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Holographic reflection gratings in a polyvinyl alcohol/acrylamide based photopolymer were stored using
symmetrical geometry in three different thicknesses of the material. The advantage of symmetrical
geometry is that exact expressions for transmittance, reflectance, and electric fields can be obtained
analytically. Using these expressions, experimental data were fitted to obtain parameters such as
refractive index modulation, spatial period of the grating, optical thickness or shrinkage of the
material. © 2013 Optical Society of America
OCIS codes: 090.0090, 090.7330, 160.5470.

1. Introduction

In the last decade, holography has acquired great
importance since devices are being created that
can store information throughout the volume of
the material thereby increasing the storage capacity
in comparison with two-dimensional devices that
only store information on the surface. Pioneering
companies in this field, such as Bayer Material
Science and InPhase, even came together to create
the Tapestry [1–4], the first prototype holographic
optical storage system that is being used by leading
companies and is capable of storing from 200 Gbytes
to 1.6 Tbytes in a disk 130 mm in diameter.

The most widely studied branch of holography,
which has given rise to a large number of papers,
is transmission holography [5]. However, leading

companies such as Bayer are beginning to conduct
studies aimed at using reflection holography [6].
To obtain more compact systems, it would be inter-
esting to design reflection holographic memories to
which the current technology for reading CD’s and
DVD’s designed for reflection holograms may be
applied.

In recent years, various studies based on reflection
holography have been carried out. In some cases,
color reflection holograms have been stored [7],
and thanks to their properties, relative humidity
sensors based on the color of the hologram have been
created [8]. Other studies have examined how
certain materials behave when reflection gratings
are stored in them [6,9–12], and multiplexed
gratings have even been obtained [13].

Moreover, in the bibliography, there are authors
who have recorded reflection holographic gratings
in two different ways: (a) with an asymmetric geome-
try [6] and (b) with a symmetric geometry [14–17].
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The advantage of a symmetric geometry is that the
interference fringes of the grating are parallel to
the recording material, in which case it may be
assumed that the relative dielectric permittivity of
the grating ε�z� only varies along the z axis (perpen-
dicular to the material surface) [18–20].

In this study, reflection holographic gratings are
recorded using a symmetric geometry in a polyvinyl
alcohol (PVA)/acrylamide (AA) photopolymer [21,22].
The photopolymer is composed of AA as the polymer-
izable monomer, triethanolamine (TEA) as radical
generator, N;N0-methylene-bis-acrylamide (BMA) as
cross-linker, yellowish eosin (YE) as sensitizer and a
binder of PVA. The resulting layers are about 40, 70,
and 110 μm thick.

The gratings stored in each of these layers are re-
constructed with a spectrophotometer. To analyze
the experimental results, a rigorous electromagnetic
model is applied to determine the fields inside the
grating as well as its transmittance and reflectance
as a function of its dielectric permittivity ε�z�. Since it
is assumed that the permittivity exhibits a sinusoi-
dal periodicity, our model enables the exact solution
of the Helmholtz equation to be obtained as linear
combinations of Mathieu functions [18,20]. The fact
that an exact analytical solution is obtained makes it
easier to determine characteristic parameters of the
grating, such as refractive index modulation, spatial
period, or optical thickness of the grating, from the
fitting of the model to the experimentally obtained
transmittances.

With our exact model, it is possible to analytically
compute the electromagnetic fields throughout the
grating thickness using Mathieu functions as the ex-
act solution of the Helmholtz equation. Applying dif-
fusion models to analyze hologram formation during
exposure is an interesting study that requires deter-
mining the exact fields throughout the grating.
While this issue has been widely dealt with in trans-
mission holograms, it has not yet been addressed in
reflection holograms, for which our exact model
holds. Our study thus aims to be the first step in ad-
dressing hologram formation in reflection gratings.
This requires determining the exact electromagnetic
fields inside the material by means of a rigorous
model like the one presented in this paper.

