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We present ab initio calculations of the evolution of anisotropic magnetoresistance �AMR� in Ni nanocon-
tacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk,
in two scenarios. In systems without localized states, such as chemically pure break junctions, large AMR only
occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In
systems that display localized states close to the Fermi energy, such as a single electron transistor with
ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the
magnetization direction.
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I. INTRODUCTION

The free energy of monodomain ferromagnetic particles
depends on the relative orientation of the magnetization with
respect to the crystal lattice. This magnetic anisotropy results
from the combination of the Coulomb repulsion favoring
spin polarization, spin-orbit coupling �SOC�, and the crystal
field breaking the orbital rotation invariance. As a result, the
orbital moment of magnetic atoms and their magnetic aniso-
tropy energy �MAE� depend strongly on their atomic
coordination.1,2

The transport counterpart of MAE is anisotropic magne-
toresistance �AMR�, i.e., the dependence of the resistance on
the angle � between the magnetization and the current flow.
Whereas AMR in bulk was known back in the 19th century
and is a rather small effect, the recent observation of AMR in
a variety of low dimensional systems,3–12 largely exceeding
bulk values, has opened a new research venue in the field of
spin-polarized quantum transport. Very large AMR has been
reported in planar tunnel junctions �tunneling anisotropic
magnetoresistance �TAMR�� with a variety of electrode and
barrier materials.3–8 Enhanced AMR has also been observed
in atomic sized contacts, both in the tunnel regime �TAMR�
and in the contact �or ballistic13� regime �ballistic anisotropic
magnetoresistance �BAMR��,14 for Py,9 Fe,10 Ni,11 and Co.12

Additionally, GaMnAs islands in the Coulomb blockade re-
gime show electrically tunable AMR.15 Thus, a wide range of
nanostructures made from different materials display en-
hanced AMR.

Here, we focus on AMR in atomic-sized conductors for
several reasons. On the one hand, conductance of atomic-
sized contacts probes the electronic structure of the apex at-
oms. These have coordination different from bulk and thus
present different orbital and spin magnetic moment16 and
enhanced magnetic anisotropy1,2,17 which might be probed
by BAMR. On the other hand, nanocontacts allow us to
study AMR going from the contact �BAMR� to the tunnel
�TAMR� regime in the same system, as shown in the case of
both Ni and Py.9,18 Ni nanocontacts have also been used as
electrodes to explore the Coulomb blockade and the Kondo
regimes.19

The crux of the matter is to identify the necessary and
sufficient conditions to expect large values of AMR in quan-

tum transport. Here, we consider two different transport re-
gimes: coherent and sequential. In the coherent regime, we
use the Landauer formalism that, at zero temperature, relates
the zero-bias conductance G to the quantum mechanical
transmission of the electrons at the Fermi energy, G
= e2

h T��F�. This approach accounts for AMR both in the tun-
neling regime �TAMR�20 and in the contact or ballistic re-
gime �BAMR�14 in the absence of sharp resonances near the
Fermi energy. In the scattering-free case of perfect one-
dimensional �1D� chains, T��F� is simply given by the num-
ber of bands at the Fermi energy N��F�. Because of the SOC,
N��F� for ferromagnetic 1D transition metal chains10,12,14,17

depends on the angle � between the chain axis and the mag-
netization, and this leads naturally to stepwise G��� curves.

However, the idealized scattering-free picture fails to ac-
count for the experimental results of conductance in metallic
nanocontacts, for which scattering channels are not perfectly
conducting.21 According to the scattering-free theory, the
conductance of atomic contacts of Ni, in units of e2 /h, would
be 6 or 7 for Ni,14 in quantitative disagreement with the
measured22 conductance of Ni nanocontacts around 3e2 /h.
The same applies to Fe, Co, and Pt. Scattering definitely
affects d bands, which suffer the so-called orbital blocking.23

Here, we present calculations of BAMR plus scattering.
This approach also permits us to calculate the crossover from
BAMR to TAMR. We find that in the coherent regime, large
AMR is related to the orbital polarization of the current.
TAMR has been linked to the anisotropy of the density of
states at �F, which turns out to be large in Ni chains. Unex-
pectedly, this does not lead to a large value of TAMR, the
reason being that the current is not orbitally polarized in this
limit.

