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Abstract

We analyze (non-deterministic) contests with anonymous contest success functions.
There is no restriction on the number of contestants or on their valuations for the
prize. We provide intuitive and easily veri�able conditions for the existence of an
equilibrium with properties similar to the one of the (deterministic) all-pay auction.
Since these conditions are ful�lled for a wide array of situations, the predictions of
this equilibrium are very robust to the speci�c details of the contest. An application
of this result contributes to �ll a gap in the analysis of the popular Tullock rent-
seeking game because it characterizes properties of an equilibrium for increasing
returns to scale larger than two, for any number of contestants and in contests with
or without a common value.

Keywords: (non-) deterministic contest, all-pay auction, contest success functions.
Journal of Economic Literature Classi�cation Numbers:
C72 (Noncooperative Games),
D72 (Economic Models of Political Processes: Rent-Seeking, Elections),
D44 (Auctions).
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1. Introduction

In a contest agents exert irreversible e¤ort to increase their probability of winning a
prize. Contests have been used to analyze a variety of situations including lobbying,
rent-seeking and rent-defending contests, litigation, political campaigns, con�ict, patent
races, arms races, sports events or R&D competition. Moreover, recent papers (like e.g.
Alesina and Spolaore (2006), Baron and Diermeier (2006), Konrad (2000a, 2000b) or
Polborn and Klumpp (2006)) have embedded contests in larger political economy models
in order to capture the e¤ect of con�ict on other variables of interest.

Particularly when a contest model is embedded in a larger game, it is desirable that
equilibrium payo¤s do not change too much as the primitives of the contest change.
Otherwise, the predictions of the larger model might not be robust to changes in the
primitives of the contest subgame. The present paper determines a class of contests with
fairly di¤erent primitives that admits essentially the same equilibrium. Equilibrium pre-
dictions within this class of contests can, thus, be considered robust to the speci�cation
of the contest. Moreover, the class includes two prominent models of contests.

The crucial element in the speci�cation of a contest is the so-called contest success
function (CSF), which associates to each vector of contestants� e¤ort levels a lottery
specifying for each agent a probability of getting the prize. In the literature there are
two prominent ways to model contests.

First, there is the all-pay auction, in which the player exerting the highest e¤ort
wins the prize with probability one. Such a contest is therefore called deterministic (or
perfectly discriminating). It has been analyzed by Hillman and Riley (1989), Baye et
al. (1993, 1996) or Che and Gale (1998), among others.

For later reference we summarize the results of Hillman and Riley (1989) and Baye et
al. (1996) as follows. Denote the valuation of bidder Bi for the prize by Vi and suppose
that V1 � V2 � � � � � Vn. There exists a Nash equilibrium in mixed-strategies to the
all-pay auction. In this equilibrium, bidder B1 randomizes uniformly on [0; V2], while
bidder B2 abstains with probability 1 � V2=V1 and adopts the same mixed-strategy as
B1, given that he enters the contest. All other contestants abstain with probability one.
Expected equilibrium payo¤s are E�1 = V1 � V2 and E�j = 0 for all Bj with j > 1.
The expected revenue is ER = V2(V1 + V2)=(2V1).1

In the sequel we will use the term all-pay auction equilibrium to indicate an equilib-
rium in which the expected equilibrium bids, payo¤s and revenues (but not necessarily
the distributions of bids) are as in the (deterministic) all-pay auction (see De�nition
3.1). Note that these equilibria have important implications for the participation in the
aforementioned applications of contests. It is su¢ cient to deal with two contestants,
because further players prefer to abstain.

1 In many instances this equilibrium is unique, see Remark 3.2 for more details.
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Second, a very prominent class of contest games is the so-called Tullock�s Rent-
Seeking Game. Given a vector of e¤orts b and R, a positive parameter measuring
returns to scale from e¤ort, in Tullock�s speci�cation the probability that bidder Bi
wins the contest is given by

	Ti (b) =
bRiPn
j=1 b

R
j

: (1.1)

Note that if R = 0, that is, the so-called contest success function is completely insensitive
to e¤ort, the extreme case of a (fair) lottery is obtained. The opposite case of extreme
sensitivity (R ! 1) in which only e¤orts matter yields the (deterministic) all-pay
auction. Hence, we might think of R as specifying how much the extreme requirement
of the deterministic all-pay auction is relaxed through chance in the assignment of the
prize.

Tullock�s Rent-Seeking Game has been analyzed by Tullock (1980), Pérez-Castrillo
and Verdier (1992), Baye et al. (1994) and Skaperdas (1996), among others. Equilibria
in this game are well understood when R is relatively small, because then there exist pure
strategy equilibria. However, this is not so for larger R. For 2 < R < 1, we are only
aware of one study (Baye et al. (1994)), which restricts to two contestants with equal
valuations. For this large range of parameter values, the widely applied Tullock�s Rent-
Seeking Game o¤ers, hence, no prediction concerning rent-seeking outlays when there
are more than two contestants or when valuations di¤er. Moreover, it is not known what
properties of the deterministic all-pay auction extend to the non-deterministic Tullock�s
Rent-Seeking Game.

