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Local robot navigation based on an active visual
short-term memory

Julio Vega, Jose Marı́a Cañas, Eduardo Perdices

Abstract—Vision devices are today one of the most often
used sensory elements in autonomous robots. Some of their
hindrances are the difficulty in extracting useful information
from the captured images and the small visual field of regular
cameras. Visual attention systems and active vision may help to
overcome them. This work proposes a dynamic visual memory
to store the information gathered from a continuously moving
camera onboard the robot and an attention system to choose
where to look at with such mobile camera. The visual memory
is a collection of relevant task-oriented objects and 3D segments,
and its scope is wider than instantaneous field of view of the
camera. The attention system takes into account the need to
reobserve objects in the visual memory, explore new areas and
test hypothesis about object existence in the robot surroundings.
The system has been programmed and validated in a real
Pioneer robot that uses the information in the visual memory
for navigation tasks.

Index Terms—Visual attention, object recognition and track-
ing, active vision, camera model, autonomous navigation.

I. INTRODUCTION

COMPUTER vision is one of the most successful sensing
modalities used in mobile robotics. It would seem to be

the most promising one for the long term. Computer vision
research is currently growing rapidly, both in robotics and
in many other applications, from surveillance systems for
security purposes to the automatic acquisition of 3D models
for Virtual Reality displays. The number of commercial ap-
plications is also increasing, like traffic monitoring, parking
access or face recognition. And we feel that it is well worth
continuing with work on the long-term problems of making
robotic vision systems.

Vision is the sensor whose main skill lies in giving infor-
mation about which and where are the objects that the robot
is finding over its path. And, although we must be wary when
comparing a robot with a biological organism [Nehmzow,
1993], what is clear is that sight is the main sense used by
animals when they want to move around the environment.

Humans have an active vision system. This means that
we are able to concentrate on particular regions of interest
in a scene, by movements of the eyes and head or just by
shifting attention to different parts of the images we see.
What advantages does this offer over the passive situation
where visual sensors are fixed and all parts of images are
equally inspected? First, some parts of a scene perhaps are
not accessible to a single sensor are viewable by a moving
device. In humans, movable eyes and head give us almost a
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full panoramic range of view. Second, by directing attention
specifically to small regions which are important at various
times we can avoid wasting effort trying always to understand
the whole surroundings, and devote as much as possible to
the significant part. For example, when attempting to perform
a difficult task such as catching something, a human would
concentrate solely on the moving object and it would be
common experience to become slightly disoriented during the
process.

Active vision can be thought as a more task driven approach
than passive vision. With a particular goal in mind for a robot
system, an active sensor is able to select from the available
information only that which is directly relevant to a solution,
whereas a passive system processes all of the data to construct
a global picture before making decisions; in this sense it can
be described as data driven.

The emerging view of human vision as a bag of tricks
[Ramachandran, 1990]; a collection of highly specialised
pieces of software running on specialised hardware to achieve
vision goals, rather than a single general process, seems to
fit in with active vision ideas when a similar approach is
adopted in artificial vision systems. High-level decisions about
which parts of a scene to direct sensors towards and focus
attention on them can be combined with decisions about
which algorithms or even which of several available processing
resources to apply to a certain task. The flexibility of active
systems allows them to have multiple capabilities of varying
types which can be applied in different circumstances.

In this work we describe an overt attention system for a
mobile robot endowed with a pan-tilt camera, whose will let it
to find paper arrows on its surroundings and navigate through
the 3D-space avoiding obstacles. This system performs an
early segmentation on color space to select a set of candidate
objects. Each object enters a coupled dynamics of life and
salience that drives the behavior of the attention system over
time. That way, our system will continuously keep relevant
objects around the robot -such as arrows or parallelograms- in
its visual short-term memory and it will know where they are
located.