In the sequential regime, which is valid to describe sys-
tems that feature transport through resonant levels of width �
smaller than the temperature kT,24 we find enhanced AMR,
regardless of the orbital polarization of the current, if the
chemical potential �F of the ferromagnetic electrode crosses
a resonance as it varies due to change of the magnetization
angle. This situation occurs in a single electron transistor
with ferromagnetic electrodes.15,25 Resonances might also
occur in the tip atoms of Ni nanocontacts in the tunneling
regime.26
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This paper is organized as follows. In Sec. II, we intro-
duce the model system and the theoretical method for the
calculation of AMR in magnetic nanocontacts. In Sec. III, we
calculate the AMR in the contact or ballistic regime
�BAMR�. In Sec. IV, we treat AMR in the coherent tunneling
regime �TAMR�, while in Sec. V, we treat AMR in the se-
quential tunneling regime. Finally, in Sec. VI, we conclude
the paper summarizing the main results.

II. MODEL AND METHODOLOGY

As a model system for ferromagnetic nanocontacts, we
consider two semi-infinite Ni 1D chains with lattice param-
eter a, separated by a gap d�a, as shown in Fig. 1. This
model shares most of the relevant features with realistic
nanocontact models, like, e.g., the low coordination of the tip
atoms of the two electrodes and elastic electron scattering
due to the gap. On the other hand, the one dimensionality
and the resulting rotational invariance of our model consid-
erably simplify the calculations of the SOC and the interpre-
tation of the results. Such one-dimensional models have been
employed before to study fundamental properties of atomic-
sized nanocontacts.27–29

We calculate the electronic structure of the system using a
combination of density functional theory in the local spin
density approximation �LSDA� and a Green’s function tech-
nique to account for the fact that, when d�a, the system is
not translationally invariant. We split the system into three
regions, left �L� and right �R� electrodes, described as semi-
infinite Ni chains and the central region �C� containing the
three innermost atoms of each electrode, as shown in Fig. 1.

The electronic structure of both the electrodes and the
central region is described by using effective one-body
Hamiltonians obtained from ab initio calculations, performed
with CRYSTAL0330 on the LSDA level, and using a localized
atomic orbital minimal basis set. CRYSTAL03, which does not
include SOC, yields spin-polarized solutions along an arbi-
trary axis with majority and minority electrons. The SOC

term ĤSO=�L� ·S� is added to the converged self-consistent

LSDA Hamiltonian ĤLSDA,

Ĥ = ĤLSDA + ĤSO. �1�

This post-self-consistent approach14,31 is justified in the case
of Ni, for which the SOC is much smaller than the exchange
splittings and the bandwidths. We take �=70 meV for the
Ni 3d orbitals.

The Green’s function of the central region is obtained by
means of the so-called partitioning technique,

ĜC�E� = �E − ĤC − �̂L�E� − �̂R�E��−1, �2�

where ĤC is the total Hamiltonian �including SOC� of the C

region and �̂L and �̂R are self-energies that take into account
the coupling of the central region to the two electrodes.32,33

In the coherent regime, i.e., at low temperatures and small
bias voltages when inelastic scattering events can be ne-
glected, we use the Landauer formalism to calculate the con-
ductance of the system which is obtained from the transmis-
sion function. The transmission function, in turn, can be
calculated by means of the expression of Caroli et al. from
the Green’s function of the central region �Eq. �2�� and the

so-called coupling matrices, �̂L�E�ª i��̂L− �̂L
†� and �̂R�E�

ª i��̂R− �̂R
†�, of the electrodes,34

T�E� = Tr�ĜC�E��̂L�E�ĜC
† �E��̂R�E�� . �3�

The zero-bias conductance is then given by G= e2

h T��F�. The
orbital projected density of states �	 and the density of states
of the central region � can be calculated from the Green’s
function, �	�E�=− 1


 Im�G		�E�� and ��E�=

− 1

 Im Tr�ĜC�E��.

