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Introducción

La corriente principal de la teoría económica se basa en el supuesto de que los
agentes económicos son racionales y maximizan la utilidad. Por ejemplo, diferentes
situaciones económicas se modelan a menudo suponiendo que los agentes poseen
una funcion de utilidad sobre el conjunto de alternativas factibles y que escogen la
alternativa que maximiza el valor esperado de esta function. Luego, un equilibrio es
típicamente de�nido como una situación en la que todos los agentes se comportan
de esta manera al mismo tiempo y nadie tiene incentivos para modi�car su decision.
El equilibrio constituye la predicción del modelo.
Sin embargo, un cuerpo creciente de evidencia muestra que este modelo de com-

portamiento no siempre es una buena aproximación de como los agentes hacen sus
decisiones. En vez de esto, resulta que muchas veces hacen sus decisiones de una
manera más heuristica, por ejemplo recurriendo a simples "reglas de oro" de de-
cisión, consistentes con el concepto de la racionalidad acotada (véase por ejempo
Conlisk 1996, Gigerenzer, Todd and the ABC Research group 1999). Esto implica
que los equilibrios de los modelos de maximización de utilidad no necesariamente
son buenas predicciones del comportamiento de los agentes económicos.
Existe una literatura amplia que, tomando nota de este problema, estudia el

impacto a las predicciones de los modelos económicos si los agentes en vez de maxi-
mizar la utilidad hacen sus decisiones utilizando reglas heurísticas de decisión. Una
corriente de esta literatura que se ha ido incorporando en la teoría económica a lo
largo de los últimos veinte años se conoce como la teoría evolutiva de juegos.1 En
la teoría evolutiva de juegos es comun suponer que los agentes ajustan su compor-
tamiento aplicando una regla de decision de racionalidad acotada. Luego se analiza
como la sociedad evoluciona a través del tiempo bajo este supuesto. Una caracterís-
tica atractiva de la teoría evolutiva de juegos es su dimensión dinámica. En varios
modelos económicos estándares el equilibrio es una noción estática. Se considera que
la ausencia de incentivos para modi�car las decisiones implica que no hay fuerzas
que mueven la economía en una u otra dirección. Sin embargo, no se hace mucha
mención del proceso por el cual la economía llega a ese equilibrio2. Al contrario,
una característica típica de la teoría evolutiva de juegos es que modela este proceso
explícitamente. De esta manera, la teoría evolutiva de juegos permite analizar si la
economía realmente converge hacía el equilibrio y cual sería la trayectoria por la que
llega allí.
Esta tesis contribuye a la teoría evolutiva de juegos explorando el impacto de

reglas de decision imitiativas sobre las predicciones de ciertos modelos económicos.
La idea fundamental es que los agentes observan lo que otros agentes hacen y copian

1Véase por ejemplo Sandholm 2010; Weibull 1995. Algunas contribuciones cruciales de esta
literatura son Young 1993; Kandori, Mailath y Rob 1993; Young 1998.

2Fudenberg y Levine 1998.
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sus decisiones en funcion de cuan exitosos parecen ser. Por tanto, los agentes utilizan
la información contenida en el comportamiento de los demás para hacer decisiones.
El comportamiento imitativo es un ejemplo de toma de decision bajo racionalidad
acotada. Simplemente requiere observar lo que hacen los demás y a lo mejor llevar a
cabo alguna operación matemática elemental. Existe evidencia amplia que este tipo
de comportamiento es una parte prominente de la toma de decisiones de los seres
humanos. Por ejemplo, se considera fundamental en ciertas ramas de la psicología
(véase por ejemplo Bandura 1977). También hay una literatura experimental que
estudia el comportamiento imitativo en situaciones de toma de decisiones económicas
y que con�rma su importancia (por ejemplo Huck, Normann and Oechssler 1999 y
2000; Apesteguia, Huck and Oechssler 2007 y 2009; Pingle y Day 1996; O¤erman
and Schotter 2009). Dado que los agentes económicos a menudo hacen sus decisiones
de esta manera, es importante estudiar como el comportamiento imitativo afecta las
predicciones de los modelos económicos.
El método empleado para realizar el estudio es el siguiente: Se considera un con-