2. Theoretical Model

A. Analytical Expressions for Reflectance, Transmittance,
and Electric Field

As mentioned in the introduction, holographic reflec-
tion gratings were recorded in a PVA/AA based
photopolymer. For this purpose, two plane waves
were made to interfere using a symmetric geometry
(the recording beams fall one on each side of the ma-
terial at the same angle). With this geometry, a per-
iodic structure formed by interference fringes was
generated as shown in Fig. 1. In this figure, an inci-
dent electromagnetic plane wave Ei at an angle θi is
used to reconstruct a symmetrical reflection grating

characterized by a permittivity ε�z� in 0 ≤ z ≤ L,
which is surrounded by two semi-infinite media with
refractive indexes n1 and n3. The thickness L, in
which the reflection grating is stored, is called optical
thickness [23]. The incident wave gives rise to a re-
flected plane wave at an angle θr in the region with a
refractive index n1 and a transmitted plane wave at
an angle θt in the region with refractive index n3.

Our main purpose is to determine the amplitudes
of the reflected (Er) and transmitted (Et) waves as
well as the total electric field E�z� inside the reflec-
tion grating (0 < z < L). Since photopolymers are
nonmagnetic materials (μ � 1), the internal electric
field E�z� is obtained by solving the Helmholtz equa-
tion and applying adequate boundary conditions at
z � 0 and z � L. The main advantage of this proce-
dure is that the reflection grating permittivity has
a sinusoidal spatial profile, which makes it possible
to obtain an exact analytical solution for the
Helmholtz equation, and thus for E�z�, Er, and Et.
Consequently, analytical expressions for the trans-
mittance and reflectance of a symmetric grating
stored by reflection may be obtained [18,20]. This al-
lows us to extract a priori unknown characteristic
parameters of the recorded gratings, such as index
modulation, Δn, spatial period, Λ, or optical thick-
ness L, when other recording and reconstruction
parameters of the diffraction grating (such as the
mean index of the recording material or the record-
ing and reconstruction angles of the grating) are
known.

Fig. 1. Schematic diagram of a holographic reflection grating
with symmetric geometry. (a) Recording stage with two beams
at the same incidence angle. (b) Reconstruction stage.
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In the diagram in Fig. 1, the generalized Snell’s
law [24] states that

θi � θr n1 · sin θi � n3 · sin θt: (1)

In our analysis, the reconstruction angle θi � 0°
(incidence is normal), so the behavior of the TE
and TM modes is essentially the same and thus it
is sufficient to analyze the TE mode. On the other
hand, the boundary conditions imply continuity for
E�z� and its derivative ∂E∕∂z at z � 0 and z � L.
Denoting the amplitude reflection and transmission
coefficients by r � Er∕Ei and t � Et∕Ei, respectively,
the Helmholtz equation (that describes the behavior
of the electric field) and the boundary conditions can
be written as

E00�z� � k20ε�z�E�z� � 0

E�0� � �1� r�Ei; E�L� � t · Ei

E0�0� � ik0n1�1 − r�Ei; E0�L� � ik0n3tEi; (2)

where k0 � 2π∕λ is the vacuum wavenumber, λ is the
vacuum wavelength of the electromagnetic fields,
and the prime denotes derivatives with respect to z.
In Eq. (2), it should be noted that r and t are a priori
unknowns that appear in the boundary conditions,
which in turn are necessary to obtain E�z�. To over-
come this difficulty, we consider the spatial inversion
z → �L − z�, which transforms the previous equations
into the initial value problem given by

E00
p�z� � k20ε�L − z�Ep�z� � 0

Ep�0� � 1; E0
p�0� � −ik0n3: (3)

Following the procedure described in [25], the
solution Ep�z� of Eq. (3) allows the amplitude reflec-
tion and transmission coefficients r and t, as well as
the electric field amplitude E�z�, inside the material
to be obtained as

r � ik0n1Ep�L� � E0
p�L�

ik0n1Ep�L� − E0
p�L�

; t � 2ik0n1

ik0n1Ep�L� − E0
p�L�

;

(4)

E�z� � tEiEp�L − z�; 0 ≤ z ≤ L; (5)

whereas the electric field in the regions that sur-
round the reflection grating can be obtained as a
function of the incident field Ei and the coefficients
r and t as

E�z� �
�
Ei exp�ik0n1z� � rEi exp�−ik0n1z� if z < 0
t · Ei exp�ik0n3�z − L�� if z > L

:

(6)

From Eq. (4), the power reflectance R and trans-
mittance T coefficients for the TE mode can be
obtained as

R � jrj2; T � Re�n3�
Re�n1�

jtj2; (7)

where Re denotes the real part.
In the case under study, i.e., symmetric holo-

graphic reflection gratings, the permittivity profile
ε�z� that best describes the properties of this type
of grating can be written as

