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By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two

metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100%

magnetoresistance can be built entirely out of carbon. In the ground state a short zigzag ribbon is an

antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that

suppresses the conductance. The application of a magnetic field makes the ribbon ferromagnetic and

conductive, increasing dramatically the current between electrodes. We predict large magnetoresistance in

this system at liquid nitrogen temperature and 10 T or at liquid helium temperature and 300 G.
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The term spintronics has been coined to refer to the
interplay between spin polarization and electrical conduc-
tance and is one of the major themes today in condensed
matter and applied physics. A central concept in spin-
tronics is that of giant magnetoresistance (GMR), discov-
ered originally in layered structures alternating magnetic
and nonmagnetic transition metals [1]. The resistance of
the whole structure undergoes a large increase when the
relative orientation of the magnetization in adjacent layers
goes from parallel to antiparallel, provided that the non-
magnetic layers are thinner than the spin relaxation length.
This phenomenon represents the paradigm under which
commercial devices such as magnetic reading heads oper-
ate nowadays.

Here we propose a new type of magnetoresistive device
which makes use of the remarkable electronic properties of
zigzag graphene ribbons [2,3]. Its operational principle is
similar to that found in conventional GMR layers, with the
difference that is entirely based on carbon. Our proposal is
motivated by the spectacular progress in the fabrication of
high mobility graphene based field effect transistors [4–6]
and by the recent developments in the fabrication of gra-
phene ribbons [7–10] with top-down techniques, as well as
in the synthesis of graphene ribbons [11].

The electronic structure of infinite graphene ribbons has
been studied thoroughly. Idealized graphene ribbons fall
into two categories: armchair and zigzag. Within the sim-
plest one orbital tight-binding description [2], armchair
ribbons can be either semiconducting or metallic, depend-
ing on their width, whereas in the case of zigzag ribbons
two flat bands, associated with edge states, lie at the Fermi
energy. These edge flat bands favor the appearance of
magnetization on the edges when electron-electron repul-
sion is included in the calculation, either with a Hubbard
model [3,12,13] or with density functional theory (DFT)
[14–16]. In the ground state the respective magnetization
direction of the edges is antiparallel, and a gap opens in the
band structure [12,14–16]. This is the ground state.
Slightly above in energy, the parallel magnetic configura-

tion is conducting. Application of either a magnetic field or
a transverse electric field [15] can make the ferromagnetic
configuration more stable. Here we explore the former.
Both for conceptual and practical reasons our proposal is

based on finite length L graphene ribbons. For L ¼ 1, the
long range order predicted by mean-field calculations is
not robust, due to the proliferation of spin wave excitations
of energy L�n, with n ¼ 1 or n ¼ 2 for both antiferromag-
netic and ferromagnetic alignments, respectively [17]. In
short ribbons, in contrast, there is a gap for spin waves.
Quantum fluctuations between the manifold of equivalent
mean-field ground states would not alter the conducting
properties of the system. Additionally, recent DFT calcu-
lations [18] show that monohydrogenated zigzag ribbons
are not the most stable edge configuration unless the hydro-
gen density is very small. Whereas this poses a severe
problem for the chemical stability of infinite monohydro-
genated zigzag ribbons, short magnetic ribbons, as well as
other magnetic polycyclic aromatic hydrocarbons [19],
might be more stable.
Here we show that the spin driven metal insulator tran-

sition, predicted so far for infinite ribbons, is still present in

FIG. 1 (color online). Atomic structure of the zigzag ribbon
with length Nx ¼ 12 and width Ny ¼ 6 attached to semi-infinite

electrodes. The unit cell of a zigzag ribbon is highlighted.
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short ribbons attached to conducting electrodes. Using a
well-established methodology [20] extended to account for
electron-electron interactions in a Hubbard model, we
study both the magnetic and transport properties of a
system in which two conducting graphene electrodes are
coupled through a finite length graphene ribbon.

Statement of the problem and methodology.—We study
the system depicted in Fig. 1: A short zigzag graphene
ribbon attached to two conducting graphene electrodes. In
the case pictured in the figure we have chosen the elec-
trodes to be semi-infinite metallic armchair graphene rib-
bons of width W. Both the device and the electrodes are
described with a Hubbard model for the �z orbitals with
first-neighbor hopping t and on site repulsionU, solved at a
collinear mean-field level [3,12,13,21–23]. This approach
is known to capture the main features of the ab initio
calculations, both for finite [21] and infinite [12] graphene
systems. Thus, the mean-field Hamiltonian reads

H ¼ X
I;I0;�

tcyI�cI0� þU
X
I

ðnI;"hnI;#i þ nI;#hnI;"iÞ; (1)

where cyI� creates an electron at the �z orbital of atom I

with spin �, nI;� ¼ cyI�cI� is the occupation operator.