junto de modelos económicos emblemáticos que constituyen puntos de referencia en
la teoría económica. Para cada uno de ellos se especi�ca la forma exacta en la que
los agentes observan el comportamiento de los demás, y la manera en la que utilizan
esta información para hacer decisiones. Finalmente se estudia el proceso dinámico
que surge como consequencia de este comportamiento. En particular, en cuanto a
metodología el análisis depende en gran medida de las herramientas matemáticas
desarrolladas por Freidlin and Wentzell (1986) para el análisis de procesos estocásti-
cos perturbados, e introducidas a la economía por Young (1993) y Kandori, Mailath
y Rob (1993).
Existe una literatura teórica sustancial sobre dinámicas de imitación en la economía.

Por ejemplo, Vega-Redondo (1997) inició una literatura sobre el impacto de dinámi-
cas de imitación en oligopolios. Schlag (1998) y Oyarzun y Ruf (2009) caracterizaron
reglas de decisión imitativas que siempre llevan a una población a escoger la alterna-
tiva que maximiza la utilidad en el largo plazo. Ellison y Fudenberg (1992) estudi-
aron la adopción de tecnología a través de la imitación. Eshel, Samuelson y Shaked
(1998) mostraron que el comportamiento imitativo e interacción local en conjunto
pueden llevar a resultados cooperativos en situaciones en las que los tomadores de
decisiones racionales nunca cooperarían. En particular, esta tesis hace tres contribu-
ciones a la literatura sobre dinámicas de imitación. El primer capítulo estudia la
imitación en poblaciones heterogeneas3. La di�cultad que surge en una población
heterogenea es que lo que funciona bien para un agente puede no ser bueno para
otro. Esto implica que el desempeño de reglas imitativas de decision es ambiguo. Se
muestra que en una población heterogenea la imitación tiende a llevar a la sociedad
hacia resultados que son buenos para la fracción que constituye la mayoría, pero que

3Este capítulo se ha elaborado en colaboración con Carlos Oyarzun.
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perjudica a los grupos minoritarios. La razón es que para la minoría hay una fuerte
tendencia de encontrarse con agentes de otro tipo, quienes escogen lo que es bueno
para ellos pero malo para la minoría. En el segundo capítulo se analiza la imitación
en oligopolios, en situaciones en las que hay varios mercados y las empresas a veces
observan empresas en otros mercados. Se muestra que en estos casos las predicciones
del modelo son menos competitivos que en el caso de un único mercado (por ejemplo
Vega-Redondo 1997). La intuición es que un mercado aislado en el que prevalece
la cooperación tiende a ser imitado por empresas en otros mercados. En el tercer
capítulo se demuestra que el supuesto de interacción local en Eshel et. al. (1998)
que garantiza que la cooperación pueda persistir en el largo plazo, en realidad es
menos restrictivo de lo que estos autores encontraron. Mientras que la imitación
siga siendo local, la cooperación puede prevalecer aún cuando las decisiones de cada
agente afecten a casi toda la población.
Finalmente, el cuarto capítulo de la tesis hace una contribución a la literatura