In the next section some related works about vision based
navigation and attention systems are described as context of
our proposal. Our system description has been divided in two
sections, one explaining the visual memory and another one
describing the attention subsytem. Some experiments have
been carried out with a real robot to validate our approach,
they are commented in section V. We end this paper with
some conclusions and future lines.
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II. RELATED WORKS

Vision has been used in robotics almost from its beginning.
In the last years its use is increasing, mainly because of
the reduction in the camera price, the available computing
power and the potential of cameras as source of information
about robot surroundings. Many issues have been taclked
in the intersection of computer vision and robotic fields.
For instance, vision-based control or navigation, vision-based
map building and 3D representation, vision-based localization,
object recognition, attention and gaze control among others.
We will review some examples here.

Regarding vision based control and navigation, Remazeilles
et al.[Remazeilles et al., 2006] presented the design of a
control law for vision-based robot navigation. The particularity
of this control law is that it does not require any reconstruction
of the environment, and it does not force the robot to converge
towards each intermediary position in the path.

Recently, Srinivasan [Srinivasan et al., 2006] presented a
new system to increase accuracy in the optical flow estimation
for insect-based flying control systems. A special mirror sur-
face is mounted in front of the camera, which is pointing ahead
instead of pointing to the ground. The mirror surface decreases
the speed of motion and eliminates the distortion caused by
the perspective. Theoretically, the image should present a
constant and low velocity everywhere, simplifying the optical
flow calculation and increasing its accuracy. Consequently, the
system increases the speed range and the number of situations
under which the aircraft can fly safely.

Badal [Badal et al., 1994] reported a system for extract-
ing range information and performing obstacle detection and
avoidance in outdoor environments based on the computation
of disparity from the two images of a stereo pair of calibrated
cameras. The system assumes that objects protrude high from
a flat floor that stands out from the background. Every point
above the ground is configured as a potential object and
projected onto the ground plane, in a local occupancy grid
called Instantaneous Obstacle Map (IOM). The commands
to steer the robot are generated according to the position of
obstacles in the IOM.

Goldberg [Goldberg et al., 2002] introduced a stereo vision-
based navigation algorithm for the rover planetary explorer
MER, to explore and map locally hazardous terrains. The
algorithm computes epipolar lines between the two stereo
frames to check the presence of an object, computes the
Laplacian of both images and correlates the filtered images
to match pixels from the left image with their corresponding
pixels in the right image. The work also includes a description
of the navigation module GESTALT, which packages a set
of routines able to compute actuation, direction, or steering
commands from the sensor information.

Regarding map building and self-localization maybe the
most succesful approach in last years has been the
MonoSLAM from A. Davison [Gerardo Carrera y Davison,
2011]. The detection of relevant points in the image and a
fast Extended Kalman Filter allow the system to continuously
estimate the camera 3D position and orientation and the 3D
position of such points. The localization results are impressive.

The quality of the maps, mainly as collection of 3D points,
was not so good at the beginning but they have improved it
even with dense maps in real time [Newcombe y Davison,
2010].

Mariottini and Roumeliotis [Mariottini y Roumeliotis, 2011]
presented a strategy for active vision-based localization and
navigation of a mobile robot with a visual memory within
a previously-visited area represented as a large collection
of images. This strategy can disambiguate the true initial
location among possible hypotheses by controlling the mobile
observer across a sequence of highly distinctive images, while
concurrently navigating towards the target image.

Gartshore [Gartshore et al., 2002] developed a map building
framework and a feature position detector algorithm that
processes images on-line from a single camera. The system
does not use matching approaches. Instead, it computes prob-
abilities of finding objects at every location. The algorithm
starts detecting the objects boundaries for the current frame
using the Harris edge and corner detectors. Detected features
are back projected from the 2D image plane considering all
the potential locations at any depth. The positioning module of
the system computes the position of the robot using odometry
data combined with image feature extraction. Color or gradient
from edges and features from past images help to increase
the confidence of the object presence in a certain location.
Experimental results tested in indoor environments set the size
of the grid cells to 25 mm 25 mm. The robot moved 100 mm
between consecutive images.

