Linguistic and Computational Advantages of Bidirectional
Bottom~Up Parsing with Top-Down Predictions

José F. Quesada J. Gabriel Amores
CICA Departamento de Lengua Inglesa
Sevilla Universidad de Sevilla
Tel: +34-5-462.3811 Tel: 4+34-5-455.1549
Fax: +34-3-462.4506 Fax: +34-5-455.1516
josefran@cica.es gaby@fing.us.es
Abstract

This paper compares two parsing strategies: bidirectional bottom~up parsing with
top-down predictions (BBP) and standard chart parsing. We demonstrate that BBP is
superior to classical chart parsers from a linguistic and computational points of view.
The efficiency of BBP results from two factors: first. top-down predictions bring about
an algorithmic improvement. and. second. the memory model. the data structures and
the programming techniques incorporate notable computational improvements.

Keywords: Parsing

1 Introduction

This paper compares two parsing strategies: bidirectional bottom-up parsing with top-
down predictions (BBP) [17] and standard chart parsing [12). We will try 10 demonstrate
that BBP is superior to classical chart parsers from a linguistic and computational points
of view. The BBP parser has been implemented as part of Episteme [18]. a unification-
based Machine Translation system developed in C. The paper is organized as follows.
Section 2 reviews some background concepts regarding chart parsing and BBP. Section
3 compares both models using two different ‘kinds of grammar comprising phenomena
of frequent occurence in natural languages. Ve will show that both grammars pose
serious problems for chart parsers. Finally. section 4 offers some conciuding remarks.

2 Chart Parsing and BBP
2.1 Chart Parsing

A chart may be described roughly as a set of trees. Each tree is actually a directed
acyclic graph (DAG). in which the leaves correspond to the words in the input sentence
and each of the internal nodes corresponds to a syntactic structure of the grammar.
This would be a static definition. mainly describing the resuit of parsing with a chart.

On the contrary. a dyramic definition of the parsing process distinguishes basically
between nodes and arcs. Nodes keep the role described above. and ares correspond to
the application of a rule of the grammar over a set of nodes. An arc is inactive when

it has obtained all the nodes required in the right-
generated it. Otherwise. the arc will be active.

Let’s illustrate these notions with an example. Consider the following basic grammar
of English.

hand side of the production which

BeginningDfGrammar
(1:S <>NP VP)
{2:0P=->np)
(3:XIP->det n)
(4:¥P+>y)
(5:¥P->v BP)

EndOfGrammar

BeginningOfLexicon
Peter {np}
eate {v}
the { det }
cakes {o}

EndOfLexicon

ParseSentenca (Peter eata the cakes)

First. upon receiving a string of words to be parsed. each of the spaces between
words is numerated sequential]y:

1 Peter 2 eats 3 the 4 cakes 5

A node is represented indicating the initial and final Positions defining its interval
and the symbol associated withit. In turn. an are must know the limits of its application
interval. the rule which generated it and the number of symbols in the righ-hand side
of the rule already consumed. Thuys. any arc will be represented as a four-tuple:

<i.j.ru1e,pos>

The pair (rule. pos) is usually represented in the lizarature by means of dotted rules.
For example. the are:

£1,2,2,2> a (1,2,IP-)np_)

represents the applicatioﬁ of rule number 2 (NP -> op) in the interval 1-2. The arc has

obtained all the symbols in the right-hand side and. therefore. s inactive. Now, the
following arc:

1,21, 2> « <1,2,5->XP_Vp>

is an active arc which has applied rule number 1 (s -> np VP} in the interval 1-2 and
it has only consumed an NP symbol. so that it expects a VP symbol in the interval 2-N.

Obviously. every inactive arc automatically generates a node. In order 10 facilitate
their representation. henceforward we will show inactive arcs between square brackets,
indicating the application interval and the node generated, as follows:

[1,2,2F]

2.2 Analysis Rules in a Chart

Combination Rule. The basic rule of chart parsing is called the combination rule
(CR). defined as follows: if a chart contains two adjacent nodes of the form:

<i,j.a—=AB01>
<jk B89 >=][jk8

then we must generate a new arc with the form:

<ik.a—=ALQ>

The new arc generated will be active or inactive depending on whether € is null or not.