de transmisión estratégica de información. Muchas situaciones económicas se car-
acterizan por la información privada. A veces esto puede causar ine�ciencias. Por
ejemplo, Akerlof (1970) demostró con un ejemplo del mercado de coches usados
que el mercado entero puede desaparecer cuando el vendedor tiene más información
que el comprador. Sin embargo, Milgrom (1981) mostró que si es posible la comu-
nicación, puede haber una solución a este problema. Por ejemplo, si el vendedor
puede proveer un reporte certi�cable con respecto a diferentes aspectos del coche,
las asimetrías de información pueden ser eliminadas. En particular, Milgrom (1981)
mostró que si el vendedor puede comunicar toda su información sin costes, siempre lo
va a hacer. No obstante, reportar información privada a menudo es costoso. La pre-
gunta es hasta dónde la comunicación puede resolver el problema de la información
asimétrica en presencia de costes. En el cuarto capítulo de esta tésis se demuestra
que la comunicación siempre puede eliminar todas las asimetrías de información,
aún cuando los costes de la comunicación son arbitrariamente altos. La intuición
es que siempre es posible para el agente informado identi�carse completamente con
un reporte tal que otros agentes no tratarían de hacerse pasar por él, o porque no
disponen de la misma información o porque los costes the producirla son demasiado
altos.
A continuación se describen cada uno de los capítulos de la tesis con más detalle.

Capítulo 1: Aprendizaje por comparación social en una población
heterogénea

La idea subyacente de la la imitación como regla de decisión es que los individuos
pueden utilizar la información contenida en las experiencias de los demás para hacer
buenas decisiones. Si los individuos son similares, esto puede llevar a una población a
escoger la mejor acción en el largo plazo (Ellison y Fudenberg 1995; Schlag 1998). Sin
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embargo, en una población heterogénea surge un problema, ya que lo que funciona
bien para un individuo puede no ser una buena alternativa para otro.
En este capítulo se incorpora una noción de comparación social (véase por ejem-

plo Festinger 1954 o Suls, Martin y Wheeler 2000) en un modelo de aprendizaje de
racionalidad acotada. La teoría de la comparación social postula que cuando los in-
dividuos no pueden evaluar sus habilidades por información objetiva, pueden hacer
una evaluación relativa con respecto a otros individuos. Suponemos que los individu-
ous utilizan la comparación social para circunvenir el problema de la heterogeneidad
y extraer información relevante de las experiencias de los demás. Analizamos una
población de individuos que repetidamente escogen una acción del mismo conjunto.
Como consequencia de su decisión, cada individuo obtiene un pago de acuerdo a
alguna distribución de pagos. Además, estas distribuciones pueden ser diferentes
para diferentes individuos. El �ujo de información que consideramos es parecido al
modelo canónico en el que los tomadores de decisiones pueden observar la experi-
encia de los demás, es decir, las acciones que escogen y los pagos que obtienen (por
ejemplo Fudenberg y Ellison, 1993, 1995; Vega-Redondo 1997; Schlag 1998, 1999).
En particular, cada individuo observa a otro individuo seleccionado aleatoriamente
de la población. Por lo tanto, en cada periodo el individuo observa la acción que
escogió, el pago que obtuvo y la acción y el pago de algún otro individuo. Incorpo-
ramos la noción de comparación suponiendo que cada individuo además percibe una
señal aleatoria que informa sobre la diferencia en el pago esperado del individuo y el
individuo observado con respecto a la acción del individuo observado. Suponemos
que la señal es no sesgada, es decir, los individuos no se equivocan sistemáticamente
en su evaluación de la señal.
Los individuos utilizan toda esta información para determinar su comportamiento

en el siguiente periodo. Llamamos regla de decision a la función que asigna una prob-
abilidad para escoger cada acción dados las acciones observadas, los pagos obtenidos
y la señal de similitud percibida. Nos enfocamos en unas reglas de decisión que sat-
isfacen ciertas propiedades en cuanto a su desempeño, medido por el pago esperado
de la acción que escoge. En particular, nuestro análisis empieza con la caracteri-
zación de una clase de reglas de decisión tal que el individuo siempre escoge la mejor
de las acciones de su muestra con mayor probabilidad. Llamamos a a esta clase de
reglas de decisión monotonas en el pago. Nuestro primer resultado (Proposición 1)
muestra que para reglas de decisión monótonas en el pago, la probabilidad actu-
alizada de escoger la acción observada es una transformación afín de la diferencia
entre la suma del pago obtenido por el individuo observado y la señal de similitud
y el pago obtenido con la acción escogida. Las reglas de decisión monótonas en el
pago permiten a los individuos hacer decisiones tales que la heterogeneidad per se
no les engaña.
Nuestra preocupación principal son las dinámicas de las decisiones de los individ-

