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Ecological interactions involving introduced seaweeds constitute an important research gap, since they could alter the trophic
dynamics of native populations, but indirect effects on trophic levels are poorly known. The seaweed Caulerpa racemosa is one
of the most notable invaders in the Mediterranean Sea. It is well known that C. racemosa modifies the amphipod community
with respect to native habitats, but nothing is known regarding the common use of the same trophic resources. Therefore, the
aim of this study was to assess if the feeding habits of amphipods associated with algal habitats are affected by the spread of the
invasive C. racemosa, through stomach content analysis of amphipods living in both native and invaded seaweed assem-
blages. A total of 240 specimens of 14 species of amphipods were examined. Ten species were present in both studied habitats
(native and invaded), while two were exclusive to native and invaded habitats, respectively. Ten individuals of each species at
each habitat were selected and their gut contents were examined. A total of 11 different items was found in the gut contents:
detritus; vegetal detritus; algae; animal tissue; Oligochaeta; Polychaeta; Foraminifera; Crustacea; Sipuncula; diatoms; and
non-identified items. The expansion of C. racemosa into the native algal community changes the feeding habits of herbivorous
amphipods, since their preferred food (epiphytic algae) is not available in the new habitat produced by C. racemosa. This
community change occurs because of the presence of caulerpenyne in C. racemosa, which retards the growth of epiphytic
algae. Nevertheless, other species are not affected or benefited by the invasion, such as detritivorous species whose main
food source and habitat remains available. Altogether, slight changes in the trophodynamism of amphipod assemblages
have been detected, which are not seen as relevant in an initial stage. However, they might be promoting some indirect
effects in the energetic budget of populations, which may affect the life history. Further studies on food-web interactions in
the ecosystems affected by invasive species are necessary.
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I N T R O D U C T I O N

Habitat structure plays a very important role in marine
benthic ecosystems. Benthic organisms depend on substrates,
not only for physical support, but also for food supply and
shelter (Sebens, 1991). The increase of habitat structural com-
plexity enhances the availability of microhabitats and trophic
niches which, in turn, affects species interaction and diversity
(Huston, 1979). Affecting the processes that shape the pres-
ence, abundance and distribution of species (Orth et al.,
1984; Beck, 2000), habitat structure may also influence the
functioning of food webs. Consumers will feed on prey
depending on: (i) their trophic guilds and the ability to
capture the prey; (ii) their preferences for a particular prey;
and (iii) the abundance of each prey in their habitat.
Moreover, in shallow rocky marine habitats, the particular
predator –prey combinations will be strongly influenced by

vegetation characteristics (Heck & Crowder, 1991), with
marine algae being important contributors to structure the
habitat in terms of complexity and heterogeneity. Indeed,
macrophytes act as ecosystem engineers, creating or modify-
ing the habitat and, consequently, influencing the associated
epifauna.

Therefore disturbance events, such as the introduction of
invasive seaweed species can modify habitat structure and
consequently, result in large ecological effects (see a review
in Williams & Smith, 2007). Such species can restructure
and radically change the functioning of the recipient habitat
(Crooks, 2002), determining the biota that will become associ-
ated with the habitat. For instance, some studies have shown
negative effects on feeding habits of herbivorous, such as lit-
torine snails, sea urchins and fishes, caused by different inva-
sive seaweeds in Atlantic and Pacific Ocean (Stimson et al.,
2001; Britton-Simmons, 2004; Chavanich & Harris, 2004).
In the Mediterranean Sea, which is the most heavily invaded
marine region in the world with respect to introduced sea-
weeds (Williams & Smith, 2007), it was found that the invasive
alga Caulerpa taxifolia is not a suitable diet for the widespread
sea urchin Paracentrotus lividus (Boudouresque et al., 1996).
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Caulerpa racemosa var. cylindracea (hereafter C. racemosa)
is one of the most invasive seaweeds in the Mediterranean Sea.
Some studies have demonstrated negative effects of C. race-
mosa on native seaweeds (Piazzi et al., 2001, 2003; Balata
et al., 2004), on invertebrate assemblages (Vázquez-Luis
et al., 2008, 2009a), on food choice of invertebrates (gastro-
pods) (Gianguzza et al., 2002) and on prey availability for
fish (Vázquez-Luis et al., 2010). Other studies have found
positive effects by increasing abundances of polychaete assem-
blages (Argyrou et al., 1999; Box et al., 2010). In addition,
recent studies have demonstrated that some fish species,
such as Sarpa salpa and Spondyliosoma cantharus, consume
C. racemosa (Box et al., 2009; Tomas et al., 2010, 2011);
although the first one suggested that this ingestion might be
unintentional. In the case of seagrass density no consistent
pattern was found (Ceccherelli & Cinelli, 1997; Ceccherelli
& Campo, 2002). Therefore, the possibility that positive or
negative effects happen cannot be ruled out (Dumay et al.,
2002).