III. CONTACT REGIME

A. Ideal chain

Magnetic anisotropy comes from the combined action of
both the crystal field that breaks the orbital rotational invari-
ance and the atomic SOC term, which couples the spin po-
larization to the orbital degrees of freedom. The electronic
structure of the ideal one-dimensional Ni chain �d=a� pre-
sents a number of common features with 3d and 4d transition
metals17,35 and permits us to understand the transport results
for d�a. The bands close to the Fermi energy are formed by
s and d orbitals. In the absence of SOC, rotational invariance
around the chain axis permits us to classify the d orbitals
according to the projection of their angular momentum along
the chain direction mz. On top of that, a weak crystal field
splits the otherwise degenerate d levels into two doublets E1
�linear combination of states with mz= �1� and E2 �mz
= �2� and a singlet A1 �mz=0�, which is hybridized with the
s orbital. The orbital degeneracy of the doublets is kept by
the bands of the chain, as long as SOC is not present. The
bandwidth of the E2 is significantly smaller than that of E1
due to the smaller overlap of the E2 orbitals. As a result, the
E2 bands yield a higher density of states.

The combined action of SOC and magnetism alters this
situation.14,17 When the magnetization is pointing perpen-
dicular to the chain axis ��=90° �, SOC acts as an effective
magnetic field acting over Lx that has to compete with the
Lz

2-like terms arising from the crystal field, which happens to
be dominant. As a result, the bands for �=90° look very
similar to those without SOC, except in the points where
bands with mz� and mz�1, �1 intersect, which are far
away from �F in the case of Ni. Therefore, for �=90°, the
effect of SOC on transport is negligible. In contrast, when
magnetization is pointing along the chain axis ��=0° �, SOC
shifts the bands by an amount �mz�, where mz and � are the

da

Left electrode L Right electrode RCentral region C

0 1

FIG. 1. 1D model of Ni nanocontact: elastic electron scattering
in the contact region of a real nanocontact is mimicked by a gap
d�a between two semi-infinite 1D Ni chains with lattice spacing a.
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projection of the spin and orbital momentum along the chain.
As a result, the E2 and E1 orbital doublets are split so that
one of the two minority E2 bands is shifted below the Fermi
energy, compared to the �=90° case. This can be seen in the
stepwise curves in Fig. 2�a�, which correspond to T��E�
�T�E ,�=0° � and T��E��T�E ,�=90° � for the ideal chain.
At the Fermi energy, T��E��T��E�. This change is respon-
sible for BAMR,14 which is defined as BAMR� �G

G�
�100,

where �G�G�−G�.
The interplay between SOC and magnetization results in a

nonzero orbital moment density along the magnetization di-
rection. The largest orbital moment occurs when �=0, i.e.,
when the magnetization is along the chain.17 The orbital po-
larization current �OPC� defined as

OPC �
�mTm − T−m

T�E�
, �4�

where Tm is the transmission of the d orbitals with m= �2 or
m= �1 along the chain direction, vanishes when �=90° but
is nonzero when �=0. Interestingly, there is a perfect one-to-
one correspondence between the OPC and the BAMR in the
case of the ideal chain without scattering. It is also apparent
that the existence of an orbital magnetic moment is not a
sufficient condition for having a nonzero OPC, very much
like spin polarization does not necessarily imply a spin-
polarized current.23