In autonomous robots it is important to perform a visual
attention control. The cameras of the robots provide a large
flow of data you need to select what is interesting and ignore
what does not; this is the main goal of visual attention. There
are two aspects of visual attention: overt attention and covert
attention. The aim of covert attention [Tsotsos et al., 1995;
Itti y Koch, 2001], [Marocco y Floreano, 2002] is to select
interesting information within an image. Overt attention selects
from the environment surrounding the robot, beyond the field
of view, those objects of interest, and it looks at them [Cañas
et al., 2008].

The visual representation of the interesting objects around
the robot can improve the quality of the robot’s behavior and
the ability to handle more information when making their
decisions. This poses a problem when those objects are not
in the immediate field of vision. To solve this problem, some
studies used omnidirectional vision, in others using a regular
camera and a mechanism for overt attention [Itti y Koch, 2001;
Zaharescu et al., 2005], which enables fast-to-take samples of
a very broad area of interest. The use of a camera in motion
to facilitate object recognition was proposed by [Ballard,
1991], and has been used, for example, to distinguish between
different forms in the images [Marocco y Floreano, 2002].

One of the concepts widely accepted in the work area is the
salience map. It is found in [Itti y Koch, 2001], as a covert
visual attention mechanism, independent of the particular task
to be performed and composed by all visual stimuli that attract
attention from the scene. In such work is considered purely
a form of ”bottom up”, where, as we see in Figure 1 in
each iteration the different scene-descriptive maps (as colors,
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intensities or directions) compete between each other. Then,
they merged into conspicuity maps (one for each feature) and
eventually will form a unique and representative salience map.

Fig. 1. Salience map as proposed by Itti

Hulse [Hulse et al., 2009] presented an active robotic vision
system based on the biological phenomenon of inhibition of re-
turn, used to modulate the action selection process for saccadic
camera movements. They argued that visual information has
to be subsequently processed by a number of cortical and sub-
cortical structures that place it: 1) in context of attentional bias
within egocentric salience maps; 2) the aforementioned IOR
inputs from other modalities; 3) overriding voluntary saccades
and 4) basal ganglia action selection. Thus, biologically there
is a highly developed, context specific method for facilitating
the most appropriate saccade as a form of attention selection.

Arbel and Ferrie presented in [Arbel y Ferrie, 2001] a gaze-
planning strategy that moves the camera to another viewpoint
around an object in order to recognize it. Recognition itself
is based on the optical flow signatures that result from the
camera motion. The new measurements, accumulated over
time, are used in a one-step-ahead Bayesian approach that
resolves the object recognition ambiguity, while it navigates
with an entropy map.

III. 3D VISUAL MEMORY

The goal of our system is doing a visual track of the various
basic objects in the scene surrounding the robot. Therefore, it
must detect new objects, share the focus between them and
removing them from the memory once they have disappeared.

The first stage of the system is the 2D analysis, which
detects 2D segments present in the current image. Then the
3D reconstruction algorithm places these objects in 3D space
according to the ground-hypothesis (that is, we suppose that
all objects are flat on the floor). And finally, the 3D memory
system stores their position in 3D space, calculates perceptual
hypotheses and generates predictions of these objects in the
current image perceived by the robot.

In this section we will see the various components of our
3D visual memory system, implemented in conjunction with
the attention system. Some previous versions of the system

are described in [Vega y Cañas, 2009; 2010]. First, an object
detector is responsible of identifying basic shapes in the
current image. Second, the prediction mechanism will allow
the system to predict how the stored items will appear in next
images, reducing the computational cost of image processing
for them. Third, a 3D reconstruction block is responsible
to obtain 3D instantaneous information from objects in the
current image and merging them with the objects already
stored in the visual memory.