For tractability reasons applications of Tullock�s Rent-Seeking Game suppose very
often that R = 1. This case yields very di¤erent results from the deterministic all-pay
auction. For instance, equilibrium payo¤s are, in general, di¤erent. As a consequence,
more than two contestants might have an incentive to participate actively in the contest.
Thus, it is no longer su¢ cient to deal with two contestants. Further di¤erences between
Tullock�s Rent-Seeking Game and deterministic all-pay auction exist and the reader
may �nd discussions in Nitzan (1994), Che and Gale (2000) and Fang (2002).

The purpose of the present paper is, hence, twofold:

1. We analyze to what extent the equilibrium predictions of the deterministic all-pay
auction are robust to di¤erent amounts of randomness in the assignment process
for the price. This randomness might be introduced following (1.1) with R �nite,
but it is worth to point out at this point that we do not limit our analysis to logit
formulations of the CSF.

2. We contribute to close the gap in the analysis of Tullock�s Rent-Seeking Game,
because our main result applies for 2 < R < 1, for any number of contestants,
and for any valuations for the political prize the contestants might have.
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Our main result speci�es conditions on the CSF that are su¢ cient for an all-pay
auction equilibrium to exist. The main conditions are three. Anonymity is used to
construct an equilibrium for general situations building on an equilibrium of the sym-
metric two bidder contest. While the deterministic all-pay auction is anonymous, the
other two conditions relax the requirement that the highest bidder wins the contest
for sure. Su¢ cient Discrimination (SD) says that the contest has to be deterministic
enough. Su¢ cient Monotonicity (SM) requires that increasing one�s bid should yield a
su¢ ciently high win probability. We show then that these conditions are ful�lled under
a variety of very di¤erent CSFs, including Tullock�s Rent-Seeking Game.

Contests have been reviewed, for example, in Nitzan (1994) and Konrad (2007).
Usually, papers on contests specify a particular CSF and analyze equilibrium. Conse-
quently, there are few papers dealing with a general class of CSFs and we are not aware
of any carrying out an analysis at our level of generality.2 The present paper is most
related to Che and Gale (2000), Alcalde and Dahm (2007) and Baye et al. (1994). Che
and Gale analyze a family of linear di¤erence-form contests with two bidders that is
characterized by a non-negative parameter. Similarly to Tullock�s Rent-Reeking Game,
the scalar speci�es how deterministic the contest is. As a result, the family contains the
polar cases of the (fair) lottery and the (deterministic) all-pay auction. Che and Gale
analyze mixed-strategy equilibria and show the convergence of the equilibrium to that
of the all-pay auction as the di¤erence-form contest approaches the all-pay auction. In
contrast, the present paper speci�es conditions under which a non-deterministic contest
(e.g. Tullock�s Rent-Seeking Game with 2 < R <1) admits all-pay auction equilibria.3
Alcalde and Dahm de�ne the Serial Contest (for a formal de�nition see Subsection 4.2)
which is a di¤erent family of contests that also includes the two polar cases depending
on a scalar. They show that the Serial Contest admits all-pay auction equilibria when
the contest is deterministic enough. The present paper obtains this result as a special
case. However, contrary to the present paper, their proof relies on the homogeneity of
degree zero of the CSF. Both papers follow Baye et al. (1994) by using an auxiliary
contest with a �nite bidding space to in order to analyze mixed-strategy equilibria in
the original contest.

This paper is organized as follows. The next section introduces the class of contests
analyzed in the present paper and de�nes an auxiliary contest with a �nite grid on the
bidding space. Section 3 establishes our main result which we apply in Section 4 to
speci�c contests. The last section o¤ers some concluding remarks.

2For example, Szidarovszky and Okuguchi (1997) focus on logit formulations of the CSF with twice
di¤erentiable, strictly increasing, and concave e¤ectivity functions. Malueg and Yates (2006) study
homogenous CSFs.

3 In principle, the class of contests analyzed in the present paper includes Che and Gale�s contest.
However, since their contest does not ful�ll condition (SD) when the scalar is �nite our main result does
not apply.
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2. Contests

2.1. Preliminaries

There are n > 1 players wishing to participate in a contest. The set of contestants or
bidders is denoted by B = fB1; : : : ; Bi; : : : ; Bng. Each contestant has a valuation for
the object, denoted by Vi, and submits a bid bi 2 R+. Outlays are irreversible. Bidders
are risk-neutral, and they bid simultaneously. The valuations are common knowledge
and without loss of generality ordered such that V1 � V2 � : : : � Vn > 0.

It is assumed that the contest administrator commits to determine the winner
through a contest success function. This function associates, to each vector of bids
b = (b1; : : : ; bn), a lottery specifying for each agent a probability of getting the object.

De�nition 2.1. [CSF] A contest success function is a mapping

	 : Rn+ ! �n

such that for each b 2 Rn+, 	(b) is in the n � 1 dimensional simplex, i.e. 	(b) is such
that, for each i, 	i (b) � 0, and

Pn
i=1	i (b) = 1.

Throughout this paper we assume that contest success functions satisfy the following
Incentive Property.