Amphipods are one of the most ubiquitous and abundant
invertebrate groups in marine vegetated habitats, with den-
sities often reaching several thousands of individuals per
square metre (Brawley, 1992; Vázquez-Luis et al., 2008).
They are important secondary producers and exhibit diverse
feeding strategies: grazing, filter and detritic feeding, predation
and scavenging (macrophagy and microphagy) (Carrasco &
Arcos, 1984; Highsmith & Coyle, 1990; Sarvala & Uitto,
1991). These various feeding modes are sometimes used sim-
ultaneously or successively according to ambient conditions
(Ruffo, 1998). Morever, amphipods are a food source for a
large variety of marine predators (Stoner, 1979; Beare &
Moore, 1997; Sanchez-Jerez et al., 1999; Stål et al., 2007),
hence playing a key role in energy flow through food webs
(Vázquez-Luis et al., 2010).

Amphipods are also known to respond to habitat modifi-
cation (Sanchez-Jerez et al., 1999); some species exhibit high
habitat specificity while others tolerate a range of habitat
alteration that may result from pollution, invasion by alien
species and other disturbance. Therefore some species of
amphipods are good indicators of environmental impacts on
vegetated habitats (Bellan-Santini, 1980; Virnstein, 1987;
Conradi et al., 1997; Sanchez-Jerez et al., 2000; Carvalho
et al., 2006). It is known that C. racemosa changes the amphi-
pod community in terms of abundance and species richness,
and some amphipod species exist in both native and
invaded habitats (Vázquez-Luis et al., 2008, 2009b).
However, it is still poorly known if these species are using
the same trophic resources. The main objective of this study
is to asses if the feeding habits of amphipods associated with
coastal seaweeds are affected by the spread of the invasive C.
racemosa, through stomach content analysis of amphipods
living in both native and invaded seaweed assemblages.

M A T E R I A L S A N D M E T H O D S

Based on a previous study (Vázquez-Luis et al., 2008) we
selected 10 species of amphipods that were common to the
studied habitats (native algae and C. racemosa).
Additionally, 4 other species (2 exclusive of each habitat)
were also selected. Ten individuals per species and habitat
were used in the present study (for further details on distri-
bution and characteristics of habitats see Vázquez-Luis

et al., 2008). Therefore, the gut contents of a total of 240 speci-
mens of 14 amphipod species were examined following the
methodology proposed by Bello & Cabrera (1999) with
slight variations (Tierno de Figueroa et al., 2006;
Guerra-Garcı́a & Tierno de Figueroa, 2009). Each individual
was added to a vial with Hertwig’s liquid (consisting of
270 g of chloral hydrate, 19 ml of chloridric acid 1 N,
150 ml of distilled water and 60 ml of glycerin) and heated
in an oven at 658C for 3 to 6 hours, depending on the
cuticle thickness of the specimens. After this, they were
mounted on slides for examination under the microscope,
equipped with an ocular micrometer.