A. 2D Image Processing

The main objective of this part of the system is to extract
2D straight segments as a basic primitive. These primitives are
handled by the 3D reconstruction module. The 2D detection
module, in turn, is connected to the 3D memory directly, in
order to save computation time of reconstruction of objects
that may already be stored in memory. It also can be used to
confirm/refute the stored instantaneous objects. The current
image is useful to confirm structures previously observed
partially.

The first step to simplify the image is an edge filter, by
using the Canny algorithm. Subsequently we apply the Hough
transform to extract only straight segments. To implement
these techniques, we use the OpenCV library. In the Figure
(2) we see the reconstruction of 3D segments before and after
of Hough postprocessing.

Fig. 2. 3D segments reconstruction, before and after postprocessing

B. Predictions

The 2D analysis system is connected directly to the 3D
visual memory to alleviate the computational cost due to image
analysis. So before extracting features of the current image,
the system makes the prediction of those objects stored in the
3D memory which should be visible from the current position.

We have used our library called Progeo, which provides
projective geometry capabilities given a calibrated camera. So
each 3D visible object is stored and made its projection on the
image plane (see Figure 3). The system refutes/corroborates
such segments predicted, comparing one of these segments
with those obtained by the Hough Transform. This comparison
leads to three sets of segments, as seen in Figure 4.

C. Instantaneous reconstruction with 3D segments

The above mechanism extracts a set of 2D segments which
must be located in 3D space. To do this, and as we have
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Fig. 3. Segments projection onto the image plane

Fig. 4. Match between predicted and instantaneous segments

already mentioned, we rely on the idea of ground-hypothesis.
Since we have one camera, we need a restriction which will
enable to estimate the third dimension. We assume that all
objects are flat on the floor.

Once we have the 3D objects, and before inclusion in the
3D memory, post-processing is needed to avoid duplicates
in memory due to noise in the images. This postprocessing
compares the relative position between segments, as well as its
orientation and proximity. The output is a set of 3D segments
situated on the robot coordinate system. Figure 5 shows the 3D
scene with objects reconstructed by the system, the segments
detected in the current image and the segments predicted from
such a position.

We use four coordinate systems to define the geometric
model, as we can see in Figure 6:

• The absolute coordinate system whose origin lies some-
where in the world where the robot is moving.

• The system located at the base of the robot. The robot
odometry gives its position and orientation with respect
to the previous system.

• The system relative to the base of the pan-tilt unit to
which the camera is attached to. It has its own encoders
for its position at any given time, with pan and tilt

Fig. 5. 3D Scene Reconstruction, predicted and instant segments

movements with respect to the base of the robot.
• And finally we have the coordinate system of the camera

itself, displaced and oriented in a particular mechanical
axis from the pan-tilt unit.

D. Inserting segments into the 3D visual memory

3D memory comprises a dynamic set of lists which stores
information about the different types of elements present in
the scene (position, type or color). The most basic form of
structure is the segment. Thanks to the memory we can es-
tablish relationships between them to make up more complex
elements such as arrows, parallelograms, triangles, circles or
other objects.

To store a segment we have a structure called Segment3D,
consisting in a start and end point and a pointer to other
possible structures of which it can be part of: Arrow3D or
Parallelogram3D.

Incorporating 3D memory segment basically consists of
comparing each segment individually calculated in the snap-
shot with those already stored. In case of nearby segments
with similar orientation, the system combines these segments
into a new one taking the longest length of its predecessors,
and the orientation of the more recent, as probably it is more
consistent with reality (the older ones tend to have more noise
due to errors robot odometry).

To make this fusion process computationally lighter, the
system has a segment cache with only the segments close to
the robot (in a radius of around 4 m.). Its implementation
is basically a dynamic list of pointers to these segments.
The system always works with subsets of features, which are
pointers to the overall 3D memory elements.