ε�z� � ε0 � εm cos
�
2πz
Λ

�
; 0 ≤ z ≤ L; (8)

where ε0 is the average permittivity and εm is the
permittivity modulation. To obtain Ep�z� for the
reflection grating considered, Eq. (8) is substituted
into Eq. (3) to give

E00
p�z� � k20

�
ε0 � εm cos

�
2π�L − z�

Λ

��
Ep�z� � 0: (9)

Equation (9) is known as Mathieu’s differential
equation and has an exact solution that can be
obtained as a linear combination of Mathieu
functions [26]:

Ep�z� � C1mc
�
a; q;

π�L − z�
Λ

�
� C2ms

�
a; q;

π�L − z�
Λ

�
;

(10)

where mc and ms are the even and odd Mathieu
functions, respectively, a and q are expressed as:

a � 4ε0Λ2

λ2
; q � −

2εmΛ2

λ2
;

and C1 and C2 are integration constants (a priori
unknown). Combining Eq. (10) with the boundary
conditions Ep�0� � 1 and E0

p�0� � −ik0n3, we obtain
a linear system of two equations with two unknowns
C1 and C2, whose solution can be expressed as

C1 �
π · ms0

�
a; q; πLΛ

�
− ik0n3Λ ·ms

�
a; q; πLΛ

�

π ·
�
mc

�
a; q; πLΛ

�
· ms0

�
a; q; πLΛ

�
−ms

�
a; q; πLΛ

�
· mc0

�
a; q; πLΛ

�� ; (11)
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C2 �
ik0n3Λ · mc

�
a; q; πLΛ

�
− π · mc0

�
a; q; πLΛ

�

π ·
�
mc

�
a; q; πLΛ

�
· ms0

�
a; q; πLΛ

�
−ms

�
a; q; πLΛ

�
· mc0

�
a; q; πLΛ

�� ; (12)

where mc0 and ms0, respectively, denote the deriva-
tive of the even and odd Mathieu functions with
respect to the variable z. Equations (10)–(12) provide
the analytical function Ep�z�, which can be substi-
tuted into Eqs. (4) and (5) to obtain exact analytical
expressions for the reflection and transmission
coefficients t and r [and the power coefficients R
and T from Eq. (7)] and for the electric field E�z�.
In particular, assuming the typical condition n1 �
n0 � �����

ε0
p � n3 of index matching between the grat-

ing and the adjacent regions, Eqs. (4) and (7) allow
an exact analytical expression for the power trans-
mission coefficient to be obtained as a function of
λ, Λ, L, ε0, and εm, i.e.,

T�λ;Λ; L; ε0; εm� �
4k20n

2
0

jik0n0Ep�L� − E0
p�L�j2

; (13)

whereEp�L� depends on λ,Λ, and εm through the pre-
viously defined parameters a, q, C1, and C2. It should
be remembered that the above (exact) analytical ex-
pressions for the grating transmittance and fields
are obtained assuming the relative permittivity
ε�z� has the sinusoidal profile given in Eq. (8).
Although it would be possible to research the grating
behavior assuming nonsinusoidal profiles for ε�z�,
this would probably lead to a Helmholtz equation,
Eq. (3), without an exact elementary analytical solu-
tion unsuitable for fitting the experimental transmit-
tance as a function of λ.

Moreover, it should be noted that the method de-
veloped in this paper allows the exact transmittance
to be obtained directly as a function of the wave-
length λ without involving any transfer matrix form-
alism. Consequently, in comparison with the general
transfer matrix method reported in [18,20,25] (which
is strictly numerical without analytical expressions),
our method is more efficient for fitting experimental
transmittances of sinusoidal reflection gratings and
obtaining their characteristic parameters (as will be
shown in Section 4).

B. Comparison with Finite-Difference Time-Domain
Simulation Results

To demonstrate the accurateness and advantages of
our analytical model, we compare it with finite-
difference time-domain (FDTD) simulations. For this
purpose, we consider a reflection grating with the
geometry depicted in Fig. 1 assuming the following
parameters:

ε0 � 2.292; εm � 0.07; Λ� 0.1965 μm;

L� 20 μm; n1 � n3 �
�����
ε0

p � 1.514: (14)

To carry out FDTD simulation of the reflection
grating defined by Eqs. (8) and (14), we consider a
one-dimensional computational window with a lat-
tice increment Δz � 5.95 nm placed between the
boundary planes z � −50 μm and z � 50 μm, which
are indicated by vertical red dotted lines in Fig. 2.
To avoid reflections at these boundary planes, we
add two auxiliary perfectly matched layer (PML) re-
gions of 20 μm thicknesses surrounding the compu-
tational window at each of its sides, in which the
absorbed electric field is not strictly regarded as a
simulation result (we focus on the computational
window −50 μm ≤ z ≤ 50 μm).