B. Effect of weak scattering

Now, we see how elastic scattering, controlled with the
chain separation d, affects BAMR. The stretched bond mim-
ics the contact region. This perturbation preserves the axial
symmetry of the ideal chain but introduces scattering. As a
consequence, T�E�, shown in Fig. 2�a�, is not quantized any-
more, as expected,22,23 and yet the BAMR �Fig. 2�c�� is close
to that of the ideal case for values of d /a�1.4. Relatedly, the
G��� curve is not stepwise �as is the case of the ideal chain�
anymore when scattering is included �Fig. 2�d��. On the other
hand, the G��� curve is also different from bulk behavior
where G����cos2 �. The quantized step in the ideal case
�d=a� that corresponds to the critical angle at which the E2
band is pushed below the Fermi energy14 becomes progres-
sively smoother as the gap between the chains increases. Our
G��� curves including scattering agree with those of the
experiments.10 This is one of the important results of the
model.

As d increases, the scattering increases and G goes down,
but interestingly, the BAMR signal first increases slightly for
d /a�1.3 before finally going down with increasing scatter-
ing. The initial increase in BAMR is related to the initially
stronger decrease in the contribution of the A1 channel to the
conductance. The A1 channel is not affected by the SOC in
contrast to the E2 channels that are mainly responsible for the
BAMR signal. The decrease in the BAMR signal for larger
values of d is expected within the framework of our model,
since the relative contribution to the conductance of the d
channels compared to the s channel decreases as the gap
opens. The reason for this is the shorter spread of the d
orbitals compared to the s orbitals.23 Relatedly, the OPC
�Fig. 2�c�� also decreases as d increases. Removing the con-
tribution of the s channel to the conductance would thus
enhance BAMR. This could be accomplished, e.g., by oxida-
tion of the contact.36

IV. COHERENT TUNNELING REGIME

In this section, we study the anisotropic magnetoresis-
tance in the regime of weakly coupled semi-infinite chains.
In Figs. 3�a� and 3�c�, we plot the Landauer transmission
T�E� �calculated from the expression of Caroli et al. �Eq. �3��
for d=4a, definitely in the tunnel regime, and the density of
states �DOS� projected onto the tip atom of a semi-infinite Ni
chain both for �=0° ����E�� and �=90° ����E��. The very
small transmission is dominated by the s channel and, there-
fore, quite independent of �. In contrast, the DOS is very
different for �=0° and �=90°. The two peak structure
around �F for �=0° is related to the split E2 bands, which
merge when �=90°. In Figs. 3�b� and 3�d�, we plot the zero-
bias conductance G��� and the DOS at the Fermi level
���F ,�� as a function of �. Whereas the maximal change in
the conductance is smaller than 1%, the change in the DOS
exceeds 200%. This challenges the simplistic link between
DOS and tunnel conductance.

In the tunneling regime, the Landauer formula can be re-
written as �see Appendix�

Gtunnel =
4e2

h
�
	,�

�V	��2�	
L��F���

R��F� , �5�

where V	� is the matrix element of the Hamiltonian connect-
ing the 	 and � atomic orbitals of the tip atoms of the two Ni
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chains and �	
L,R��F� is the orbital-resolved DOS at the Fermi

energy, i.e., the DOS projected onto an atomic orbital 	 of a
tip atom. By using this expression, the conductance calcu-
lated in Fig. 3�a� from the expression of Caroli et al. is in-
deed nicely reproduced. Note that the standard approxima-
tion by which the conductance is proportional to the product
of the DOS of the tip atoms, G��	�	

L��F��	��
R��F�, is ob-

tained only if the V	� matrix is assumed to be proportional to
the identity; i.e., the tunneling matrix elements are assumed
to conserve the orbital index and to be equal in size. How-
ever, this is far from being the case when d and s orbitals are
involved. In fact, in the case considered here, the conduc-
tance is completely dominated by the Vs,s term, for which the
orbitally resolved DOS �s

L,R is essentially independent of �.
As a result, the strong dependence of the global density of
states on � is not followed, in this case, by a strong depen-
dence of the conductance on �. Notice that since the trans-
mission is dominated by the s channel, both the orbital po-
larization of the current and the AMR are negligible. In
general, an anisotropy in the DOS is not a sufficient condi-
tion to have AMR.