The relevance of stomach contents in the amphipods
studied was evaluated by calculating the percentage of the
absolute gut content (%GC ¼ total area occupied by the
content in the whole digestive tract), and vacuity index
(VI ¼ 100 × [number of empty stomachs/total number of
stomachs analysed]); both values will help to evaluate the
importance of gut contents. The importance of different
prey types was evaluated by calculating the relative gut
content (Ab ¼ area occupied for each component within the
total gut content), and the frequency of occurrence (Oc ¼
100 × [number of stomachs containing prey i/total number
of stomachs containing prey]) of each prey item. A permuta-
tional multivariate analysis of variance (PRIMER 6 and
PERMANOVA: Clarke & Gorley, 2006) was used to test
differences in amphipod gut content composition between
the two habitats studied. When factors showed significant
differences, a pairwise test was carried out to test differences
among groups. The PERMANOVA analyses incorporated
two factors: (i) ‘Habitat’ (fixed and orthogonal) with two
levels: native algae and C. racemosa; and (ii) ‘Species’ (fixed
and orthogonal) with ten levels (the ten species presented in
both habitat types): Apocorophium acutum, Ampithoe
ramondi, Caprella grandimana, Caprella hirsuta, Dexamine
spiniventris, Elasmopus brasiliensis, Elasmopus pocillimanus,
Lysianassa costae, Microdeutopus obtusatus and Stenothoe
monoculoides. Non-parametric multidimensional scaling
(MDS) was used as the ordination method for exploring affi-
nities among species and habitats according to the dietary
analysis (PRIMER software: Clarke, 1993). The similarity
matrix, which was calculated using the Bray–Curtis index
and using fourth root transformed data, was used to construct
bivariate MDS plots.

R E S U L T S

Two hundred and forty specimens of 14 species and from two
habitats were examined (Table 1). The VI or percentage of
empty stomachs ranged from 0 to 30 (Table 1). For the
species common to both habitats, the higher proportions of
empty guts were observed in specimens collected within C.
racemosa when compared to native habitats, more specifically
in species Stenothoe monoculoides (VI ¼ 30), Dexamine spini-
ventris (VI ¼ 20), Elasmopus brasiliensis (VI ¼ 20) and
Caprella grandimana (VI ¼ 10). Among the species exclusive
of a single habitat, only Melita hergensis showed VI ¼ 0
(Table 1). Digestive contents were found in 229 specimens
(95.4%) belonging to all species.

The total area occupied by the content in the whole diges-
tive tract ranged from 16.7% for S. monoculoides to 55% for
Microdeutopus obtusatus, both in native algae. Gut contents
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Table 1. Gut contents of the species studied in the different habitats. Hab, habitat; VI, vacuity index; %GC, total gut content occupied in the whole digestive tract; V detritus, vegetal detritus; Ab, mean abundance of each
item (%); Oc, frequency of occurrence of each item (%); ALG, native seaweeds; CAU, Caulerpa racemosa.

Species Hab VI %GC Detritus V detritus Algae An. tissue Oligochaeta Polychaeta Foraminifera Crustacea Sipuncula Diatomea Non ident

Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc Ab Oc

Apocorophium acutum
(Chevreux, 1908)

ALG 0 47 100 100 – – – – – – – – – – – – – – – – – – – –
CAU 0 49.5 100 100 – – – – – – – – – – – – – – – – – – – –

Ampithoe ramondi
(Audouin, 1826)

ALG 0 44.7 1.5 20 – – 98.5 100 – – – – – – – – – – – – – – – –
CAU 0 51.5 72.5 100 – – 27.5 100 – – – – – – – – – – – – – – – –

Caprella grandimana
(Mayer, 1882)

ALG 0 29.7 87.9 90 – – 10 10 2 10 – – – – 0.1 10 – – – – – – – –
CAU 10 35 87.5 100 – – – – 2.5 22.22 – – – – – – – – – – – – – –

Caprella hirsuta
(Mayer, 1890)

ALG 0 22.3 94 100 – – – – 5 40 – – 1 10 – – – – – – – – – –
CAU 0 34 93.5 100 – – – – 6.5 40 – – – – – – – – – – – – – –

Dexamine spiniventris
(A. Costa, 1853)