To obtain the frequency-domain incident electric
field Ei�λ� on the reflection grating at z � 0 we as-
sume a constant relative permittivity ε0 � 2.292
throughout the computational window and a free
current pulse at z � −40 μm as an excitation source
that creates two identical counter-propagating light
pulses. As shown in Fig. 2(a) (Media 1), the pulse
propagating toward z � −∞ is absorbed in the left
PML and does not reach the plane z � 0, so Ei�λ�

Fig. 2. (Color online) Movie of the time-domain electric field in
the schematic diagram in Fig. 1 computed between the planes z �
−50 μm and z � 50 μm, which separate the computational region
from the PMLs and are indicated by vertical red dotted lines
(Media 1). (a) Incident field propagation in a homogeneous med-
ium (ε0 � 2.292) obtained via FDTD. The vertical black continuous
line indicates the plane z � 0. (b) Electric field propagation ob-
tained via FDTD for the reflection grating defined by Eqs. (8)
and (14). The vertical black continuous lines indicate the grating
boundaries at z � 0 and z � 20 μm. (c) Electric field propagation
for the same reflection grating obtained through the inverse Four-
ier transform of the electric field given by Eqs. (5) and (6). In this
case, the electric fields are not considered outside the computa-
tional region, i.e., inside the PML regions, where they are plotted
as null values (red color).
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is obtained as the Fourier transform of the time-
domain electric field at z � 0 (which is only due to
the pulse propagating toward z � �∞). In the second
step of our FDTD analysis, we consider the same ex-
citation source but now include the grating permit-
tivity [Eqs. (8) and (14)] between the planes z � 0
and z � 20 μm, which are indicated by vertical black
continuous lines in Fig. 2(b). The temporal evolution
of the electric field depicted in Fig. 2(b) (Media 1)
shows multiple Bragg reflections inside the grating
that give rise to a considerable temporal spread of
the fields.

Once Ei�λ� has been computed, Eqs. (10)–(12) and
(4)–(7) provide exact analytical expressions for the
frequency-domain electric field along the z axis.
Consequently, the inverse Fourier transform of this
analytical field with respect to ω � 2πc∕λ (c is the
speed of light in the vacuum) gives the electric field
in the computational window as a function of time,
which is depicted in Fig. 2(c) (Media 1). As can
be seen, the FDTD results depicted in Fig. 2(b)
(Media 1) coincides exactly with the time-domain
fields obtained with our analytical model in Fig. 2(c)
(Media 1) in the computational region −50 μm ≤ z ≤
50 μm as long as the counter-propagating pulse in
Fig. 2(b) is absorbed in the left PML. In this sense,
in Eq. (6) of our model, the incident field is regarded
as a nonmonochromatic plane wave that propagates
from z � −∞ to z � 0. The excitation source that gen-
erates the pulse in the FDTD scheme is thus disre-
garded, which explains the absence of the pulse
propagating toward z � −∞ in Fig. 2(c). Apart from
this minor difference between Figs. 2(b) and 2(c)
(Media 1), the FDTD results coincide exactly with
the fields obtained using our analytical model, which
corroborates its accurateness.

In Section 4, we use the theoretical power trans-
mittance coefficient T�λ;Λ; L; ε0; εm� of Eq. (13) to
fit the experimental results to obtain the parameters
of the grating.

3. Experimental

A. Preparation of the Material

The holograms are recorded in a photopolymer
composed of AA as a monomer, TEA as a radical gen-
erator, BMA as a cross-linker, YE as a sensitizer and
a binder of PVA.

The main advantages and benefits of choosing
PVA/AA are the following: (i) it is easy and inexpen-
sive to prepare in a conventional laboratory and can
be reconstructed without postprocessing, (ii) it has a
high sensitivity, (iii) it is suitable for making layers
with awide range of thicknesses (40–1000 μm), (iv) its
behavior can be modified by means of simple modi-
fications of the composition and processing steps—
in particular, its spectral sensitivity can be tuned
by changing the dye, and (v) the components of the
standard formulation can be substituted to give a
low level of toxicity.