Since the mean fields hnI;�i depend on the eigenstates of

the mean-field Hamiltonian, this defines a self-consistent
problem which is solved by numerical iteration.

In this work we have to solve the self-consistent problem
for an infinite system without translational invariance. This
is done using the partition method [20]. We split the system
into three regions, the left and right electrodes and the
central region. The Hamiltonian of Eq. (1) reads:

H ¼ H L þH R þH C þV LC þV RC; (2)

where H L, H R and H C are the mean-field Hubbard
Hamiltonians of the left, right, and central regions, respec-
tively. On the other side, V LC and V RC describe the
hopping between the central and the left and right regions,
respectively. Sufficiently away from the central region, the
mean-field Hamiltonian of the electrodes is identical to that
of an infinite ribbon. In the case of the armchair electrodes,
the effect of the Hubbard interactions in the charge neutral-
ity point is a rigid shift of the bands without the appearance
of magnetic moment and keeping their metallic character.
We first determine the surface Green function of the semi-
infinite electrodes, gL and gR [20]. This requires the solu-
tion of a self-consistent Dyson equation. Second, the Green
function of the central region is evaluated:

GCðEÞ � ½EI �H C ��LðEÞ ��RðEÞ��1 (3)

with �LðRÞðEÞ ¼ V LðRÞgLðRÞðEÞV y
LðRÞ.

This expression is a functional of the expectation values
hnI;�i, through the central Hamiltonian H C. The Green

function yields the density of states projected over the
orbital �z with spin � sitting in the atom I in the device,

is given by:

�ðE; I; �Þ � � 1

�
ImTrðhI�jGCðEÞjI�iÞ: (4)

Here hI�jGCðEÞjI�i is a matrix of size 2N, with N being
the number of atoms of the central region. In turn, the
expectation values of the spin density are given by

hnI;�i ¼
Z EF

�1
�ðE; I; �ÞdE: (5)

The spin density in a given atom I is defined as mI ¼
hnI;"i�hnI;#i

2 .

Equations (3) and (5) define a self-consistent problem
which is solved by numerical iteration. Within this formal-

ism the Landauer conductance is given byG ¼ e2

h TrTðEFÞ
with:

TðEÞ ¼ Trð�LðEÞGC�RðEÞGy
CðEÞÞ (6)

with �LðRÞðEÞ ¼ i½�LðRÞðEÞ � �y
LðRÞðEÞ�.

Results.—The size of the zigzag ribbons is defined by
two integer numbers, Nx, the number of unit cells of the
ribbon, and Ny the number of zigzag rows in the unit cell.

Thus, the length of the ribbon is L ¼ Nxa, with a ¼
2:42 �A and the width of the ribbon is given by W ¼ffiffi
3

p
2 Nya.
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FIG. 2 (color online). (a),(b) Bands for infinite ribbon with
Ny ¼ 12 with AF (a) and FM (b) ground states. (c),

(d) Corresponding DOS of the AF (c) and FM (d) infinite
ribbons. (e) DOS of the AF finite ribbon. (f) DOS of the FM
finite ribbon.
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As in the case of both isolated finite ribbons [24] and
infinite ribbons [15], we obtain two kind of solutions,
ferromagnetic and antiferromagnetic, depending on the
initial guess in the iterative self-consistent procedure. We
see how only the edge atoms of the zigzag ribbon are
magnetic and how the size of the edge moments is larger
away from the interface. In the case of the AF solution, the
largest local spin density ismI ¼ 0:13 forU ¼ t ¼ 2:7 eV
almost identical to the result of infinite ribbons. In Fig. 2
we compare the electronic structure of the finite size con-
nected zigzag ribbons with the case of infinite ribbons, both
for ferromagnetic (FM) and antiferromagnetic (AF) con-
figurations. The electronic structure of the infinite ribbons
is calculated taking advantage of crystal invariance and
making use of the Bloch theorem [12]. Whereas AF infinite
ribbons have a gap �0 [12,14] and zero density of states
(DOS) at EF (hereon set to zero), two bands cross EF for
the FM ribbons, resulting in a finite density of states at EF.
The same trend is observed in finite ribbons. The DOS of
the AF configurations, summing over the atoms of a unit
cell (see Fig. 2), presents a pseudogap. The DOS becomes
more similar to the one of the infinite case both for longer
ribbons and for unit cells in the middle of the ribbon. The
small DOS inside the gap arises from the coupling to the
electrodes. In contrast to the AF solution, the DOS of the
FM solutions, again summing over the atoms of a unit cell
(see Fig. 2), is that of a conducting system.