Bottom-Up Rule. A bottom-up chart algorithm is obtained applying the CR rule

in combination with the Bottem-Up Rule (BR): each time a new inactive arc is added
10 the chart. for example:

<ijae—=¥.>=[ij.a]
for each rule in the grammar of the form:

(A = a))
we must add a new active arc of the form:

< i i A= .a0>

Top-Down Rule. Finally. a top-down chart algorithm is obtained applying the CR

rule in combination with the Top-Douwn Rule (TR): each time a new active arc is added
10 the chart. for example: :

< i j.a—=A50>
for each rule in the grammar of the form '

(3 = V)

we must include a new active node with the following form:

<ILHB=Y>

2.3 Bottom-up Parsing with Top—down predictions

Bottom-up parsing enriched with top-down predictions is one of the most frequent stra-
tegies employed in the design of parsing algorithms for contexi—free languages. Bottom-
up parsers have been championed for their efficiency [13. 21. 7. 19], although they can
be substantially improved with the incorporation of top—down predictions [4, 10, 6].
From the parsing strategy standpoint, these parsers are simultaneously controlled by
the data {the input string being analyzed) and the goal (the grammar).

This double control in the parsing strategy is already present in the Earley algorithm
[11]. where the predictor operator takes on the role of top-down prediction, inserting in

a state the productions applicable according to the status of the parser at that point.
Then. the scanner operator. in conjunction with the look-ahead component. incorporates
the bottom-—up strategy. A detailed study of Earley's algorithm suggests a top-down
parser. enriched with a bottom-up control component.

For LR-based algorithms [1, 2, 8. 22), the goto and action tables determine a funda-
mentally bottom—-up strategy in the parser. However, they are not exclusively bottom-
up. since the stack of states stores the left context of the symbol being analvzed. This
information actually behaves as a predicting component which may be used to solve
shift-reduce and reduce-reduce conflicts. as Pereira [15] and Shieber [20] suggest.

The combination of bottom-up and top—down strategies is also part of chart-based
parsers [12]. According to Martin et al. [13]

All efficient parsers combine both top~down and bottom-up informatien in
some way (using the chart. for example). so that it is useless to classify these
parsers as one type or the other (p. 272)

Fusing bottom-up and top-down components is also very commen in the implemen-
tation of parsers over distributed or massively paraliel systems [3, 9, 14].

2.4 Relations of Coverage, Derivability and Adjacency as a for-
mal model for the application of Top—down predictions
We will first provide an informal or intuitive Jjustification of some relations between the

symbols and productions of a grammar which will be used in later sections.
Consider the following grammar:

(1:s->x ¥
(2:5 => a Y)
(3:5 ->a 2)
(4:5 => X »
(5:5 => ¥ b)
(6:X => a)
(7:X -> W
(8:Y => b)
{9:¥ => b)

A naive chart parser would generate the following initial arcs for the input string a

b, provided a bidirectional event* generation mechanism has been incorporated:

w

(LI

VER

a]
&_,v Xw
&G—vz

Fig 1 Initial arcs in a bidirectional chart

'Roughly speaking, an event is equivalent to an arc jn 2 chart parser.

In the figure. each arc is associated with a pair of numbers indicating the event
number (or arc) and the production creating it. All events display information about
the symbol generated sfter they have been applied: that is. the left—hand side symbol of
the corresponding production. In addition. active events indicate the symbol expected
in the incomplete extreme.

The first type of controlling relation between nodes and events is based on the
classical notion of reachability in a chart. We will use the term left or right derivability.
depending on the direction the production has been applied.

Consider. for example. event number 2 in Fie. 1 above. This event is expecting the
symbol Z in a position in which we actually find node b. However. a detailed look at
the grammar shows that it will never be possible to reach the symbol Z by applying the
rules in the grammar over a string starting with 6. That is. Z is not a left derivation of
b.

Something similar happens to event number 8. This event expects the symbol 1§ in
a position where the node a is found. However. 1{" is not a right derivation of a. and
therefore. event R is dispensable.

On the contrary. events 1 and 7 pass this derivability control. and go ahead.