E. Predictions: deletion and correction of segments

As mentioned before, the 2D analysis system returns differ-
ent subsets of segments, as the result of comparison between
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Fig. 6. Coordinate systems used to define the geometric model

instant and predicted segments from 3D memory.
If a segment is identified in the current image and it does

not match the predictions, the system creates a new one
in 3D which might replace an existing one (replacement or
correction) under certain restrictions. To reflect this process,
system has a parameter called uncertainty which will increase
as the time segment remains in memory.

The element deletion process is based on the same prin-
ciple, but here there are more rigorous restrictions. So, the
replacement process is a priority compared to deletion.

F. Perceptual hypothesis generation

Our object model consists of a set of segments whose
vertices can belong to more abstract structures like parallelo-
grams. The vertices are labeled with the number of segments
that are tied to them. This requires an object model for cases
in which certain vertices are not visible at any given time. For
instance, for parallelograms the minimum number of visible
vertices is small, with three points we are able to estimate the
fourth one.

The segments and their corresponding vertices are used to
detect parallelograms checking the connection between them
and the parallelism conditions. The analysis of the angles
formed by each segment provides information about how the

segments are connected to each other. In addition, this feature
can be used to merge incomplete or intermittent segments.
Similarly, we can extract the position of a possible fourth
vertex using the information about other edges and/or possible
parallelogram vectors. This capability makes our algorithm
robust against occlusions, which occur frequently in the real
world.

Figure 7-b, c illustrates an example of occlusion that is satis-
factorily solved by our algorithm. The results of reconstruction
of parallelograms can be seen in Figure 7-a. In this situation,
we have a collection of parallelograms spread on the floor. The
robot, after several snapshots, captures what is around itself:
those parallelograms, and noise extracted by the segmentation
algorithm. However, our parallelogram hyphotesis generation
is able to extract only the real parallelograms, avoiding such
noise.

Similarly, we can abstract other abstract objects such as
arrows.

Fig. 7. Generation of hypothesis: parallelogram with occlusion

IV. VISUAL ATTENTION SYSTEM

In the previous section we have described in detail the
operation of placing objects on the robot 3D visual memory.
Now we will describe the visual attention mechanism imple-
mented based on two of object attributes: salience and life.
The salience is used for deciding where to look at in every
moment, while life is the mechanism for forgetting an object,
deleting it from memory, when it has disappeared from the
scene.

In addition, we have designed a mechanism to control the
camera movements, to track objects, and another mechanism
to explore new unknown areas from the scene.
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A. Gaze control: salience dynamics
Some sort of decision-making mechanism to indicate to the

system where to look at in the next instant. Each object in the
visual memory has its coordinates in the scene representation.
It is desirable to control the movement of the pan-tilt unit
to direct the focus to that position periodically in order to
reobserve that object. To control the movement of the pan-
tilt unit, we introduced the dynamics of salience and attention
points. They mainly represent the detected objects in the scene.
Each one contains a position in the 3D scene (X, Y, Z), which
is translated into mechanical commands to the pan-tilt unit in
order to direct the focus at that point.

Anything that attracts attention or stands in a given situation
is salient. The focus may be changing over time to look at
all the salient points. In this system salience indicates how
attention selects the next object to be visited. Each memory
element has an associated salience, which grows over time and
vanishes every time that element is visited. The focal point
with highest salience will be the next to be visited. If the
salience is low, it will not be visited now.

Salience(t) =

{
Salience(t− 1) = 0 if object attended
Salience(t− 1) + 1 otherwise

When a point is visited, its salience is set to 0. A point that
the system has not visited recently calls more attention than
one which has just been attended. The system is thus similar
to the behavior of a human eye, as pointed by biology studies
[Itti y Koch., 2005]: when the eye responds to a stimulus
that appears in a position that has been previously treated, the
reaction time is usually higher than when the stimulus appears
in a new position.