De�nition 2.2. [IP] We say that CSF 	 satis�es the Incentive Property if, for each
bidder Bi, and other agents�bids b�i 2 Rn�1+ n f0g,

	i (bi; b�i) � 	i
�
b
0
i; b�i

�
whenever bi � b

0
i; (2.1)

	j (bi; b�i) � 	j
�
b
0
i; b�i

�
for all j 6= i, whenever bi � b

0
i; and (2.2)

	i (bi; b�i) > 0 only if bi > 0. (2.3)

Let us observe that [IP] is a natural condition that is satis�ed by all the (homoge-
neous) CSFs studied in the literature. In particular, (2:1) speci�es a weak monotonicity
property, of each bidder�s winning probability, in her own bid; (2:2) establishes that
when some bidder�s winning probability increases (resp. decreases), then the winning
probability of any other bidder decreases (resp. increases); and (2:3) says that no bidder
has a positive winning probability unless her bid is positive (or all bidders bid zero).

Given the contest success function 	, agents�expected utility from participating in
the contest, when the vector of bids is b, is

E�i (b) = 	i (b)Vi � bi; 8Bi 2 B: (2.4)

We denote a mixed-strategy for player Bi by �i and indicate the associated strategy
pro�le by �.
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2.2. A Class of Contest Success Functions

We describe now properties of the class of contest success functions analyzed in this pa-
per. The �rst axiom is Anonymity, a property establishing that each agent�s probability
is independent of her label and depends only on the vector of bids.
(A) Anonymity: For any permutation function � of B (i.e., a bijection � : B ! B) we
have 	(� (b)) = � (	 (b)) for all b.

Note that this axiom also implies that all bidders submitting identical bids must
obtain equal probabilities of winning. Speci�cally, for the degenerated bid vector (all
contestants bid zero), Anonymity and the de�nition of a CSF imply that the CSF assigns
win probability 1=n to all contestants, as e.g. in Baye et al. (1994).

The present paper makes use of continuity properties of contestants�payo¤ functions
by applying results of Dasgupta and Maskin (1986) to contests. Therefore, a natural
requirement is continuity of the CSF. However, the most commonly used CSFs, like
the perfectly discriminating all-pay auction or Tullock�s Rent-Reeking Game, are not
continuous everywhere.4

To avoid excluding these CSFs, we allow for a weaker form of continuity of the CSF.
Given a vector of bids b = (bi; b�i) 2 Rn+, de�ne the highest bid of a contestant other
than Bi as bimax, i.e.

bimax = max
j 6=i

bj .

The following property assures that the set of discontinuities of the CSF is �small�and
that it �pays�to increase outlays slightly at these points.
(DS) Discontinuity Set: Given Bi 2 B, if 	i is discontinuous at b, then:

(a) bi = b
i
max; and

(b) 	i

�
b
0
i; b�i

�
= 1 for all b

0
i > bi.

For instance, in the popular Tullock�s Rent-Seeking Game the CSF is continuous
everywhere except at the degenerate bid vector, when all contestants bid zero. Thus,
bimax = 0. The second part of (DS) requires in such a case simply that in order to obtain a
strictly positive win probability contestant Bj , distinct of Bi, has to participate actively
in the contest. In other words, zero outlays by a contestant imply that this player has
no chance to win the contest. But note that (DS) is general enough to accommodate
the perfectly discriminating all-pay auction in which the CSF is continuous everywhere
except when two or more contestants tie for the highest bid.

In the following we focus on contests assigning win probabilities through an anony-
mous CSF ful�lling (DS).

4 In fact, it is easy to see that homogenity of degree zero of the CSF implies that if 	i (b) is continuous
at the degenerated bid vector (all contestants bid zero), then 	i (b) must be constant. This fact was
pointed out by Corchón (2000).
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2.3. The Continuous and the Finite Contest

In this paper we follow the approach in Baye et al. (1994) by relating the original
contest with continuous strategy space to another one in which there is a �nite grid on
the bidding space. Note that the latter is realistic when there is a smallest monetary
unit, like in experimental settings. Given some G 2 N+, the contest is �nite with grid
G and smallest monetary unit 1=G if the strategy space is discrete such that only bids
that coincide with the grid fm;m + 1=G;m + 2=G; : : : ;m + (G � 1)=G;m + 1g for all
m 2 N+ are feasible. We refer to this game as the �nite contest and indicate an arbitrary
element of the grid by x=G, where x 2 N+.

As a starting point for our analysis we follow Baye et al. (1994) and apply results
of Dasgupta and Maskin (1986) to our model. Consider a contest with n bidders and
common value. Let ��G = (��G1 ; ::; ��

G
n ) denote an equilibrium to the contest with �nite

grid G. The next lemma establishes existence of a symmetric mixed-strategy equilibrium
to both the continuous and �nite contest and relates these equilibria.5

Lemma 2.3. Consider a contest with common value V and contest success function
satisfying (A) and (DS). This contest possesses a symmetric mixed-strategy Nash equi-
librium, both when the strategy space is �nite and when it is continuous. Moreover,
the pro�le �� = limG!1��

G exists and constitutes a mixed-strategy Nash equilibrium to
the continuous contest.