Table 1 shows the component concentrations of the
photopolymer composition used to obtain layers of
40, 70, and 110 μm in thickness.

A solution of PVA in water forms the matrix and
this is used to prepare the mixture of AA, BMA,
and photopolymerization initiator system composed
of TEA and YE. The mixture is made under red light,
deposited by gravity on a 22 cm × 40 cm glass plate,
and left in the dark for approximately one day to
allow the water to evaporate in conditions of
temperature, T, between 18°C and 20°C, and relative
humidity, 30%–40%. Once dry, the glass is cut into
squares of 6 cm × 6 cm.

The refractive index of the material is calculated
using the method described in [27]. In this method,
the experimental reflectance of p-polarized light is
measured as a function of the incident angle, and
the value of the refractive index of the layer is
obtained using the theoretical equation for reflec-
tance. Fitting the theoretical reflectance to the
experimental data, a value for the refractive index
of n0 � 1.514 was obtained.

Figure 3 shows the transmittance of the material
versus wavelength for the three thicknesses. As can
be seen, the three plots have the same shape with the
minimum transmittance (maximum absorption) at
the recording wavelength λ � 532 nm. Consequently,
the material composition is optimized so that the
material is as sensitive as possible at the recording
wavelength. The only difference between the three
plots is that the transmittance decreases when the
layer thickness increases.

In the range between λ � 570 nm and λ � 590 nm,
the transmittance is maximum and thus the
material does not absorb or absorbs very little.

Table 1. Concentrations of the Photopolymer Composition

Composition

Polyvinyl alcohol (PVA) 8.3% m∕v
Acrylamide (AA) 0.33 M
Triethanolamine (TEA) 0.19 M
Yellowish eosin (YE) 2.45 · 10−4 M
N;N0 methylene-bis-acrylamide (BMA) 0.027 M

Fig. 3. (Color online) Transmittance of the unexposed
photopolymer plate.

10 March 2013 / Vol. 52, No. 8 / APPLIED OPTICS 1585

http://www.opticsinfobase.org/ao/viewmedia.cfm?URI=ao-52-8-1581&seq=1
http://www.opticsinfobase.org/ao/viewmedia.cfm?URI=ao-52-8-1581&seq=1
http://www.opticsinfobase.org/ao/viewmedia.cfm?URI=ao-52-8-1581&seq=1
http://www.opticsinfobase.org/ao/viewmedia.cfm?URI=ao-52-8-1581&seq=1
http://www.opticsinfobase.org/ao/viewmedia.cfm?URI=ao-52-8-1581&seq=1


The geometries for the grating recording and recon-
struction were chosen so that the Bragg wavelength
would appear in this nonabsorbing spectral range
(see Section 3B) in order to avoid overlapping of
the Bragg and absorption peaks (such overlapping
would probably mask the results).

B. Holographic Setup

Reflection holographic gratings were stored using a
Nd:YV04 laser (Coherent Verdi V2) with a wave-
length of 532 nm, to which thematerial was sensitive.
A symmetric geometry was used to obtain gratings
with interference fringes parallel to the recordingma-
terial as shown in Fig. 1. The setup is shown in Fig. 4.
The polarized beamemitted by the laserwas split into
two beams with a beam splitter. Each beam was ex-
panded and filtered using a microscope objective
and a pinhole. Then the beams passed through a ser-
ies of lenses and diaphragms to obtain collimated
beams with the desired diameter. The total intensity
of the recording beamswas 30 mW∕cm2 with an inten-
sity ratio of 1∶1. The two laser beams were spatially
overlapped at the recording medium intersecting at
an angle of 45° (measured in air).