ALG 0 24.7 – – – – 100 100 – – – – – – – – – – – – – – – –
CAU 20 21.9 29.5 37.5 – – 50.5 75 – – – – – – – – – – – – – – – –

Elasmopus brasiliensis
(Dana, 1855)

ALG 0 42.7 50 90 1.5 10 26 30 16.7 40 – – 0.5 10 0.3 10 5 10 – – – – – –
CAU 20 35.5 30.1 87.5 – – 10.5 50 33.3 75 – – – – 5.1 25 – – – – – – – –

Elasmopus pocillimanus
(Bate, 1862)

ALG 0 39.3 71.9 100 – – 3.5 20 15.5 50 – – – – 0.1 10 9 20 – – – – – –
CAU 0 42.5 37.8 80 – – 3 10 58.5 90 – – – – 0.7 30 – – – – – – – –

Lysianassa costae
(Milne Edwards, 1830)

ALG 0 20 52.5 100 7.5 30 3 10 37 90 – – – – – – – – – – – – – –
CAU 0 21.7 36 90 23 80 9 40 31 80 – – – – – – – – 1 10 – – – –

Microdeutopus obtusatus
(Myers, 1973)

ALG 0 55 99.9 100 – – – – – – – – – – – – – – – – 0.1 10 – –
CAU 0 42.8 93 100 – – – – 7 20 – – – – – – – – – – – – – –

Stenothoe monoculoides
(Montagu, 1813)

ALG 0 16.7 1 10 – – 39.9 40 – – – – – – – – 59 60 – – 0.1 10 – –
CAU 30 17.5 – – – – 10 12.5 – – – – 5 12.5 – – 50 75 – – – – 5 12.5

Atylus guttatus
(A .Costa, 1851)

ALG 10 32.8 4 22.22 1 11.11 85 100 – – – – – – – – – – – – – – – –

Atylus massiliensis
(Bellan-Santini, 1975)

ALG 20 31.5 10 50 – – 69 100 – – 1 12.5 – – – – – – – – – – – –

Caprella acanthifera
(Leach, 1814)

CAU 10 22.3 82.5 100 – – – – 7.5 22.22 – – – – – – – – – – – – – –

Melita hergensis
(Reid, 1939)

CAU 0 19.1 80.5 90 – – 10 10 7.5 20 2 10 – – – – – – – – – – – –
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of the studied amphipod species included 11 items: detritus
(organic and inorganic thin particles); vegetal detritus
(vegetal debris); algae; animal tissue; oligochaeta; polychaeta;
foraminifera; crustacea (mainly copepods); sipuncula;
diatoms; and non-identified items. Food items for each
species and by habitat are described in Table 1. The multi-
variate response of amphipod gut content composition
showed significant differences between the two habitats
studied (PERMANOVA, Ha × Sp, P , 0.01: Table 2). After
the pair-wise test, A. ramondi, E. pocillimanus and L. costae
present different feeding habits in the two habitat types. For
the rest of the species no significant differences were found.

Apocorophium acutum in both habitats fed exclusively on
detritus (Figure 1A). Ampithoe ramondi consumed mainly
epiphytic algae (family Rhodomelacea, genera Polysiphonia
or Neosiphonia) living in algae, while in C. racemosa showed
higher values of detritus consumption (Figure 1B), those
differences being significant (Ha × Sp, P , 0.01: Table 2).
Caprella grandimana showed similar diet across habitats
feeding mainly on detritus and some algal fragments when
living on native algae (Figure 1C). Caprella hirsuta showed
similar feeding habits among habitats, with detritus being
the most important item (Figure 1D). Dexamine spiniventris
living in native algae consumed mainly epiphytic algae
(family Rhodomelaceae, family Ulvaceae and family
Sphacelariaceae), while those in C. racemosa showed higher
values of detritus consumption (Figure 1E). Elasmopus brasi-
liensis and Elasmopus pocillimanus showed a wide diversity of
items in their gut contents, feeding on detritus, algae and
different animal prey (Figure 1F. G). In the case of E. pocilli-
manus significant differences were detected by
PERMANOVA showing that the diet was different for this
species in both habitat types (Ha × Sp, P , 0.01: Table 2).
Lysianassa costae had a higher presence of vegetal detritus
in each habitat, but detritus, animal tissue and algae were
also found in their guts (Figure 1H), and the diet was also
different for this species in both habitat types (Ha × Sp,
P , 0.01: Table 2). Microdeutopus obtusatus fed mainly on
detritus and some animal prey in both habitats (Figure 1I).
Stenothoe monoculoides showed the highest values of con-
sumed crustaceans, but fed also on algae in native algae habi-
tats and Polychaeta in C. racemosa habitats (Figure 1J).
Regarding the gut content of the species that appeared only
in one habitat, those living on algae (Atylus guttatus and A.
massiliensis) showed high percentages of consumed algae
tissues; and those species living in C. racemosa (Caprella