From the DOS we anticipate a strong dependence of the
conductance on the magnetic configuration. This is con-
firmed by our calculations. In Fig. 3 we show the conduc-
tance curves for the Nx ¼ 12, Ny ¼ 6 ribbon. In the left

panel we show how the transmission of the AF solution for
E ¼ EF is highly reduced, compared to the FM solution,
shown in the right panel. This is the central result of our
work: The conductance is strongly dependent on the rela-

tive orientation of the magnetization of the edges of the
zigzag ribbon bridging the electrodes. In the ground state
the ribbon is antiferromagnetic and the conductance is
small or vanishes for sufficiently large Nx. In Fig. 4 we
plot the conductance at EF, both for AF and FM configu-
rations, as a function of the ribbon length L ¼ aNx for two
widths. The conductance of the FM state is always close to
2e2=h, the value associated with the two bands, one per
spin channel, that cross the Fermi energy. This conduc-
tance value is sensitive to the actual form of the graphene
electrodes, but the vanishingly small values for the AF state
are not.
As in standard GMR devices, the application of a mag-

netic field can force the ferromagnetic solution to be the
ground state, resulting in a dramatic increase of the con-
ductance. We define the magnetoresistance (MR) of each
device as

MR � RAF � RFM

RAF þ RFM

� 100 ¼ GFM �GAF

GFM þGAF

� 100; (7)

where R ¼ 1
G is the resistance and G ¼ e2

@
TðEFÞ is the

conductance calculated with the Landauer formula. In
Fig. 4 we plot the MR as a function of the ribbon length
for ribbons of width Ny ¼ 6 and Ny ¼ 3. We see that,

except for ribbons shorter than 1 nm, the MR saturates to
100%. The origin of the MR proposed here is different
from that discussed by Brey and Fertig [25] and that of
Kim and Kim [26] which require ferromagnetic electrodes.
Our proposal is more similar to the original GMR experi-
ments with current in the plane in exchanged coupled
multilayers [1].
We now discuss the operational limits of our proposed

device. There are three relevant magnitudes to be consid-
ered. First, the energy difference between the AF and the

FIG. 3 (color online). (a) Spin resolved transmission for the
AF infinite ribbon with Nx ¼ 12 and Ny ¼ 6. (b) Same for

the FM solution. Insets: self-consistently calculated local spin
density.

FIG. 4 (color online). (a) Conductance and (b) magneto-
resistance [Eq. (7)] at the Fermi energy as a function of the
ribbon length for two ribbon widths, both for FM and AF
configurations.
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FM states, which depends both on the width of the ribbon
and the length:

�ðNx; NyÞ ’ Nx

�
30

Ny

�
3=2

eV: (8)

This expression has been obtained from the fitting to DFT
calculations by Pisani et al. [16]. Second, the temperature-
dependent spin correlation length �ðTÞ, over which mag-
netic order is lost [17]. Finally, the critical switching
magnetic field is defined through the equation

g�BMTB
� ¼ �

Nx

; (9)

where MT ¼
P

ImI is the total spin density of the FM con-
figuration, g¼2 for graphene and �B¼0:058meVT�1.
Equation (9) neglects the dependence of mI on B [27].

The temperature determines the minimal value �min

below which thermal fluctuations make the ribbon switch
between the AF and the FM states. It also determines the
maximal value for the length of the ribbon Lmax ¼ �ðTÞ
above which magnetic order is lost. By choosing L ¼
Lmax, we guarantee the maximum possible width Wmax

for the ribbon through Eq. (8). This, in turn, provides the
minimum critical switching field B� through Eq. (9). For
instance, at room temperature, �min � 26 meV and
�ð300Þ ¼ Lmax � 0:8 nm. This yields Wmax � 1:6 nm
and B� � 200 T. For liquid nitrogen temperatures (75 K)
�min � 6 meV, Lmax � 4 nm, Wmax � 12 nm, and B� �
10 T. At He liquid temperatures (4 K) �min � 0:35 meV,
Lmax � 80 nm, Wmax � 600 nm, and B� � 0:03 T. We
note that since �ðTÞ< �ð0Þ the actual values of B� are
somewhat larger. Using the extrapolation formula of
Son et al. [14] for the ribbon transport gaps, a ribbon of
W � 600 nm has a gap of 1.55 meV, which is still larger
than kT and standard bias voltages. In summary, there is a
trade-off between the operational temperature and the
critical field. This trade-off is controlled by the spin corre-
lation length. A high operational temperature requires a
prohibitively large B�. At liquid He temperatures, the
critical field is bounded within reasonable ranges easily
attainable in the laboratory.

In conclusion, we propose an ultrasmall and chemically
simple magnetoresistive device based on a zigzag ribbon
joining metallic graphene electrodes. The conduction
properties of this device change dramatically as the relative
orientation of the magnetic edges of the ribbon go from
parallel to antiparallel relative orientations upon applica-
tion of a magnetic field. From a more fundamental point of
view, low-temperature experiments showing a drastic
change in the resistance on applying strong magnetic fields
would signal the existence of magnetism in zigzag gra-
phene ribbons.
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