Using the value of the refractive index of the
material obtained in the previous section (we disre-
garded the small change that took place during re-
cording as it was smaller than the refractive index
modulation and thus did not affect the results),
the intersection angle in air and the recording wave-
length, the theoretical spatial period of the grating,
Λth, was 0.1987 μm applying Eq. (15) (therefore, the
spatial frequency of the recorded reflection gratings
was 5032 lines∕mm):

Λ � λ

2
������������������������
n2
0 − sin2 θ

q : (15)

During the photopolymerization process, the
conversion of monomer molecules into a polymer
network is accompanied by close packing of the
growing chains and a subsequent reduction in
volume. This phenomenon, known as photopolymer-
ization shrinkage, is particularly relevant in the case

of reflection gratings and occurs when the effective
period of the grating recorded in the sample, Λexp,
is less than that defined by the geometrical conditions
of the recording, Λth. Shrinkage of the material
induces a change in the fringe spacing ΔΛ �
Λth −Λexp. The ultimate effect is a shift in the wave-
length at which the grating peak appears. So, we can
define a parameter called optical shrinkage [28] as

Sopt �
λth − λexp

λth
; (16)

where λth is the theoretical wavelength where the
grating peak should appear if there was no shrinkage
and λexp is the experimental wavelength where the
grating peak actually appears. Substituting n0 �
1.514, Λ � Λth � 0.1987 μm and θ � θi � 0° into
Eq. (15), we obtain a theoretical wavelength
λth � 602 nm.

The optical shrinkage of the gratings was calcu-
lated for each sample thickness, as discussed in
Section 4.

4. Results and Discussion

In this section, the results obtained recording holo-
graphic reflection gratings in a PVA/AA based photo-
polymer with a symmetric geometry are presented.
The gratings were stored in three different sample
thicknesses (40, 70, and 110 μm) to determine which
thickness is the most appropriate for storing reflec-
tion gratings with the highest refractive index mod-
ulation. In Fig. 3, the grating reconstruction was
carried out in a spectral range (585–605 nm) where
absorption is negligible, so the conservation of energy
principle implies that the transmittance T�λ� and re-
flectance R�λ� are approximately complementary,
i.e., T�λ� � R�λ� ≈ 1 and thus R�λ� ≈ 1 − T�λ�. Conse-
quently, analyzing just the transmittance T�λ� will
suffice.

Once the transmittance of each grating was mea-
sured as a function of wavelength, the corresponding
theoretical expression obtained in Eq. (13) was fitted
to the experimental transmittance in two steps.
First, T�λ;Λ; L; ε0; εm� was obtained as an analytical
function of λ, Λ, L, and εm for a fixed value ε0 � n2

0,

Fig. 4. (Color online) Experimental setup: BS, beam splitter; Mi, mirror; Li, lens; Di, diaphragm; SFi, microscope objective lens and
pinhole.
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where n0 is the measured average refractive index of
the grating (see Section 3A). Second, this analytical
transmittance coefficient was fitted to the experi-
mental transmittance using Λ, L, and εm as free
parameters to be adjusted by the gradient method
to minimize the mean square error (MSE) between
the experimental and the analytical transmittance
(for each measured λ). The fitting was carried out
using sixteen wavelengths between 585 and 600 nm,
i.e., the wavelength sample rate was 1 nm, which is
sufficiently greater than the spectrophotometer reso-
lution given as 0.1 nm. The MSE obtained for each of
the fittings confirmed their good quality. As a result
of the fitting, we obtained the experimental grating
period Λ, optical thickness L, and grating permittiv-
ity modulation εm, which in turn allowed the experi-
mental wavelength λexp � 2n0Λexp [taking θ � 0 in
Eq. (15)] and refractive index modulation of the
grating εm∕2n0 to be obtained. Based on these values,
it was possible to estimate the shrinkage [28].

Holographic reflection gratings with thicknesses of
40, 70, and 110 μm were recorded in a material with
the composition shown in Table 1. They were re-
corded following the scheme shown in Fig. 4, in which
the different exposures corresponded to a constant
exposure intensity of 30 mW∕cm2 for different expo-
sure times. Once the gratings were recorded, they
were reconstructed measuring the transmittance of
the grating as a function of the wavelength using
a double-beam spectrophotometer. The plate was
placed perpendicular to the beam (θ � 0°). The the-
oretical transmittance obtained from Eq. (13) was
fitted to the experimental transmittance obtained
for each grating.

Figure 5 shows the refractive index modulation
and the optical thickness as a function of exposure
for three different sample thicknesses: 40 μm in
Fig. 5(a), 70 μm in Fig. 5(b), and 110 μm in
Fig. 5(c). For each sample thickness, the refractive
index modulations and optical thicknesses were ob-
tained from the fitting of the transmittance coeffi-
cients, which were measured for the different
gratings recorded with their corresponding expo-
sures. The MSE obtained for each of the fittings in
Figs. 5(a)–5(c) was between 10−4 and 10−6, thus
confirming the good quality of the fittings.