The small variation of G��� in Fig. 3�b� can be traced
back to the variation of �F as a function of � and the nonflat
�s

L,R�E�. In Fig. 4�a�, we plot �F��� for a semi-infinite Ni
chain. ��F��F�0° �−�F�90° � can be as large as 10 meV.
This change leads naturally to the second scenario for en-
hancement of the AMR, considered in the next section: in a
situation of resonant transport through the change of the
chemical potential, �F as a function of the magnetization di-
rection can result in a large variation of G, regardless of the
degree of orbital polarization of the current. It has been re-
cently suggested that these resonances could arise as local-
ized tip states in Ni wires thicker than those considered
here.26

V. SEQUENTIAL TUNNELING REGIME

In this section, we consider a different scenario, motivated
by recent experiments15 and by the remarks at the end of the

previous section. We study a single electron transistor �SET�
with Ni electrodes19,37,38 and a nonmagnetic central island
�CI� with a discrete electronic spectrum. The CI is weakly
coupled to the electrodes, so that the levels acquire a broad-
ening �. The position of these levels can be electrically tuned
with a gate. Whenever a level of the CI is in resonance with
the Fermi energy, the zero-bias conductance of the system
has a maximum. We assume that both the level spacing of
the CI states �E and the charging energy EQ are much larger
than the temperature kBT which is larger than �. Under these
conditions, the system is in the Coulomb blockade regime.

In equilibrium, the chemical potential of the central island
and that of the electrodes must be the same:24 �F���=EC
+�N+eVG, where N is the number of electrons in the CI that
satisfies this condition and �N is the energy level occupied by
the last electron. From this equation, we immediately see that
the charge state of the central island can be controlled both
with the gate and with the orientation of the magnetization of
the electrodes.15,25 This effect is reminiscent of the so-called
magneto-Coulomb effect, in which the chemical potential of
the electrode is varied with the intensity of the applied
field.39 Here, the chemical potential is changed by rotating
the applied field.

In the EQ�kT�� situation, the linear conductance of the
SET can be obtained by using either the finite temperature
Landauer approach33 or the sequential transport theory,24

G =
e2

h

�

8kBT
cosh−2��/2kBT� , �6�

where �=EN�VG�+ e2

2C −�F���. In Fig. 4�b�, we plot G�VG ,��
for a SET with Ni electrodes. We take kT=5�=0.5 meV.
The gate is chosen so that for �=0 the conductance is maxi-
mal. As � changes, the chemical potential of the electrodes
moves away from the peak. In Fig. 4�c�, we plot G��� for VG
corresponding to the vertical line in Fig. 4�b�. Notice the
logarithmic scale and the huge AMR, which might have
practical applications. Notice that crossing the conductance
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peak, either by gate application or magnetization rotation,
implies charging the CI by one electron.15,25 The results of
Fig. 4�b� assume that � is independent of �, which is true as
long as the resonant level is not coupled to the E2 and E1
bands. The height of the G�VG� curves would depend on �
otherwise. In principle, a complete characterization of the
G�VG ,�� curve would yield the �F��� and ���� functions,
which would provide valuable information of the electronic
structure of the electrodes.

VI. SUMMARY AND CONCLUSIONS

We have presented ab initio quantum transport calcula-
tions of Ni nanocontacts as a function of the magnetization
direction � going from the ballistic to the tunnel regime. We
have shown that AMR is unrelated from quantization of con-
ductance, which is an artifact of the scattering-free calcula-
tions and not expected in transition metal nanocontacts. We
also show that a large variation of the density of states at �F
as a function of � is not a sufficient condition for large AMR.
We identify two sufficient conditions to obtain largely en-
hanced AMR in quantum transport. First, in the coherent
regime �contact and tunneling�, large AMR is related to a
large degree of orbital polarization of the current for a se-
lected direction of the magnetization. Second, in systems
with resonances close to �F, as it happens in single electron
transistors with ferromagnetic electrodes, large AMR is re-
lated to a large variation of the chemical potential �F of the
electrode as a function of �. We report an ab initio calcula-
tion for this quantity. These findings shed light on the choice
of materials and the design of nanostructures with enhanced
anisotropic magnetoresistance.
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APPENDIX A: DERIVATION OF TUNNELING FORMULA