Proof. Note that the existence of a common value and (A) imply that both the �nite and
the continuous contest are symmetric games. With this, the existence of a symmetric
equilibrium for the contest with �nite grid G follows from Lemma 6 in Dasgupta and
Maskin (1986). We show that the conditions of their Theorem 6 are also satis�ed.
This theorem guarantees the existence of a symmetric mixed-strategy equilibrium when
the strategy space is continuous. In addition, the proof of Dasgupta and Maskin�s
Theorem 6 shows that the limiting equilibrium of a �nite approximation to the strategy
space as the grid size goes to zero is indeed an equilibrium to the continuous game.
The application of their theorem requires some conditions to be ful�lled. First, the
sum of payo¤s must be upper semi-continuous. Since

Pn
i=1E�i(b) = V �

Pn
i=1 bi is

continuous, it is upper semi-continuous, too. Second, E�i(b) must be bounded, which
holds as �V � E�i(b) � V for bi 2 [0; V ] and i = 1; 2; : : : ; n. This completes the
proof when the CSF is continuous. For discontinuous CSFs ful�lling (DS) two further
properties must be ful�lled. Third, one must be able to express a set of points that
includes the discontinuities as a function relating the strategies of pairs of contestants.
Given (DS) the identity function can be used to de�ne this set. Fourth, a so-called

5From Dasgupta and Maskin�s results it also follows that the equilibrium strategy has no atom at
zero e¤ort, when this is a point of discontinuity of the CSF.
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property � must hold. Let k � 1 denote the cardinality of the bid bimax in b�i. Property
� is ful�lled, since

lim inf
bi 7�!+bimax

E�i (bi; b�i) = V � bimax >
V

k + 1
� bimax � E�i

�
bimax; b�i

�
;

holds. Thus, Theorem 6 in Dasgupta and Maskin (1986) can be applied.

3. The Main Result

As explained in the Introduction, in this section we give conditions for the existence
of an equilibrium to non-deterministic contests that has properties of the one of the
deterministic all-pay auction. We de�ne �rst what we mean by an all-pay auction
equilibrium.

De�nition 3.1. Let V1 � V2 � : : : � Vn. In an all-pay auction equilibrium �� the
expected bid of contestant B1 is E (��1) = V2=2 and the one of contestant B2 is
E (��2) = (V2)

2 = (2V1). All other contestants abstain from the contest (by bidding zero).
Contestant B1�s expected equilibrium payo¤ is E�1 (��) = V1 � V2, while for all other
contestants E�i6=1 (��) = 0. The expected revenue is ER (��) = V2(V1 + V2)=(2V1).

Remark 3.2. In the perfectly discriminating all-pay auction there is a unique equilib-
rium if V2 > V3. When there is a multiplicity of equilibria, in no equilibrium there is a
contestant whose expected payo¤ exceeds the one speci�ed in the statement. Moreover,
the only case in which there is no revenue equivalence among equilibria is when more
than one contestant have the second highest valuation which is strictly lower than the
highest one. See Baye et al. (1996) for more details.

It turns out that we can guarantee the existence of an all-pay auction equilibrium
when besides properties (A) and (DS) the contest success function is su¢ ciently dis-
criminating and monotonic in two active player contests.6 The following two conditions
will be used in the �nite game. Remember that in the discrete setting bidding (x+1)=G
represents a marginal increase of the bid x=G. For simplicity of exposition, let �x denote
the integer such that �x � GV1 < �x+ 1.

The �rst condition speci�es a minimum win probability that outbidding the oppo-
nent by the minimum amount must yield.

6These additional properties are related to the case in which at most two agents�bids are positive.
Since we deal with anonymous CSFs, there is no loss of generality by assuming that those agents are
bidders B1 and B2. Thus, we abuse notation and denote by (b1; b2) a vector in Rn such that bi = 0 for
all i 6= 1; 2.
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(SD) Su¢ cient Discrimination: For each x 2 f0; 1; :::; �xg,

	1

�
x+ 1

G
;
x

G

�
� x+ 2

2(x+ 1)
. (3.1)

Note that the right hand side, RHS from now on, is a strictly decreasing function with
values in [1; 1=2). Thus, the CSF must be su¢ ciently discriminating in favor of the
higher bidder. Hence, (SD) speci�es a lower bound on how much the extreme case of
the (deterministic) all-pay auction, in which the higher bidder wins the contest for sure,
can be relaxed.

The next condition requires that a marginal increase of the bid x=G to (x + 1)=G
yields a su¢ ciently higher win probability than before.
(SM) Su¢ cient Monotonicity: 8x 2 f0; 1; :::; �xg and 8j 2 fx+ 1; :::; �xg

	1

�
x+1
G ; jG

�
�	1

�
x
G ;

j
G

�
	1

�
x
G ;

j
G

� � 	1
�
x+ 1

G
;
x

G

�
�	2

�
x+ 1

G
;
x

G

�
: (3.2)

Note, again that (SM) is ful�lled in the extreme case of the (deterministic) all-pay
auction.

We are now in a position to present our main result.

Theorem 3.3. Let V1 � V2 � � � � � Vn. Suppose the contest success function satis�es
(A), (DS), (SD) and (SM). Then the contest possesses an all-pay auction equilibrium.

To prove this result we use several lemmata. For a sketch of the proof consider the
following example with particularly simple equilibrium strategies.