For the three sample thicknesses considered, the
refractive index modulation Δn showed a clear ten-
dency to increase as exposure increased, until it
reached an approximately constant value with small
fluctuations. On the other hand, the optical thickness
L showed a clear tendency to decrease as exposure
increased, until it reached an approximately con-
stant value with small fluctuations. The small fluc-
tuations in L and Δn can be explained taking into
account that the process of grating recording (with
laser) and reconstruction (with spectrophotometer)
was not carried out in real-time, so a different grat-
ing was recorded and reconstructed for each different
exposure. In addition, one key parameter, which is
directly related to the grating diffraction efficiency

for the data depicted in Fig. 5, is the product Δn · L
(i.e., refractive index modulation multiplied by
optical thickness). In fact, the greater the product
Δn · L is greater the grating diffraction efficiency
is, and vice versa.

For the gratings with a sample thickness of 40 μm,
Fig. 5(a) shows that the refractive index modulation
and optical thickness reached approximately con-
stant values of 0.0024 and 15 μm, respectively, for ex-
posures above 300 mJ∕cm2. On the other hand, the
product Δn · L was between 0.026 and 0.033 μm for
exposures above 300 mJ∕cm2.

For a sample thickness of 70 μm, it can be seen in
Fig. 5(b) that the refractive index modulation and
optical thickness reached approximately constant
values of 0.0026 and 15 μm, respectively for

Fig. 5. Refractive index modulation (solid circles) and optical
thickness (empty squares) versus exposure for a material with a
sample thickness of (a) 40, (b) 70, and (c) 110 μm.
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exposures above 300 mJ∕cm2. In this case, the pro-
duct Δn · L was between 0.036 and 0.043 μm for
exposures above 400 mJ∕cm2.

Finally, for a sample thickness of 110 μm, Fig. 5(c)
shows that the refractive index modulation varied
between 0.0013 and 0.0019, while the optical thick-
ness had an approximately constant value of 28 μm
for exposures above 300 mJ∕cm2. In this case, the
product Δn · L was between 0.038 and 0.053 for
exposures above 300 mJ∕cm2.

According to these results, the product Δn · L, and
in turn the grating diffraction efficiency, for each
sample thickness is approximately constant except
for small fluctuations. This explains the opposing
tendencies of Δn and L. When one tends to increase,
the other tends to decrease so that the product
Δn · L remains approximately constant (with some
fluctuations).

Another aspect that can be deduced from
Figs. 5(a)–5(c) is the behavior of the optical thickness
for the three sample thicknesses considered. The
optical thickness for a sample thickness of 70 μm
is of the same order than for a sample thickness of
40 μm for all the exposures considered, as can be seen
from a comparison of Figs. 5(a) and 5(b). On the other
hand, the optical thickness for a sample thickness of
110 μm is considerably higher (nearly double) than
for a sample thickness of 70 μm for all the exposures
considered. These results indicate that optical thick-
ness increases with sample thickness, although not
linearly.

The behavior of the refractive index modulation Δn
for the different sample thicknesses, Figs. 5(a)–5(c)
show that the maximum Δn for a sample thickness
of 70 μm (0.0029), is greater than for a thickness
of 40 μm (0.0023) and 110 μm (0.0019). This behavior
can be explained by taking into account the absorp-
tion and thickness during grating recording. On one
hand, the optical thickness tends to increase with
sample thickness because interference can occur in
a greater thickness and thus more grating planes
can be formed. But on the other hand, absorption also
increases with sample thickness and limits the inter-
ference between the two beams and thus diffraction
efficiency. A combination of these two factors ex-
plains why: (i) the optical thickness increases with
sample thickness but not linearly [23] and (ii) the dif-
fraction efficiency, and in turn the product Δn · L, also
tends to increase slightly with sample thickness [as
may be seen in Figs. 6(a)–6(c)] but not linearly. Con-
sequently, when the sample thickness changes from
40 to 70 μm, the optical thickness remains approxi-
mately constant but Δn · L increases, so Δn also
increases. However, when the sample thickness
changes from 70 to 110 μm, the optical thickness in-
crement is more significant than the increment in
Δn · L, so Δn decreases.