uos cuando todos utilizan una regla de decisión monótona en el pago. Consideramos
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una población con dos tipos de individuos, A y B, que pueden escoger entre dos
acciones distintas, a y b. Las distribuciones de pago asociada a cada una de las
acciones son las mismas para individuos del mismo tipo y el pago esperado de la
acción a (b) es mayor que el pago esperado de la acción b (a) para todos los individ-
uos de tipo A (B). Nuestros resultados principales (Proposición 2 y 3) demustran
que la decisiones de los individuos convergen a un punto estable determinado por
la fracción de cada tipo en la población y la diferencia en ganancia, en términos
esperados, de escoger la acción óptima para los diferentes tipos de individuos. En
particular, si las fracciones de los dos tipos de la población son su�cientemente difer-
entes, entonces toda la población converge a la acción óptima del tipo mayoritario,
y por lo tanto, a la acción subóptima de la minoría. La intuición es que tanto la
mayoría como la minoría se mueven hacia sus acciones óptimas respectivas. Sin
embargo, el movimiento del tipo mayoritario es más fuerte y este movimiento ejerce
una in�uencia poderosa sobre la minoría. Por consiguiente, la minoría puede acabar
escogiendo la acción equivocada, a pesar de utilizar una regla de decisión que le
permite escoger la acción óptima con mayor probabilidad.
La acción a la que la población converge también es determinada por las ganan-

cias en términos esperados de escoger la acción óptima. Si los tamaños de las pobla-
ciones de cada tipo son parecidos, y estas ganancias son su�cientemente diferentes,
entonces toda la población converge a la acción óptima del tipo que se bene�cia más
cambiándose a la acción óptima. Intuitivamente, la aplicación de la regla monótona
en pagos hace que las acciones óptimas de cada tipo se propaga, y la acción óp-
tima que reporta la mayor ventaja sobre la acción subóptima se propaga a mayor
velocidad.
El capítulo contribuye a la literatura sobre dinámicas de imitación. Los artículos

seminales de esta literatura son Ellison and Fudenberg (1993, 1995), Vega-Redondo
(1997), and Schlag (1998)4. La mayoría de estos trabajos no consideran la hetero-
geneidad y el hecho de que los individuos pueden ser concientes de ella y ajustar
sus reacciones de acuerdo a ello. Una excepción notable es Ellison y Fudenberg
(1993). En su trabajo los individuos están restringidos a observar solamente los
vecinos, quienes en la mayoría de los casos comparten la misma acción óptima. De
hecho, cuanto más pequeña sea la "ventana" de vecinos que cada individuo observa,
más cerca estará el sistema a la convergencia a la alternativa óptima para toda la
población. En contraste, nuestro análisis no supone que los individuos tienden a ob-
servar más a menudo individuos que son parecidos a ellos. En nuestro modelo, esto
permite que en particular las minorías terminan escogiendo una acción subóptima.

4Para una revisión completa de esta literatura véase Alós-Ferrer y Schlag 2009.
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Capítulo 2: Imitación en oligopolios Cournot con mercados
múltiples

En los oligopolios de Cournot, el supuesto de que los agentes toman sus decisiones
maximizando una funcion objetivo se traduce en un supuesto de maximización de
bene�cios. Sin embargo, en años recientes una literatura ha emergido que estudia
decisiones basadas en la imitación más bien que la maximización de los bene�cios.
Esto tiene sentido, ya que los oligopolios son situaciones complejas en las que es
probable que las empresas a veces recurren a procesos de decisión mas sencillas que
la maximización de los bene�cios. Además hay varios artículos experimentales que
con�rman la importancia de la imitación en los oligopolios5.
La imitación en oligopolios Cournot a veces lleva a resultados muy competitivos.

