University of Alicante
Department of Chemical Engineering
PITFALLS ON COMPUTING LIQUID-LIQUID PHASE EQUILIBRIA USING THE K-VALUE METHOD
A.Marcilla, J.A. Reyes-Labarta, M.D. Serrano and M.M. Olaya*

Dpto. Ingeniería Química, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain.
Telf. (34) 965903867 Fax (34) 965 903826. e-mail: maria.olaya@ua.es

Summary

In the past, many strategies have been proposed to solve liquid-liquid equilibrium (LLE). Nevertheless, some papers and process simulation software packages still show inconsistent procedures for LLE regressions that lead to apparent solutions which are not true tie-lines. This study illustrates some of the pitfalls of the LLE data correlation and proposes some ideas to overcome them.

Isoactivity criterion

\checkmark The necessary but not sufficient isoactivity criterion (K-value method) is the most frequently used equilibrium condition for LLE calculations.

Minor common tangent criterion

\checkmark It specially fails when the Gibbs energy of mixing function $\left(\mathrm{g}^{\mathrm{M}}\right)$ is very linear between the equilibrium
The Gibbs minor common tangent criterion is the necessary and sufficient condition for points or when the equilibrium compositions are very close

Convergence efficiency comparison in LLE calculations

The following example illustrates the problem: methanol (1) + diphenylamine (2) + cyclohexane (3) system at $25^{\circ} \mathrm{C}$. More precisely, the tie-line obtained from the global mixture $\mathrm{M}\left(\mathrm{z}_{1}=0.5365 ; \mathrm{z}_{2}=0.0230 ; \mathrm{z}_{3}=0.4405\right.$, molar fractions) will be calculated. The NRTL model is used with $\alpha=0.2$ and the values for the binary interaction parameters obtained from DECHEMA Chemistry Data Series [1].
\checkmark The activity objective function (O.F.(a)) is evaluated close to the LLE solution (Figure 1). A variety of false tie-lines can be obtained that correspond with very low values of the activity objective function although, obviously, the true tie-line is unique.
The activity function provides a poor definition of the objective function minimum (O.F.(a) $<10^{-12}$ in Figure 2), because the g^{M} surface for this system is very flat.

$$
\begin{equation*}
\text { O.F. }(a)=\sum_{i=1}^{3}\left(a_{i}^{1}-a_{i}^{I I}\right)^{2}=0 \tag{1}
\end{equation*}
$$

\checkmark Next, a combination of the activity and the minor common tangent condition (O.F.(t) in Figure 2) based on Iglesias-Silva et al. [2] is used, and a sharper minimum for the objective function value is obtained. The common tangent line contribution to the objective function is:

$$
\begin{equation*}
\text { O.F. }(\mathrm{t})=\left[\left(\frac{\partial \mathrm{g}^{\mathrm{M}}}{\partial \mathrm{x}_{3}}\right)_{\mathrm{p}, \mathrm{~T}, \mathrm{D}}^{\mathrm{I}}-\left(\frac{\partial \mathrm{g}^{\mathrm{M}}}{\partial \mathrm{x}_{3}}\right)_{\mathrm{p}, \mathrm{~T}, \mathrm{D}}^{\mathrm{II}}\right]^{2}+\left[\left(\mathrm{g}^{\mathrm{MI}}-\mathrm{g}^{\mathrm{MII}}\right)_{+}+\left(\left(\frac{\partial \mathrm{g}^{\mathrm{M}}}{\partial \mathrm{x}_{3}}\right)_{\mathrm{p}, \mathrm{~T}, \mathrm{D}}^{\mathrm{I}} \quad-\left(\frac{\partial \mathrm{g}^{\mathrm{M}}}{\partial \mathrm{x}_{3}}\right)_{\mathrm{p}, \mathrm{~T}, \mathrm{D}}^{\mathrm{D}}\right)_{\mathrm{x}_{3}}\right] \quad \mathrm{D}=\frac{\mathrm{x}_{2}^{\mathrm{II}}-\mathrm{x}_{2}^{\mathrm{I}}}{\mathrm{x}_{3}^{\mathrm{II}}-\mathrm{x}_{3}^{\mathrm{I}}}=\frac{\mathrm{x}_{2}^{\mathrm{M}}-\mathrm{x}_{2}^{\mathrm{I}}}{\mathrm{x}_{3}^{\mathrm{M}}-\mathrm{x}_{3}^{\mathrm{I}}} \tag{2}
\end{equation*}
$$

PROPOSED METHOD

\checkmark Finally, we present a modification of the vector method [3] developed by Eubank et al. [4]. The original work used the vector method combined with the maximum area criterion as equilibrium condition (later proved to be only applicable for binary systems [5]).

Our algorithm, that is applicable to the ternary systems, uses the minor common tangent equilibrium condition (O.F.(t)) [2]:

- An α-angle range for each ternary global mixture M (Figure 3) is defined.
- For a sheaf of straight lines passing through M, the two common tangent points (I, II) to the g^{M} function in the corresponding sectional plane are obtained (necessary condition)
- Among all pairs of calculated compositions, the "true" tie-line corresponds to the O.F.(a) equal to zero (sufficient condition) which corresponds to the minimum value for the Gibbs energy of mixing (g^{TL}).

Figure 3. Graphical representation of the suggested method
\checkmark The O.F.(a) is evaluated for each α-angle at the two common tangent points. Those values (suggested method O.F.(a)) are compared to the other previous approaches (Figure 2) showing that a sharper minimum is obtained.

References:

\checkmark [1] Sørensen, J.M.; Artl, W. DECHEMA Chemistry Data Series, Vol. V: Frankfurt, 1980.
\checkmark [2] Iglesias-Silva, G.A.; Bonilla-Petriciolet, A.; Eubank, P.T.; Holste, J.C.; Hall, K.R. Fluid Phase Equilib. 2003, 210, 22.
\checkmark [3] Olaya, M.M; Ibarra, I; Reyes-Labarta, J.A.; Serrano, M.D; Marcilla, A. Chem. Eng. Educ. 2007, 41, 3, 218.
\checkmark [4] Eubank, P.T.; Elhassan, A.E.; Barrufet, M.A.; Whiting, W.B. Ind. Eng. Chem. Res. 1992, 31, 942.
\checkmark [5] Elhassan, A.E.; Tsvetkov, S.G.; Craven, R.J.B.; Stateva, R.P.; Wakeham, W.A. Ind. Eng. Chem. Res. 1998, 37, 1489 Acknowledgements: Vicepresidency of Research (University of Alicante) and Generalitat Valenciana (GV/2007/125).

RESULTS

\checkmark When the activity condition is combined with the common tangent line criterion, either simultaneously (eq 2) or sequentially (vector method), a more efficient equilibrium calculation can be carried out, avoiding false solutions with very low values of the O.F.(a)).
\checkmark The suggested method improves the convergence of the optimization.