acanthifera and Melita hergensis) fed mainly on detritus and
animal tissues (Table 1).

The two-dimensional MDS plot showed segregation of
sampling stations mainly by trophic groups; at 70% of simi-
larity four groups can be distinguished represented by dtriti-
vores, herbivores, omnivores and predators (Figure 2). The
dietary composition of detritivores and omnivores was rela-
tively similar, showing a clear segregation from the herbivor-
ous group and further from the predators’ group.

D I S C U S S I O N

With respect to feeding habits some species are not affected by
the presence of the alien algae, nevertheless for a few species
some differences become apparent depending on the habitat

Table 2. Results of the multivariate analysis PERMANOVA for gut con-
tents of amphipods among habitats. MS, mean square; P, level of signifi-

cance; df, degrees of freedom; ∗∗, significant (P , 0.01).

Source of variarion Df Amphipod
assemblage

F versus

MS P

Habitat ¼ Ha 1 2528.5 0.027∗ Res
Species ¼ Sp 9 28010 0.001∗∗ Res
Ha × Sp 9 3356.4 0.001∗∗ Res
Residual 172 676.25
Transformation Fourth root

Post-hoc test: Ampithoe ramondi, Elasmopus pocillimanus and Lysianassa
costae: Caulerpa racemosa=native algae.

Fig. 1. Values of mean abundance (percentage of item + stan
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ten amphipods: Apocorophium acutum (a), Ampithoe ramondi (b), Caprella
grandimana (c), Caprella hirsuta (d), Dexamine spiniventris (e), Elasmopus
brasiliensis (f), Elasmopus pocillimanus (g), Lysianassa costae (h),
Microdeutopus obtusatus (i) and Stenothoe monoculoides (j).
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they lived in. Changes of feeding habits were more significant
on herbivorous amphipods, since their preferred food (epi-
phytic algae) was not available in the habitat colonized by C.
racemosa and they fed on detritus as an alternative. On the
other hand, detritivore species showed the least differences
with respect to habitat type because their main food source
remains available.

The changes in the ecological niche due to C. racemosa do
not seem to affect some species, but others need to look for
new trophic resources. The higher availability of detritus
found within invaded habitats compared to native algae
meadows, has consequences for amphipod assemblages
(Vázquez-Luis et al., 2008). Therefore, it is not surprising
that detritivores were the least negatively affected by the pro-
liferation of C. racemosa. Indeed, A. acutum, a fine-particle
suspension feeder, was more abundant in C. racemosa than
in native seaweeds (Vázquez-Luis et al., 2008). The detritus
accumulated within C. racemosa habitats seems to favour
the construction of tubes where they live, while population
growth is further supported by the amounts of preferred
food resource within this habitat. Similar findings had
already been reported for C. sextonae (Casu et al., 2009).
The feeding habits of other detritivore species such as M. obtu-
satus were not highly affected by the spread of C. racemosa.
Similar patterns have been found in three caprellid species,
C. grandimana, C. hirsuta and C. acanthifera, which feed
mostly on detritus (Guerra-Garcı́a & Tierno de Figueroa,
2009).