In addition. we will introduce an adjacency control over the closed extremes of an
event. Consider events 3 and 4 above. I we would generate the nodes suggested by
those events. we would obtain the X X string. However. this sequence is ill-formed
according to our grammar. since both symbols do not appear immediately adjacent
to each other in the right-hand side of any production. On the contrary. the right
extreme of event number 3 satisfies this adjacency relation with the left extreme of
event number 7. and it should be kept. As for event number 4. it may be eliminated.
since no event is related 1o it through adjacency nor derivability. In turn. event number
5 is in derivability relation to 1. and event number 6 is in adjacency relation to 1.

In sum. the application of derivability and adjacency controls has eliminated three
of the 8 initial events. as Fig. 2 shows:

A

T

(-)

m
a
&-’ v X
Fig 2 Applving derivability and adjacency relations

In addition to those relations, if we wish to use a bidirectional parsing strategy, it
is convenient that every symbol in the grammar knows the events it may trigger: that
is. the productions in which this symbol is part of its right-hand side. Storing this
information as tables of coverage for each symbol during the compilation process will
speed up the parsing process.

A more detailed description of these strategies may be found in [16. 18, 17].

2.5 BBP

Basically. BBP may be described as a bidirectional. event-driven parser which incor-
porates sirong top—down predictions over the bottom-up event generation. The main
top—down prediction mechanisms are described below.

2.5.1 Analysis of Derivations

These analvses apply on the open or active extremes of events. Intuitively. they try 10
check whether the expected svmbol may be derived from the current symbol.

¢ Left Derivation Control
Assume that an event is applying the production
d= 4 ...4,
over the surface
I ...60 - .
where 1 <1 < n. The event is performing a prediction of the (necessary) symbol
di41 over the (current) symbol w:. Therefore, we have to check if
0i41 € LDer{w).
¢ Right Derivation Control
Assume that an event is applying the same production as above. over the surface
of analysis
I‘;,:J.- .- .Jn Q
where 1 < i < n. The event is performing a prediction of the (necessary) symbol
d;—1 over the {current) svmbol . In this case. we must check that
di-1 € RDer(s).

If the derivation control fails. the event may be eliminated.

2.5.2 Analysis of Adjacencies

The closed boundaries of an event (those limits in which the event cannot perform any
prediction) must be checked for the possibility of adjacency between the symbol that
would be generated after the application of the event. and the adjacent symbols in the
surface of analvsis. Two situations may be distinguished. depending on whether the
analysis is performed on the left or the right extreme of the event.
Assume that a complete event is applying the production

i g = G L
over the surface of analysis ATQ. so that

r = ¥1 ---¥n

¢ Left Adjacency Control:
If A is a non—empty string (A = . ..8). check whether there is a symbol §, in the
set RDer(d). and a symbol ¢ in the LDer(;>) such that
©1 € PAdj(4,).
¢ Right Adjacency Control:
If £ is a non-empty string (Q = ...w), check whether there is a symbol w; in the

set LDer(w). and a symbol ¢, in the set RDer{;>) such that
wi € PAdj(s,).

Obviously, if the event is incomplete, it will only check for Ieft or right adjacencies,
depending on the direction of the event. If any of the adJ}IEEnc_v controls fails. the event
is eliminated.

3 Comparing Doxa and Episteme

This section shows the results obtained after comparing the parsing strategies outlined
above. We have developed two systems, each implementing a different algorithm [18).

147

The first one is called Doxa. Doxa may be described as a pure bottom-up chart par-
ser augmented with a unification component. Episteme. the second tool. is a kernel
for the development of LFG-based MT sysiems. The experimental results described
below correspond to the comparison of the context—{ree parsing modules only. without
unification. These results will demonstrate that Episteme (BBP) is far more efficient
than Doxa (chart). The efficiency of Episteme’s parser results from two factors: first.
top-down predictions bring about an algorithmic improvement. and. second. the me-
mory model. the data structures and the programming technigques incorporate notable
computational improvements,

The experiments will show how the parsers behave under two different situations,
The interesting results will be those relative to different situations. rather than absolule
results. which largely depend on the specific platiorm or environment.