Example 3.4. Consider Tullock�s Rent-Seeking Game with R = 2. In the case of a
common value, the �rst order conditions characterize maximizers of expected utility
for each agent.7 Both contestants bid half of their common valuation. Lemma 2.3 es-
tablished the existence of a symmetric equilibrium to common value contests for more
general situations.
Building on this symmetric equilibrium we construct an equilibrium to two-player con-
tests without common value when, say, V1 � V2. Note that in the symmetric equilibrium
the rent is completely dissipated and contestants obtain zero payo¤s. Lemma 3.5 shows
that the same is true under (SD) and (SM) in a wide class of symmetric equilibria.
Notice also that the increase in B1�s valuation w.r.t. the symmetric situation does not
change the problem of contestant B2. Hence, given b�1 = V2=2, her best reply is still to

7 See e.g. Pérez-Castrillo and Verdier (1992) or Nti (1999) for a formal analysis of this maximization
problem.



All-Pay Auction Equilibria in Contests 9

bid b�2 = V2=2, on one hand, or, on the other, to bid zero. So she is also willing to mix
between the two. If she mixes with the right frequency, then the maximization problem
of contestant B1 admits the same solution as in the symmetric game. Consequently, the
following is an equilibrium to the asymmetric contest. Contestant B1 bids the optimal
strategy of the symmetric game b�1 = V2=2 and contestant B2 abstains with probability
(1� V2=V1) and bids b�2 = V2=2 whenever she participates. Lemma 3.6 establishes such
a result for any symmetric equilibrium in which the rent is completely dissipated.
The last step is to observe that further contestants with lower valuations than V2 cannot
do better than B2. Given the speci�ed bids of the �rst two contestants they prefer to
abstain from the contest. Thus, the described strategies constitute an all-pay auction
equilibrium in mixed-strategies to the n-player Tullock�s Rent-Seeking Game with R = 2
and asymmetric valuations.

The next lemma, and its proof, follows some of the reasoning in Baye et al. (1994)
and generalizes it to a broader class of contests.

Lemma 3.5. Consider a 2-bidder contest with �nite grid G and common value V in
which the contest success function satis�es (A), (SD) and (SM). In any symmetric Nash
equilibrium ��G = (��G1 ; ��

G
2 ) it is true that for i = 1; 2:

(1) 0 � E�i(��G) �
1

G
and (2) E(��Gi ) =

V

2
� E�i(��G):

Proof. First of all, let us introduce some additional notation. Given G, and agent
Bi�s strategy �Gi , �

G
ik denotes the probability that agent Bi assigns to bidding k=G.

Moreover, it is easy to see that, at equilibrium, ��Gik = 0 for any agent Bi and bid such
that k > �x. To prove Lemma 3.5, we will concentrate on agent B1. A similar reasoning
applies to agent B2.

(1) (a) For the lower bound: The expected payo¤ from bidding x=G when the
opponent follows the equilibrium strategy ��G2 is

E�1

� x
G
; ��G2

�
= V

�xX
j=0

��G2j	1

�
x

G
;
j

G

�
� x

G
. (3.3)

Choosing x = 0, contestant B1 can secure herself E�1
�
0; ��G2

�
� 0. Thus, E�1(��G) � 0.

(b) For the upper bound, since ��G is an equilibrium, agent B1 must react optimally to
B2�s strategy. Thus, for all x=G: (i) E�1

�
x=G; ��G2

�
� E�1

�
��G
�
, (ii) E�1

�
x=G; ��G2

�
=

E�1
�
��G
�
if ��G1x > 0 and (iii) ��G1x = 0 if E�1

�
x=G; ��G2

�
< E�1

�
��G
�
. Using (3.3),

condition (i) can be rewritten as

V

�xX
j=0

��G2j	1

�
x

G
;
j

G

�
� E�1

�
��G
�
+
x

G
: (3.4)
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Let x=G � 0 be the lowest bid that is part of the symmetric mixed-strategy equilibrium.8
By (ii) condition (3.4) holds with equality. Using (A), we have

1

2
��G2x +

�xX
j=x+1

��G2j	1

�
x

G
;
j

G

�
=
1

V

h
E�1

�
��G
�
+
x

G

i
: (3.5)

For x+ 1 condition (3.4) becomes

	1

�
x+ 1

G
;
x

G

�
��G2x +

1

2
��G2(x+1) +

�xX
j=x+2

��G2j	1

�
x

G
;
j

G

�
�
E�1

�
��G
�

V
+
x+ 1

V G
: (3.6)

Computing ��G2x from equation (3.5) and substitution in inequality (3.6) yields�
1
2 � 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

x+1
G

��
��G2(x+1)+

+
�
	1
�
x+1
G ; x+2G

�
� 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

x+2
G

��
��G2(x+2)+

+ : : :+
�
	1
�
x+1
G ; �xG

�
� 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

�x
G

��
��G2�x �

� 1
V

�
E�1

�
��G
�
+ x+1

G � 2
�
E�1

�
��G
�
+ x

G

�
	1
�
x+1
G ; xG

��
=

= 1
V

�
1
G

�
x+ 1� 2x	1

�
x+1
G ; xG

��
� E�1

�
��G
� �
2	1

�
x+1
G ; xG

�
� 1
��
.

(3.7)

Note that (SM) implies that every term on the left hand side, LHS from now on, of
condition (3.7) is non-negative. Suppose, by way of contradiction, that E�1

�
��G
�
>

1=G. The RHS of condition (3.7) is strictly smaller than

1

V G

�
x+ 1� 2x	1

�
x+ 1

G
;
x

G

�
� 2	1

�
x+ 1

G
;
x

G

�
+ 1

�
:

Under (SD) this expression is smaller than zero, a contradiction.
(2) We have that in a symmetric equilibrium E�i(��

G) = V PrfBi winsg � E(��Gi ).
Summing up for both agents gives 2E�1

�
��G
�
= V [PrfB1 winsg + PrfB2 winsg] �

2E(��G1 ) and rearranging yields the statement.