The herbivorous species, such as A. ramondi and D. spini-
ventris, are scarce in C. racemosa habitat and when using this
habitat, they slightly modify their feeding habits due to
changes in the availability of food. However, the possibility
cannot be ruled out that those individuals could be recent
immigrants. They usually feed on epiphytic algae that are
absent in C. racemosa because of the presence of caulerpenes

(Léeme et al., 1997). Thus, apart from habitat structure, the
availability of food is crucial for those species to live in one
habitat or another. Some individuals of herbivorous species
were found living in C. racemosa (Vázquez-Luis et al.,
2008), but probably the scarce food for them on this habitat
could generate metabolic problems and may lead to survivor-
ship problems for the juveniles. Probably for this reason A.
guttatus and A. massiliensis were not found in C. racemosa
habitats; indeed more than 75% of their gut contents were epi-
phytic algae.

It should be noticed that within the same trophic guild, the
feeding habits of some species were more similar according to
the type of habitat than the species itself, such as the herbivor-
ous A. ramondi and D. spiniventris and the omnivorous
E. brasiliensis and E. pocillimanus. Regarding other omni-
vores, M. hergensis appeared only in C. racemosa, probably
benefiting from the spread of the invasive algae. However,
the abundance of this species in C. racemosa was very low
(Vázquez-Luis et al., 2008). It must be taken into account
that within the omnivorous species some, such as L. costae,
show scavenging habits. It was the most different species in
this group and seemed little affected by the spread of C. race-
mosa. The only predator found in the present study, S. mono-
culoides, does not seem to have changed or modified their
feeding habits by the spread of C. racemosa, since it is able
to find prey in both habitats.

Vegetal content of C. racemosa has not been found in any
of the analysed guts of amphipods. Our results are similar to
those found on other invasive seaweeds where amphipods
and other herbivores and omnivores fed very little on the inva-
sive species, and therefore the spread of introduced seaweeds
is not under herbivore control (Trowbridge, 1995; Levin et al.,
2002; Britton-Simmons, 2004; Chavanich & Harris, 2004;
Conklin & Smith, 2005; Davis et al., 2005; Sumi &
Scheibling, 2005; Gollan & Wright, 2006; Box et al., 2009).

Fig. 2. Two-dimensional multidimensional scaling plot for the different species among dif
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ferent habitats according to the dietary analysis. A, native seaweeds; C,
Caulerpa racemosa.
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Low herbivore diversity and abundance, combined with very
little feeding on and weak habitat preference for invasive
algae result in limited grazing pressure, as has been reported
for the amphipod Cymadusa setosa on C. taxifolia (Gollan
& Wright, 2006). Therefore, primary production generated
by the spread of C. racemosa appears not to be exploited by
herbivores or primary consumers, but rather acts by activating
the detritivore pathway. Recent experimental studies reveal
that species richness and total abundance of amphipods
increased with an increase in detrital content. The same
applies to species abundance since values of this attribute
increased with an increase in detritus content (Vázquez-Luis
et al., 2009c). Detritus plays a very important role as a
trophic resource for marine invertebrates and serves as one
of the main trophic pathways in marine ecosystems (Valiela,
1995); it is also one of the most important features of
habitat structure in vegetated habitats (Allesina et al., 2005).
It was already suggested that some amphipods did not
consume algal biomass directly, but feed on associated
resources such as detritus (Enequist, 1949). Caprellids feed
clearly on detritus (Guerra-Garcı́a & Tierno de Figueroa,
2009) and some zoobenthic taxa feed significantly on detritus
accumulated by C. racemosa (Casu et al., 2009). Such results
support the findings of the present study. Therefore, detritus
appears to play a very key role for amphipods as a food
source and the detritus stock associated with C. racemosa is
playing an important role in trophic dynamics of littoral
habitats.