¢ The first experiment takes a straightforward recursive grammar. frequent in any
NLPsystem. Nevertheless. the resulis are extensible to other linguistic phencmena
such as local and non-local dependencies. PP-attachment and coordination, as we
have also been able to verify [16].

e The second experiment has a theoretical motivation. We have emploved a gram-
mar which puts both parsers in a limit stiuation due to the massive ambiguiny
(exponential) which i1 permits.

3.1 Recursive Gramrars

The first grammar inciudes the three possible types of recursivity: left. right and middie
recursion.

(1:5 -> A BC D}
(2:4 -7 a)
(3:4 -> & a)
{4:BC-> b c)
{5:BC-> b BC c)
{(6:D ->» d)
{7:D->d D

This grammar can generate the language @™ (be)™ ¢". The strings analyzed have been
of the form:

aa...bb...cc...dd ...

varying the length of the input string from 50 10 250 words. The following rable shows
the results obtained. We have considered two possibiiities in Episteme: the column
ConfTopDownPreddn includes top-down predictions (BBP). and ConfTopDownPred0ff
does not. thus behaving like a pure bidirectional chari parser.

DOXA EPISTEME
ConfTopDownPredOff | ConflopDewnPredOn
T N7 ES T N E T N E
50| 0.118 | 363 667 0.133] 363 931 | 0.000 88 249
100 1.467 | 1400 2349 1.417 | 1400 | 3547 | 0.017 176 499
150 5866 | 2963 | 4817 7.100 | 2963 | 7481 { 0.057 263 749
200 | 18.349 | 5300 | 8499 | 23.590 | 5300 | 13347 0.117 | 351 999
250 | 41.823 | 8063 | 12717 | 61.148 | 8063 20281 | 0.200 | 438 1249
1000 - - - - - - | 3.760 | 1751 4999

L 2

The following conclusions may be drawn from these resuits.

1. The number of nodes created by Doxa and Episteme. without top-down predic-
tions. is the sare. However, the number of events is higher in Episteme. due to
the bidirectional strategy. Since the number of events to be processed is higher.
the time involved in analysis is also greater. Therefore, it is not advisable to use:
Episteme without predictions.

2. When Episteme includes top—down predictions. there is a substantial reduction
in the number of events and nodes created. Namely. Episteme creates around 80
and 90% less structures than Doxa.

3. In addition. the growing model clearly favors Episteme. The number of nodes and
events grows linearly in relation to the size of the string. for this grammar.

4. Doxa and Episteme in ConfTopDownPredOff mode are not capabie of anelyzing a
string of 1.000 words. while Episteme in ConfTopDownPredOn mode can do it in
just three seconds.

3.2 -Exponentially Ambiguous Grammars
Consider the following grammar:

(1: xX->1 1)

Episteme cannot apply any type of top-down prediction to this grammar. since all
derivations and adjacencies controls would succeed.)
The strings analysed. have been of the form:

X xXx ...

varying the length of the input between 5 and 25 words. The following tables show the
results. From these results we may draw the following conclusions.

1. The application or not of top-down predictions has not reduced the number of
nodes and events. but it has not resulted in a computational overhead either,

since the data structures employed restrict the scope of application of top—down
controls considerably.

2. Comparing Episteme and Doxa shows the limitations of a naive implementation
such as Doxa’s. in which we neglected issues pertaining the memory model. storage,
retrieval and comparison of character strings. data structures, etc.

?Length of input string (number of words).
*Time. in seconds.

*Number of nodes' generated.

*Number of events generated.

DOXA

6
. L N*® g™
5 0.000 39 83
10 128.1 0901 198812
15 0.3 Years | 0.3 M *° 4 M
20 31000 Years 20M 1162 M
25 | 3000 M Years '* | 2000 M | 282000 M
L EPISTEME
ConflopDownPredOff | onfTopDownPredOn
T N E T N E
510.000 | 15 50 | 0.000 | 15 50

10 | 0.017 | 56 275 | 0.017 | 55 275
15 | 0.117 | 120 800 { 0.100 } 120 800
20 | 0.483) 210 1750 | 0.450 | 210 1750
25 | 1.500 | 325 3250 | 1.467 | 325 3250

4 Conclusions

In this paper we have demonstrated that Bidirectional Bottom-Up Parsing is superior
to standard chart parsing even in cases where Top-Down Predictions do not pose any
additional advantage. The efficiency of the parser results from a better algorithm but
also from the implementation of computational strategies which reduce the overhead of
string comparison. memory allocation and data structure manipulation.