Lemma 3.6. Let CS be a (continuous) 2-bidder contest with common value ~V . Let CA
be the same contest with asymmetric valuations V1 � V2 = ~V . If �� = (��1; �

�
2) is a

symmetric (possibly mixed) Nash equilibrium strategy pro�le to CS in which the rent is
completely dissipated (in expectation), then the following strategy pro�le �� = (��1; �

�
2)

constitutes a Nash equilibrium to CA:
8 I.e., ��G1x > 0, and ��

G
1j = 0 for all j < x.
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� Contestant B1 bids ��1 = ��1 and

� contestant B2�s strategy ��2 is such that she abstains from the contest with prob-
ability (1� V2=V1) and bids ��2 whenever she participates.

Proof. Note �rst that in CS the complete dissipation of rents implies that ~V = E (��1)+
E (��2). Since the equilibrium is symmetric, we have E (��i ) = ~V =2, i 2 f1; 2g. The
symmetry of the game assures that on average each player wins half of the times and,
thus, in CS we have E�i (��) = 0, i 2 f1; 2g.

To see that in CA contestant B2 has no pro�table deviation from ��2, note that, since
��1 = �

�
1 and V2 = ~V is the same in CS and CA, any pure strategy in CA yields the same

as in CS and B2 obtains E�2 (��) = 0. She is, hence, willing to abstain with probability
(1� V2=V1).

For B1 note that in CS , given the mixed-strategy �� by B2, all pure strategies b1 in
the support of �� maximize

E�1(b1; �
�) = ~V E[PrfB1 winsjb1;	; ��g]� b1; (3.8)

where E[PrfB1 winsjb1;	; ��g] is B1�s expected win probability from the pure strategy
b1 when the CSF is 	 and B2 mixes according to the equilibrium strategy ��. Note that,
although we do not know whether �� is a continuous, discrete, or partially continuous
and discrete distribution, the following must be true. For any constant A, any b1 which
is a maximizer of (3.8) is also a maximizer of

A+ ~V E[PrfB1 winsjb1;	1; ��g]� b1: (3.9)

The proof is completed by noticing that (3.9) with A = (1 � V2=V1)V1 is the payo¤ of
the pure strategy b1 in CA, with ��2 = �� conditional on entry.9

We are now in a position to prove Theorem 3.3.
Proof of Theorem 3.3. Suppose V1 � V2 � � � � � Vn. and that the contest success
function satis�es (A), (DS), (SD) and (SM). We show the existence of an all-pay auction
equilibrium by construction.

Suppose there were two contestants with common value V2. Lemma 2.3 and suc-
cessively Lemma 3.5 can be applied. This establishes the existence of a symmetric
mixed-strategy equilibrium in which the rent (in expectation) is completely dissipated
because both contestants bid (in expectation) V2=2. Application of Lemma 3.6 allows to
conclude that in any two-bidder contest without common value, say, V1 � V2 there exists
equilibrium strategies for B1 and B2 with the properties speci�ed in De�nition 3.1. As-
sume there are further bidders with valuations lower or equal to V2. These contestants

9This is because ~V = V2, and V1 cancels.
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Bj with j > 2 cannot do better than bidding zero and obtain expected payo¤s of zero.
To see this take any pure strategy b0. Given ��1, contestant B2 obtains E�2(�

�
1; b

0) � 0
in the two contestants game. By (A), we have that E�i (��1; �

�
2; b

0) = E�2 (�
�
1; b

0; ��2);
and by Condition (2:2), E�2 (��1; b

0; ��2) � E�2 (�
�
1; b

0). The expected bids imply the
expressions for expected equilibrium payo¤s and revenue in the statement of Theorem
3.3. �

4. Applications

In this section we apply Theorem 3.3 to speci�c contests, mainly by checking conditions
(SD) and (SM). This shows the practical applicability of these conditions. We start by
verifying existing results for the deterministic all-pay auction and the Serial Contest. We
turn then to the derivation of new results. Of particular interest is here Tullock�s Rent-
Seeking Game. Although the hypothesis of Theorem 3.3 does not include homogeneity
of the CSF, we focus on this class of CSFs, because of its relevance for applications.10

4.1. The Deterministic All-Pay Auction

It is instructive to start with the deterministic all-pay auction and derive an equilib-
rium to this game without using existing results. It is straightforward to see that the
deterministic all-pay auction satis�es the hypothesis of Theorem 3.3. Now Theorem 3.3
says that this game has an all-pay auction equilibrium. This is indeed the case; for this
is a well established result (Hillman and Riley (1989) and Baye et al. (1996)). Note
that this equilibrium is unique when V2 > V3 (see Remark 3.2). Thus, we conclude:

Proposition 4.1. The deterministic all-pay auction has an all-pay auction equilibrium.