As we can see, trophic preferences of amphipods can change
if the trophic resources are modified by environmental factors,
such as the establishment of an invasive species. Traditionally,
species have been classified into specific trophic guilds, usually
based on mouthpart morphology. However a recent study on
caprellid amphipods found no relationships between gut con-
tents and features of the mouthpart structure (Guerra-Garcı́a
& Tierno de Figueroa, 2009). The only relationship that they
found is that a predatory way of life is directly related to the
absence of the mandibular molar. In our study we found a
single predator, Stenothoe monoculoides, which lacks a molar
on the mandible. Therefore, in most cases mouthpart structure
(mostly mandibular features) on its own is not a good tool to
determine the feeding habits of amphipods. Gut content analyses
are widely used to show the feeding habits of species. Moreover,
the results obtained from gut contents are usually correlated with
those from other analyses investigating over longer times, such
as fatty acid composition (Graeve et al., 2001) and stable
isotope analyses (Kelly & Hawes, 2005). However, it is necessary
to include a combination of mouthpart studies with behavioural
observations, gut contents, feeding assays, fatty acids and stable
isotopes analyses to draw a complete knowledge of the feeding
habits of amphipods and food-web interactions in the ecosys-
tems affected by invasive species.

We conclude that the expansion of C. racemosa on native
algal community changes the feeding habits of herbivorous
amphipods, which stop using plant tissues because of the lack
of an epiphytic community. In addition, the detritus accumu-
lated by the rhizoid network of C. racemosa plays an important
role in the plasticity of the diet of herbivores, changing greatly
their trophic strategy. Nevertheless, other species are not
affected and some are benefited by the invasion, such as detri-
tivorous species. Altogether, slight changes in the trophodyna-
mism of amphipod assemblages have been noted, which are not
detected as important in an initial stage. However, they might

be promoting some indirect effects in the benthic community
and in the life history of the species, with further unknown con-
sequences in the marine trophic net.
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Léeme R., Pesando D., Issanchou C. and Amade P. (1997) Microalgae: a
model to investigate the ecotoxicity of the green alga Caulerpa taxifolia
from the Mediterranean Sea. Marine Environmental Research 44, 13–
25.

Levin P.S., Coyer J.A., Petrik R. and Good T.P. (2002) Community-wide
effects of non-indigenous species on temperate rocky reefs. Ecology 83,
3182–93.

Orth R.J., Heck K.L. and von Montfrans J. (1984) Faunal communities
in seagrass beds: a review of the influence of plant structure and prey
characteristics on predator–prey relationships. Estuaries 7, 339–350.

Piazzi L., Balata D., Cecchi E. and Cinelli F. (2003) Co-occurrence of
Caulerpa taxifolia and C. racemosa in the Mediterranean Sea: inter-
specific interactions and influence on native macroalgal assemblages.
Cryptogamie Algologie 24, 233–43.

Piazzi L., Ceccherelli G. and Cinelli F. (2001) Threat to macroalgal diver-
sity: effects of the introduced green alga Caulerpa racemosa in the
Mediterranean. Marine Ecology Progress Series 210, 149–59.

Ruffo S. (ed.) (1998) The Amphipoda of the Mediterranean. Part 4.
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Stål J., Pihl L. and Wennhage H. (2007) Food utilisation by coastal fish
assemblages in rocky and soft bottoms on the Swedish west coast:
inference for identification of essential fish habitats. Estuarine,
Coastal and Shelf Science 71, 593–607.

Stimson J., Larned S.T. and Conklin E. (2001) Effects of herbivory, nutri-
ent levels, and introduced algae on the distribution and abundance of
the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay,
Hawaii. Coral Reefs 19, 343–57.

Stoner A.W. (1979) Species specific predation on amphipod Crustacea by
the pinfish Lagodon rhomboides: mediation by macrophyte standing
crop. Marine Biology 55, 201–208.

Sumi C.B.T. and Scheibling R.E. (2005) Role of grazing by sea urchins
Strongylocentrotus droebachiensis in regulating the invasive alga
Codium fragile ssp. tomentosoides in Nova Scotia. Marine Ecology
Progress Series 292, 203–12.

Tierno de Figueroa J.M., Vera A. and López-Rodrı́guez M.J. (2006)
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