References

[1] Aho. A.V. & J.D. Cllman. 1972. The Theory of Parsing. Translation and Compi-
ling. Vol. I: Parsing. Englewood Cliffs, N.J.: Prentice Hall.

[2] Aho. AV.. R. Sethi. R. & J. D. Ullman. 1985. Compilers: Principles. Techniques
and Tools. Reading. Massachussets: Addison—Wesley.

(3] Albias. H.. R. den Akker, P.P. Luttighuis & K. Sikkel. 1994. A Bibliography on
parallel parsing. SIGPLAN Notices 29 (1), 54-65.

[4] Andrews, N.A.. & J.C. Brown. 1993. A high-speed natural language parser. AISB
Quarterly, 86, 12-19.

{5] Bolc. L. (ed.) 1987. Natural Language Parsing Systems. Heidelberg: Springer-
Verlag.

[6] Carroll, J. 1994. Relating Complexity to Practical Performance in Parsing with
Wide-Coverage Unification Grammars. CMP-LG e-print archive crnp-lg/9405033.

[7) Carter. D. 1990. Efficient Disjunctive Unification for Bottom-Up Parsing.
COLING-90. 70-75.

“Length of input string {number of words)
"Time. in seconds.

! Number of nodes generated.

#Number of events generated.

1%)\illion {estimated]).

"hfillion Years (estimated].

[8] Chapman. N. P. 1987. LR Parsing. Theory and Practice. Cambridge: Cambridge
Untversity Press.
[9) Chung. M. & D. Moldovan 1994. Applying Parallel Processing to Nauural-Language
Processing. IEEE Expert. February 1994. 36-44.
(10] Dowding, J.. R. Moore. F. Andry & D. Moran, D. 1994. Interieaving Svntax and
Semantics in an Efficient Bottom-Up Parser. Proceedings of the 32nd Annuval)Me.
eting of the ACL, 110-116.

[11] Earley. J. 1970. An Efficient context-free Parsing Algori'thm.-Communicatfons of
the ACAM. 13(2), 94-102.

{12] Kay. M. 1980. Algorithm Schemata and Data Structures in Syntactic Processing.
CSL-80-12 Xerox Palo Alto Research Center.

[13] Martin. W.A.. K.W. Church & R. §. Patil. 1987. Preliminary Analysis of a
Breadth-First Parsing Algorithm: Theoretical and Experimental Resuits. In [3].
' 267-328.

[14] Nurkkala. T. & V. Kumar. 1994. The performance of a highly unstructured parallel

algorithm on the KSR1. Proceedings of the Scalable High-Performance Com puting
Conference. 215-220.

[13] Pereira. F.C.N. 1985. A Structure-Sharing Representation for Unification-Based
Grammar Formalisms. Proceedings of 23rd Meeting of the ACL. 137-144.

(26] Quesada. J.F. 1996. Un Modelo Robusto y Eficiente para el Analisis Sintictico
de Lenguajes Naturales mediante Arboles Miiltiples Virtuales. Procesamiento del
Lenguaje Natural 19. 14-29.

[17] Quesada. J.F. Forthcoming. Bidirectional and Event-Driven Parsing with Multi-
Virtual Trees.

[18] Quesada. J.F. &: G. Amores. Forthcoming. C for Natural Language Processing.
London: UCL Press.

[19) Shann. P. 1991. Experiments with GLR and Chart Parsing. In [22]. 17-34.

[20] Shieber. S. M. 1983. Sentence disambiguation by a shift-reduce parsing technique.
1JCAI-83. 699-703.

[21] Tomita. M. 1987. An Efficient Augmented Context—Free Parsing Algorithm. Com-
putational Linguistics 13 (1-2). 31-46.

[22) Tomita. M. (ed.) 1991. Generalized LR Parsing. London: Kluwer Academic Pu-
blishers.