The designed algorithm allows the system to alternate the
focus of the camera between the different objects in the scene
according to their salience. In our system, we consider that
all objects have the same preference of attention, so all of
them are observed during the same time and with the same
frequency. If we assigned different priorities to the objects,
we could establish different rates of growth of salience. This
would cause the pan-tilt unit to pose more times in the object
whose salience grows faster.

We assume that a detected object will be found near the
location where it was previously.

B. Tracking of a focused object
When the look-sharing system chooses the attention point

of a given object, it is going to be looking for a certain time
(3 seconds), tracking it if it moves spatially. For this tracking,
and to avoid excessive oscillations, we use a P-controller (Fig.
8) to control the speed of the pan and tilt and thus continually
focus that object on the image center. This driver orders high
speeds to the pan-tilt unit if the focus of attention is far from
the predicted position; or lower speeds if it requires small
corrections. The controller follows next equations.

v(Pan) =

 0 if ε < 0.3
Kp · (Pt − Pa) if 0.3 ≤ ε < Mp

Mp if Mp < ε

Fig. 8. P-controller mechanism

v(Tilt) =

 0 if ε < 0.1
Kp · (Tt − Ta) if 0.1 ≤ ε < M t
Mt if Mt < ε

Where: Kp is the P control gain, Tt is the Tilt of the target,
Ta is the actual Tilt, Pt is the Pan of the target, Pa is the
actual Pan, Mt is the maximum Tilt and Mp is the maximum
Pan.

C. Exploring new areas of interest

At any time, it may be interesting to look for new objects in
the scene. For that search our system will insert periodically
(every forcedSearchTime) scanning points with high salience in
memory. This search is especially interesting at the beginning,
when there are many unknowns areas of the scene where there
can be objects of interest.

The scanning points can be of two types: random and
systematic ones. The first type are assigned uniformly random
coordinates (pan, tilt) within the pan-tilt range (pan = [-159,
+ 159], tilt = [-31, +31]). Systematic scanning points follow
a regular pattern to finally cover the whole scene around the
robot.

The attention points, whatever their type, have a high initial
salience in order to be quickly visited with the camera and
thereby check whether any object of interest is found around
it. In such a case that object will enter into the memory and
into the gaze sharing module.

As we discover objects, the desire to explore new areas
will decrease in proportion to the number of already detected
objects.

D. Representation of the environment: life dynamics

As already discussed in previous sections, our visual atten-
tion system guides the search and tracking of objects within the
scene. The objects may eventually disappear from the scene,
and then they should be removed from the memory in order
to maintain coherence between the representation of the scene
and the reality.

To forget such old elements, we have implemented the life
dynamics. With this mechanism the system can know whether
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an object has left the scene or it is still there. The life operation
is the reverse of the salience, that is, a frequently visited object
will have more life than one less visited. When the life of an
object is below a certain threshold, it will be discarded.

Every time the attention system visits an object, its life in-
creases one point, with a maximum limit to provide saturation.
The life of unobserved objects will decrease over time. Thus,
when the life of an object exceeds a certain threshold, which
is still on the scene, whereas when is below it is gone.

Life(t) =


min(MAXLIFE , Life(t− 1) + ∆)

if object observed
Life(t− 1) − 1

otherwise

E. Attentive system operation

The objects of the environment surrounding the robot guide
the movements of the camera. So the mechanism of attention
is so far bottom-up. Besides, the underlying mechanism of top-
down attention is that existing relevant objects are only those
that have a certain appearance given by the task at hand: in our
examples, parallelograms or arrows. This tendency to look at
objects with a certain aspect is similar to the bias detected by
ethologists in animals with respect to certain stimuli [Arkin,
1998].

The visual attention system presented here has been imple-
mented following a state-machine design, which determines
when to execute the different steps of the algorithm. Thus, we
can distinguish four states:

• Discuss next goal (state 0).
• Saccade is completed (state 1).
• Analyze image (state 2).
• Tracking object (state 3).

