t u_{n,p} = \alpha \delta_x^2 u_{n,p} + \alpha c^2 \delta_x^2 u_{n-N,p}$$

Implicit Crank-Nicolson

(5)
$$\Delta_{t}u_{n,p} = \frac{\alpha}{2} \left(\delta_{x}^{2}u_{n,p} + \delta_{x}^{2}u_{n+1,p} \right) + \frac{\alpha c^{2}}{2} \left(\delta_{x}^{2}u_{n-N,p} + \delta_{x}^{2}u_{n+1-N,p} \right)$$

Implicit Richtmyer 12
(6)
$$\frac{1}{12}\Delta_{t}u_{n,p-1} + \frac{5}{6}\Delta_{t}u_{n,p} + \frac{1}{12}\Delta_{t}u_{n,p+1} = \frac{\alpha}{2}(\delta_{x}^{2}u_{n,p} + \delta_{x}^{2}u_{n+1,p}) + \frac{\alpha c^{2}}{2}(\delta_{x}^{2}u_{n-N,p} + \delta_{x}^{2}u_{n+1-N,p})$$

$$p = 1, 2, ..., P-1, n \ge 0$$

Initial-boundary conditions

The initial-boundary conditions for the three schemes

(7)
$$u_{n+1,0} = 0, u_{n+1,P} = 0, n \ge 0$$

 $u_{0,p} = \phi(kn, ph), n = 0,1,...,N, p = 0,1,...,P$

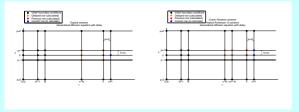


Figure 1: Explicit scheme diagram (left). Implicit Crank-Nicolson and Richtmyer 12 schemes diagram (right).

REFERENCES

- Agarwal, R. P., Wong, P. J., Advances Topics in Difference Equations. Kluwer Academics Publishers, Dordrecht, 1997.
- [2] Bellen, A., Zennaro, M., Numerical Methods for Delay Differential Equations. Oxford University Press, New York, 2003.
- [3] Bellman, R., Cooke, K. L., Differential-Difference Equations. Academic Press, New York, 1963.
- [4] Elaydi, S. N. An introduction to Difference Equations. Springer-Verlag. New
- [5] Martín, J.A., Rodríguez, F., Company, R., Analytical solution of mixed problems for the generalized diffusion equation with delay, Math. Comput. Modelling 40 (2004), 361-369.
- [6] Richtmyer, R. D, Morton, K. W., Differential Methods for Initial-Value Problems. Interscience Publishers, New York, 1957

RESULTS **Stability**

It can be proved that, when $c^2 < 1$, if $\alpha < \alpha_1$ then the problem defined by (4) and (7) is stable, however if $\alpha > \alpha_2$ then it is unstable, where $\alpha_1 = 0.5(1+c^2)^{-1}$ and $\alpha_2 = (4c^2\sin(0.5\pi(P-1)/P))^{-1}$

In Figures 2 and 3 we show a stable case and an unstable one. The initial function in these examples is

$$\phi(t,x) = \begin{cases} e^{-t}x & 0 \le x < 0.5 \\ e^{-t}(1-x) & 0.5 \le x < 1 \end{cases}, \quad 0 \le t \le t$$

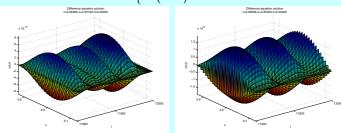


Figure 2: Approximate solution to problem (1)-(3) with t in [1190,1200] obtained by using the difference scheme defined by (4) and (7): (left) stable and (right) unstable cases.

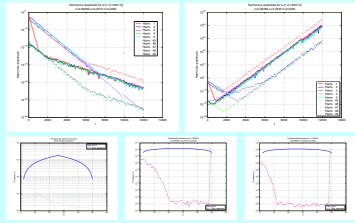


Figure 3: Harmonic analysis. Whole interval (upper left and right). Frequency spectrum: initial function (bottom left) and end of interval (bottom centre and right).

Order of accuracy

The following figure show that the implicit Richtmyer 12 scheme has a higher order of accuracy than the (also implicit) Crank-Nicolson one, while the explicit one has the lowest order of accuracy. The initial function is given by $\phi(t,x) = te^{-t}\sin(\pi x)$, $0 \le t \le 1$, $0 \le x \le 1$.

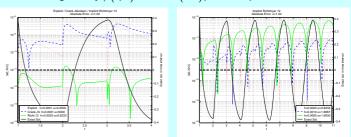


Figure 4: Difference between the solution of problem (1)-(3) and the solution of difference problems (4), (5) and (6) with initial-boundary conditions (7) (left). Influence on the error of the value of h (right).

ACKNOWLEDGEMENTS

This work has been partially funded by Valencia Regional Government (Generalitat Valenciana), through projects GV04B/454 (Conselleria de Cultura, Educación y Deporte) and GV06/207 (Conselleria de Empresa, Universidad y Ciencia). We thank the University of Alicante for financial support to the Delay Differential Equations research group.