For completeness, we derive Eq. �5� from the Landauer
formalism in the limit of weak coupling between the elec-
trodes. Equation �5� can also be obtained from the Kubo
formula �see, e.g., the book by Mahan,40 Sec. 9.3�. Deriva-
tions similar to ours can be found in the literature.33,41

We consider two semi-infinite electrodes L and R with
atomically sharp tips separated by a distance d, as shown in
Fig. 1. We label the tip atoms of the left and right leads 0 and
1, respectively. Now the Green’s function projected onto tip
atom 0 is given by

Ĝ0�E� = �E − Ĥ0 − �̂L�E� − �̂R�E��−1, �A1�

where �̂L is the self-energy representing the rest of the left

electrode without tip atom 0, while �̂R presents the self-

energy of the entire right electrode including the tip atom 1.
Thus, the right self-energy can be expressed by the Green’s

function of the isolated right electrode ĝ1
R and the coupling V̂

between the left and the right tip atoms as

�̂R = V̂ĝ1
RV̂†. �A2�

In the tunneling regime, i.e., for d�a, when the coupling V̂
becomes very weak, the contribution of the right self-energy

to Ĝ0 can be neglected, so that Ĝ0 becomes equal to the
Green’s function of the isolated left lead projected onto the
tip atom ĝ0

L,

Ĝ0�E� 	 �E − Ĥ0 − �̂L�E��−1 � ĝ0
L�E� . �A3�

The expression of Caroli et al.34 for the Landauer transmis-
sion through the tip atom thus becomes

T�E� 	 Tr�ĝ0
L�E��̂L�E��ĝ0

L�†�E��̂R�E�� . �A4�

The coupling matrix of the right lead �̂R can be rewritten in
terms of the spectral function of the isolated right lead pro-
jected onto the tip atom, â1

R
ª i�ĝ1

R− �ĝ1
R�†�, as

�̂R ª i��̂R − �̂R
†� = V̂â1

RV̂†. �A5�

The first three terms in Eq. �A4� are computed by using the

algebraic identity ĝ0
L�̂L�ĝ0

L�†= i�ĝ0
L− �ĝ0

L�†�= â0
L, where â0

L is
the spectral function of the isolated left lead projected onto
the tip atom 0, where we find for the transmission in the
tunneling regime,

T�E� 	 Tr�â0
L�E��R�E�� = Tr�â0

L�E�V̂â1
R�E�V̂†� . �A6�

Thus, the zero-bias conductance, which is given by the trans-
mission function at the Fermi energy, can be approximated in
the tunneling regime by

G =
e2

h
T��F� 	

e2

h
Tr�â0

L��F�V̂â1
R��F�V̂†�

=
e2

h
�

	,	�,�,��

a		�
L ��F�V	��a���

R ��F�V
	��
* , �A7�

where in the last step, we have labeled the states on the left
tip by 	 and 	� and states on the right tip by � and ��. The
spectral functions âL and âR are diagonal in the basis of
eigenstates of the isolated left and right leads, and the diag-
onal elements yield the DOS projected onto the eigenstates,
a		

L =2�	
L and a��

R =2��
R, where 	 and � now label the pro-

jections of the eigenstates onto the tip atoms. Thus, we ob-
tain Eq. �5�,

G 	
e2

h
�
	,�

�	
L��F�V	���

R��F�V
	�
* . �A8�

Notice that this result relates the tunnel conductance to the
product of the orbital-resolved DOS of the electrodes, as
opposed to the total DOS.
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