Periodically the system updates the salience and life at-
tributes of the objects that have already stored in memory
following previous equations. It checks whether any of them is
already outdated, because its life is below a certain threshold.
If not, it increases its salience and reduces its life.

Based on the initial state (or state 0), the system asks
whether there is any attention point to look at (in case we
have an object previously stored in memory) or not. If so, it
goes to state 1. If not, it inserts a new scanning attention point
into memory and goes back to state 0.

In state 1 the task is to complete the movement towards
the absolute position specified in state 0. Once there, we go
to stage 2 where we will analyze whether there are relevant
objects or not. In any case, it passed the state 0 and back
again.

V. EXPERIMENTS

Our experiments were performed with a real Pioneer 2DX
robot (by MobileRobots), endowed with a Dell laptop with
an Intel Centrino processor at 1.7 GHz. and Linux Ubuntu
8.04 (hardy) as operating system. It also has installed a pan-
tilt unit (46-17.5 Unit Pantilt Directed Perception) with a pan
range of [180, -180] and a tilt range of [31, -80] degrees. It

works at a minimum speed of 0.0123 deg./sec. and a maximum
speed of 300 deg./sec. on both axes. The pan tilt unit has a
firewire iSight camera (by Apple) on top, with autofocus and
a field of view of 60 and 40 degrees in horizontal and vertical
respectively. The power to the pan-tilt unit is supplied by the
base of the robot, and it is serial-port commanded.

A. 3D floor reconstruction

In this first experiment the robot has no knowledge of
the environment. Initially, and as already mentioned, it did a
thorough systematic search for information from the environ-
ment. The system commanded saccades to the pan-tilt. These
movements are short, accurate and fast, just enough time to
examine whether there is any interesting object in the current
image received from the camera or not. After a certain time,
the system begins to detect segments (see Figure 9).

Fig. 9. Land lines reconstruction. Initial stage

After several glimpses the robot is able to plausibly recon-
struct the detected segments along its path (see Figure 10). The
visual memory periodically performed some post-processing
by which unique and refined segments were obtained. In this
experiment they perfectly fit those in reality (Figure 2).

Fig. 10. Land lines reconstruction. Final stage

B. Parallelograms

In the second experiment, besides finding segments of the
environment, the system can abstract parallelograms given the
characteristics of all segments in the scene.

The forced-SearchTime period was 5 seconds, so every 5
seconds new exploring scanning points where inserted in the
visual memory. This process is repeated some times, until
the robot begins to detect objects of interest in the scene
(see Figure 11). When it begins to have several elements
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(parallelograms) in memory (see Figure 12), the forced-
SearchTimeis increased. This feature allows to look longer at
already detected objects and less to explore new areas or search
for new objects. With this increased time finding new objects
will become increasingly rare as we have already detected
more and more items.

Fig. 11. Parallelograms recognition. Initial stage

Through this mechanism, the system finds step by step
almost all the items in the scene (note that some objects cause
problems because of their texture).

Fig. 12. Parallelograms recognition. Final stage

In Figure 13 the mode of action of the two competing
dynamics, salience and life, is shown. It corresponds with a
situation where the system has detected two elements. We can
see in Figure 13-a how the salience of both evolve. When the
system is following an item (blue) its salience decreases, while
the other item stored in memory (red) increases until it wins
the competition and forces the system to look at it.

The evolution of life on both objects, when both remain on
the scene, is shown in Figure 13-b. Its operation is inverse to
the salience, that is, every time the system visits an item, its
life is increased one point, with a maximum limit score of 100
points to provide saturation.

Figure 13-c reflects a situation in which we occluded one of
the two elements, so that the system fails to detect it as such
and, therefore, its life begins to fall. When its value is below
a certain threshold, the object is discarded and not re-visited.