4.2. The Serial Contest

One way to relax the extreme requirement of the deterministic all-pay auction that the
highest bidder wins the contest with probability one, is through the Serial CSF (Alcalde
and Dahm (2007)). Without loss of generality suppose that the vector of bids is ordered
such that b1 � b2 � ::: � bn.11 Given a scalar R > 0, the serial CSF assigns

	Si (b) =

nX
j=i

bRj � bRj+1
j � bR1

for all Bi 2 B, (4.1)

10One interpretation of homogeneity of degree zero is that it does not matter whether lobbying
expenditures are measured in dollars or in euros. See also the further discussion in Malueg and Yates
(2006).
11 If necessary relabel the set of bidders.
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with bn+1 = 0.
Using homogeneity, condition (SD) becomes

x+ 2

2(x+ 1)
� 1� 1

2

�
x

x+ 1

�R
,
�

x

x+ 1

�R�1
� 1, (4.2)

which holds for all R � 1. On the other hand, (SM) can be written as

1� 2
�

x

x+ 1

�R
+

"�
x

x+ 1

�R#2
� 0, (4.3)

which is true for all R � 0. Summarizing, we have the following.

Proposition 4.2. For R � 1, the Serial Contest has an all-pay auction equilibrium.

4.3. Tullock�s Rent-Seeking Game

Tullock�s CSF is de�ned as in equation (1.1). Again, using homogeneity, conditions
(SD) and (SM) simplify. The former becomes

x+ 2

2(x+ 1)
� (x+ 1)R

(x+ 1)R + xR
, (x+ 2)xR � x(x+ 1)R, (4.4)

which is ful�lled for x = 0. For x > 0, (following Baye et al. (1994), p. 379) we obtain

x+ 2

(x+ 1)
�
�
x+ 1

x

�R�1
, 1 +

1

x+ 1
�
�
1 +

1

x

��
1 +

1

x

�R�2
.

This holds for R � 2. The latter condition (SM) can be written as

(xR + jR)((x+ 1)R + xR) � ((x+ 1)R + jR)2xR, (4.5)

which is true for all R � 0. We have proved the following result.

Proposition 4.3. For R � 2, Tullock�s Rent-Seeking Game has an all-pay auction
equilibrium.

Although the explicit derivation of the equilibrium mixed-strategies is beyond the
scope of the present paper, we conclude this subsection computing four examples of the
symmetric two-bidder Tullock�s Rent-Seeking Game with a �nite strategy space. We
represent the cases of R equal to 2, 3, 5 and1 with a grid of G = 11 in Figure 4.1. The
computations suggest that, as the returns to scale increase, the bulk of probability mass
shifts to the right and some mass is attached to low bids. As R increases further, ��

becomes more and more uniformly distributed, which is the optimal bidding strategy in
the all-pay auction.12

12 Due to the �niteness, contestants obtain very low but strictly positive expected pro�ts (smaller
than 0:06). Moreover, the expected bid � even of the discrete all-pay auction � is strictly lower than
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1
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0 . 4
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0 . 8

1

Figure 4.1: Q = 11 and R 2 f2; 3; 5;1g

4.4. Combining Tullock�s and the Serial Contest

Consider a contest administrator who wants to design a contest that has properties of
both Tullock�s Rent-Seeking Game and the Serial Contest. In the 
-TS contest win
probabilities are assigned following

	TSi (b) = 
	Ti (b) + (1� 
)	Si (b); (4.6)

with 
 2 [0; 1] and for all Bi 2 B.
Using homogeneity, condition (SD) becomes

x+ 2

2(x+ 1)
� 
 (x+ 1)R

(x+ 1)R + xR
+ (1� 
)

"
1� 1

2

�
x

x+ 1

�R#
,

which we know holds for R � 2 because then (4.4) and (4.2) hold. Condition (SM) can
be written as

1

2


 (x+1)R

(x+1)R+jR
+ (1� 
)12

�
x+1
j

�R

 xR

xR+jR
+ (1� 
)12

�
x
j

�R � 
 (x+ 1)R

(x+ 1)R + xR
+ (1� 
)

"
1� 1

2

�
x

x+ 1

�R#
.

Notice that only the LHS depends on j. Furthermore, this expression can be shown to
be increasing in j. Thus, it su¢ ces to verify (SM) for j = x + 1. In this case (SM)

0:5 (but larger than 0:44). Baye et al. (1994) have shown that in the two player case the symmetric
equilibrium of the discrete all-pay auction converges to the unique equilibrium of the continuous strategy
space all-pay auction.
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becomes

1

4
� 
2

(x+ 1)R

(x+ 1)R + xR
xR

xR + (x+ 1)R
+ (1� 
)2 1

2

�
x

x+ 1

�R "
1� 1

2

�
x

x+ 1

�R#

+
(1� 
)
("
1� 1

2

�
x

x+ 1

�R# xR

xR + (x+ 1)R
+
1

2

�
x

x+ 1

�R (x+ 1)R

(x+ 1)R + xR

)
.

Given that (4.5) and (4.3) hold it is enough to show that

1

2
�
"
1� 1

2

�
x

x+ 1

�R# xR

xR + (x+ 1)R
+
1

2

�
x

x+ 1

�R (x+ 1)R

(x+ 1)R + xR
,

which is true for all R � 0. We obtain, hence, the following.

Proposition 4.4. For R � 2 and for all 
 2 [0; 1], the 
-TS contest has an all-pay
auction equilibrium.

Notice that this result may be interpreted as saying that the all-pay auction equi-
librium is very robust. Given that the same equilibrium exists for any combination of
the two contests �provided that the contest is deterministic enough (R � 2)�the model
builder does not really have to decide which model is more realistic.