Figure 6 shows the measured transmittances as a
function of wavelength λ and the theoretical fit of
such transmittances for the reflection gratings with
the greatest refractive index modulation Δn in each

of the three sample thicknesses considered: 40 μm in
Fig. 6(a), 70 μm in Fig. 6(b), and 110 μm in Fig. 6(c). In
each case, the continuous line denotes the theoretical
transmittance obtained after the fitting to the experi-
mental data corresponding to the peak of the grating,
i.e., between 586 and 600 nm.

Figure 6(a) shows the transmittance of the grating
recorded at an exposure of 330 mJ∕cm2, whose refrac-
tive index modulation Δn � 0.0024 is the greatest of
the gratings recorded in a sample thickness of 40 μm.
In this case anMSE of 6.25 · 10−6 was obtained, which
corroborates the good quality of the fitting in accor-
dance with Fig. 6(a). The fitting also provided an ex-
perimental spatial period Λexp � 0.1965 μm and an
optical thickness L � 15 μm. The grating peak ap-
pears at the Bragg wavelength λexp � 595 nm
(wavelength that provides maximum reflectance of

Fig. 6. Circles represent the experimental transmittance and the
continuous line, the theoretical fit of the transmittance for a
holographic reflection grating with a sample thickness of (a) 40,
(b) 70, and (c) 110 μm.
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the diffraction grating). Since the previously
obtained theoretical wavelength was λth � 602 nm
(Section 3B), Eq. (16) provides an optical shrinkage
Sopt � 1.16%. The optical shrinkage obtained for
the gratings with a sample thickness of 40 μm varied
between 0.8% and 1.3%.

Figure 6(b) represents the experimental transmit-
tance of the grating with the highest refractive index
modulation in Fig. 5(b), which was obtained at an ex-
posure E � 425 mJ∕cm2 and the fit to these experi-
mental data. In this case, an MSE of 3 · 10−6 was
obtained, whereas the results obtained from the
fitting were Δn � 0.0028, Λexp � 0.1961 μm, and
L � 15 μm. Since the grating peak appears at λexp �
593 nm, the optical shrinkage calculated using
Eq. (16) is Sopt � 1.5% in this case, which is the max-
imum shrinkage obtained for the reflection gratings
with a sample thickness of 70 μm. The optical shrink-
age obtained for the gratings with a sample thickness
of 70 μm varied between 1.1% and 1.5%.

Finally, Fig. 6(c) depicts the experimental trans-
mittance of the grating with the highest refractive
index modulation in Fig. 5(c), which was obtained
with an exposure E � 900 mJ∕cm2. The continuous
line shows the fit to these experimental data, for
which the MSE was 10−4. The data obtained from
the fitting were:Δn � 0.0019,Λexp � 0.1962 μm, and
L � 32 μm. The grating peak appears at λexp �
594 nm, so the optical shrinkage calculated with
Eq. (16) is Sopt � 1.3%. For a sample thickness of
110 μm, the optical shrinkage varied between 1.1%
and 2.2%. In addition, it can be observed that the
transmittance in the spectral range below the Bragg
wavelength is slightly smaller than the transmit-
tance in the range above the Bragg wavelength. Such
asymmetry is due to a slight absorption (less than
1%) that does not affect the results for the main
transmittance peak.

5. Conclusion

In this paper, holographic reflection gratings were
stored in a PVA/AA based photopolymer of three dif-
ferent thicknesses. A symmetrical geometry was
used in which the recording beams interfere in the
material at the same angle, thus making it possible
to record gratings whose interference fringes are par-
allel to the recording material. In this way, an ana-
lytical equation for transmittance at the exit surface
of the material was obtained together with an analy-
tical expression for the fields inside the material. The
comparison of such an analytical expressions with
FDTD allowed us to corroborate the theoretical accu-
rateness of our model. The analytical expression for
the transmittance was fitted to the experimental
transmittance data, thereby enabling various char-
acteristic parameters of the grating to be determined
including the refractive index modulation. For a
thickness of around 70 μm, values of Δn of around
0.003 were obtained. Throughout the study it has
been shown that this is the most appropriate
thickness for storing reflection gratings since lesser

thicknesses give rise to lower modulations, whereas
greater thicknesses prevent the recording beams
from interfering adequately in the material, which
also results in lower modulations. Shrinkage values
were also obtained for the stored gratings, and in no
case were they found to be over 2.2%.
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“Ministerio de Ciencia e Innovación” (Spain) under
projects FIS2011-29803-C02-01 and FIS2011-
29803-C02-02.
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