Fig. 13. Time evolution of the salience (a), Life (b) and Life of a disappearing
object

C. Arrows as navigation landmarks

In this experiment we rely on the same ideas given above,
but in this case we focus on the recognition of arrows in
the environment, and the use of this item as a mark of
direction for robot navigation. Figure 14 shows when the robot
recognizes the arrow as such, having been previously detected
the segments which compound it.

Fig. 14. Recognition of arrows as a mark of direction

Given the characteristics of an arrow, the system is able to
abstract the concept arrow and represent it as such in the 3D
memory (see the green arrow showed in Figure 14). Also, once
detected, it automatically guides the direction of the robot (see
the yellow line of the robot showed in Figure 14).

In Figure 15 we have mixed objects of different types
(parallelograms and arrows) and they are recognized and
stored in the 3D visual memory. Also, upon detection of
several arrows in the robot’s environment, it will only consider
the nearest one as navigation landmark and will follow its
direction.

D. Robot occlusions

This experiment shows how the system behaves in case
of temporary occlusions. They happen very often in real
environments where there are dynamic objects which can
obstruct the robot field of view.
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Fig. 15. Recognition of parallelograms and arrows

Fig. 16. (a) Obstacle free situation; (b) Short-term memory after a while

The initial situation is showed in figure 16-a. After a few
seconds, our robot has recovered environment information
thanks to the short-term memory and the visual attention
system. This information is showed in 16-b, and it is broader
than current camera field of view.

Fig. 17. (a) Situation; (b) Field of view

After a while another robot appears (as showed in Figure
17-a) occluding the field of view of our robot (as showed in
Figure 17-b), so it is unable to see anything. This situation
continues for some time while the second robot moves away
from our robot (18-a,b).

This hindrance is solved by our system because of the

Fig. 18. (a) Situation; (b) Field of view

persistence of the short-term visual memory. As we discussed
in section IV-D, the memory is refreshed over time. If it is
inconsistent, that is, if what the robot sees does not match
with the information stored in memory, we give a confidence
interval until this situation is solved and new observations let’s
confirm or discard the objects in visual memory.

VI. CONCLUSIONS

In this paper we have presented an overt visual attention sys-
tem whose purpose is to find objects in the scene surrounding
the robot and to track them. We have developed a mechanism
with two concurrent dynamics for gaze control: life (or object
quality) and salience. They are defined for objects in 3D, not
just the current image. The salience of objects increases in
time and is set to zero every time the camera looks at it. The
element with the highest salience is the next to be visited
and the system controls the pan-tilt unit to look at it with the
camera. This double dynamics offers a time sharing in which
the robot sequentially looks at all the objects. It also accepts
search 3D positions to explore for new relevant objects.

The life of objects decreases in time and grows every time
the object appears in the image. Those objects with life above
certain threshold are a coherent representation of the items
in the scene. Objects with life below another threshold are
forgotten and discarded, preventing the robot to pay attention
to objects that are no longer there. The system has some
patience before forgetting an item, this way the system is
robust to some false negatives due to occlusions.

Since the scene is greater than the field of view of the robot
camera, we implemented a 3D visual short-term memory.
This memory has facilitated the internal representation of
information around the robot, since objects may be placed
in positions that the robot can not see at any given time but
the robot knows they are there and can take them into account
for better movement decisions.

Several experiments have been carried out with the visual
memory, both in a real robot and in a simulated one. The robot
navigates through its environment using this attentive visual
memory. They show that the attention behaviors generated are
quite similar to a human visual attention system.

With regard to future lines, we are working in extending
the visual memory to properly represent dynamic objects.
Currently the memory manages slow object movements as far
as it observes the new object position close to the old one
and can do the matching. Faster movements are not properly
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managed, as they cause the creation of new objects in the new
position and a ghost object remains in its old position before
disappearing.

We are also working on playing with different salience
dynamics for different object types. For example, let it grow
faster in some objects recognized as obstacles, navigation
beacons or objects very interesting for the task at hand. This
would let robot to achieve a safe navigation.
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