4.5. The Serial Contest with Spillover E¤ects

Note that instead of the power function fi(b) = bRi any homogenous production function
for lotteries might be combined with the basic functional form of either Tullock�s logit
structure or the serial formulation in order to generate another homogeneous CSF.

Consider, for example, the case in which e¤ort represents advertising. Malueg and
Yates (2006) introduce a CES production function in order to capture such a setting.
Here a contestant�s success depends on her private e¤ort bi (her own advertising). But
there might be also a public aspect or spillover e¤ect of e¤ort (e.g. increased consumer
awareness of the product generated through rivals�advertisements). The following is a
variation of the production function introduced in Malueg and Yates

fi(b) =

0@abRi + cbTi X
k 6=i

bR�Tk

1A1=S

; for all Bi 2 B, (4.7)

where a � c � 0, R > T � 0 and S > 0. Note that if c = 0, then (4.7) reduces to
the classical power function. Notice also that for T = 0, we obtain the exact expression
used by Malueg and Yates. In this case a contestant who exerts no e¤ort might still



All-Pay Auction Equilibria in Contests 16

have a positive probability of winning. When T > 0, a positive win probability requires
non-zero e¤ort.

With this we can de�ne e.g. the Serial Contest with spillover e¤ects in which win
probabilities are assigned following

	SSi (b) =
nX
j=i

fj(b)� fj+1(b)
j � f1(b)

for all Bi 2 B, (4.8)

where fi(b) is de�ned as in (4.7) and fn+1(b) = 0.
Consider the following simple example in which R = 3 and S = T = a = c = 1. We

obtain

fi(b) = bi

0@b2i +X
k 6=i

b2k

1A ; i = 1; :::; n:
By homogeneity, condition (SD) requires

x+ 2

2(x+ 1)
� 1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
, x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
� x

2(x+ 1)
.

Straightforward manipulation shows that this is true. For (SM), we have that

	1

�
x+ 1

G
;
j

G

�
=

(x+ 1)3 + (x+ 1)j2

2(j3 + (x+ 1)2j)
;

	1

�
x

G
;
j

G

�
=

x3 + xj2

2(j3 + x2j)
; and

	1

�
x+ 1

G
;
x

G

�
= 1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
.

Thus, it must hold that

(x+ 1)3 + (x+ 1)j2

2(j3 + (x+ 1)2j)
� 2

�
1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))

�
x3 + xj2

2(j3 + x2j)
;

which is true if x = 0. For x > 0, it is required that�
(x+ 1)3 + (x+ 1)j2

�
(j3 + x2j)

(j3 + (x+ 1)2j) (x3 + xj2)
�
2((x+ 1)3 + x2(x+ 1))�

�
x3 + x(x+ 1)2

�
((x+ 1)3 + x2(x+ 1))

.

Expanding terms yields the condition

j5
�
2x+ 2x2 + 1

�
+j3

�
4x+ 8x2 + 8x3 + 4x4 + 1

�
+j
�
x2 + 4x3 + 7x4 + 6x5 + 2x6

�
� 0.

We have, hence, shown the following.
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Proposition 4.5. In the example in which R = 3 and S = T = a = c = 1, the Serial
Contest with spillover e¤ects has an all-pay auction equilibrium.

5. Discussion

The present paper has o¤ered a robustness analysis of the predictions of the determin-
istic all-pay auction. In this auction the highest bidder always wins with probability
one. We have analyzed non-deterministic contests which respond to di¤erent degrees
to the highest bid when assigning the prize. This setting includes �but is not limited
to�the popular Tullock�s Rent-Seeking Game. Our model is quite general because we
did not suppose the existence of a common value and we did not restrict the number of
contestants. Not surprisingly, our main result can be interpreted as saying that if the
contest is �not too far away�from the polar case of the all-pay auction, it admits essen-
tially the same equilibrium. This is an important result as it implies that conclusions
of models that embed an all-pay auction in a larger model are robust to changes in the
contest structure.

However, it is somewhat surprising that the contest can be �quite far away�from the
polar case and that there are di¤erent mathematical formulations through which one
might depart from the deterministic case. These conclusions follow from the application
of our main result to speci�c contests. A by-product of our analysis here is to provide an
equilibrium to Tullock�s Rent-Seeking Game for increasing returns to scale larger than
two, for any number of contestants, and for any valuations for the political prize the
contestants might have. But future research concerning this contest in the general set-
ting is still needed in order to determine an equilibrium for R 2 (n=(n�1); 2), to derive
the explicit equilibrium strategies and to determine the complete set of equilibria.13

The question of robustness of the predictions of the deterministic case is important
because the polar case has important properties �some of which are known to be not
ful�lled when the contest is non-deterministic enough, say, in Tullock�s Rent-Seeking
Game with R = 1 (see Che and Gale (2000) or Fang (2002)). This refers to properties
concerning incentives for more than two agents to participate in the contest, rent dis-
sipation, exclusion principle (Baye et al. (1993)), and the preemption e¤ect (Che and
Gale (2000)). Our analysis implies that these properties are ful�lled in a wide range of
non-deterministic contests.
13Note that our analysis implies that there are multiple equilibria. Lemma 2.3 implies that there is a

symmetric equilibrium for, say, three contestants with common value. However, Theorem 3.3 establishes
an asymmetric all-pay auction equilibrium. It seems, therefore, reasonable that results similar to the
ones in Baye et al. (1996) can be derived.
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