Por ejemplo, si las empresas en un mercado en cada periodo escoge la cantidad
que generó los bene�cios más altos del mercado en el periodo anterior, entonces la
predicción a largo plazo corresponde a la de la competencia perfecta (Vega-Redondo
1997). Sin embargo, esto no se cumple necesariamente si hay más de un mercado y las
empresas a veces imitan a través de los mercados (Apesteguia, Huck and Oechssler,
2007). Resulta que la información sobre el desempeño de las empresas en otros
mercados es una variable importante en este caso. Sin embargo, no hay muchos
estudios sobre el impacto de la información a las predicciones del modelo. Este
capítulo contribuye al estudio de la imitación en los oligopolios Cournot, a través
del análisis riguroso de como la información sobre el desempeño de las empresas en
otros mercados afecta a los mercados en el largo plazo.
Supondré que hay un conjunto de mercados idénticos y separados. En cada

periodo las empresas obervan a las empresas del mismo mercado y una muestra de
empresas de los otros mercados. Luego escogen una cantidad a través de una regla
de decisión. Se consideran dos reglas de decisión distintas. Si una empresa utiliza
imita el mejor máximo (IBM, por sus siglas en inglés) escoge la cantidad que generó
el bene�cio más alto en la muestra. Sin embargo, cuando hay varios mercados, una
cantidad puede generar bene�cios altos en un mercado y bajos en otros. En este caso
no está claro que sería atractivo imitar esa cantidad. Si una empresas utiliza imita
el mejor promedio (IBA, por sus siglas en inglés) toma esto en cuenta al calcular los
bene�cios promedio de cada cantidad de su muestra y luego imitar la que generó el
bene�cio promedio más alto. También se permite que las empresas de vez en cuando
experimentan y escogen una cantidad al azar. Utilizo las técnicas desarrolladas por
Young (1993 ) para caracterizar el soporte de la distribución estacionaria de la
resultante cadena de Markov perturbada. Este soporte se conoce como los estados
estocásticamente estables y constituyen la predicción a largo plazo de las dinámicas.
Se consideran tres escenarios informacionales distintos. En el primero, como

5Por ejemplo, Huck, Normann y Oechssler 1999, 2000; O¤erman, Potters y Sonnemans 2002;
Apesteguia, Huck and Oechssler 2007, 2009.
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punto de referencia, las empresas observan todas las empresas en todos los mercados.
En este caso, cuando todas las empresas utilizan IBM todas las cantidades entre la de
Cournot y la competencia perfecta aparecen en el largo plazo. La intuicion es que las
cantidades cercanas a la de competencia perfecta tienden a tener el mejor desempeño
en cada mercado. Al mismo tiempo, los mercados que producen cantidades cercanas
a la de Cournot tienden a tener un mejor desempeño que otros mercados. Esto crea
tendencias que van en direcciones contrarias, los cuales se equilibrian en el largo
plazo.
Cuando las empresas utilizan IBA, existe un único estado estocásticamente es-

table, en el que todas las empreasa producen una cantidad estrictamente entre la
cantidad de Cournot y la de competencia perfecta. Esta cantidad decrece en el
número de mercados y crece en el número de empresas por mercado. El resultado
aparece ya que el número de empresas por mercado y el número de mercados de-
terminan ponderadores que afectan el cómputo de los bene�cios promedios. Por
ejemplo, un número más grande de mercados aumenta la importancia relativa de
las observaciones a través de los mercados. Se muestra que el estado estocástimente
estable corresponde al único equilibrio simétrico de Nash de un juego en el que
a las empresas les importan tanto sus ganancias en términos absolutos como en
comparación con otras empresas.
En el segundo escenario informacional, las empresas observan empreas en mer-

cados en los que la cantidad agregada es su�cientemente parecida a la del propio
mercado. La idea es que la imitación intuitivamente tiene más sentido si las em-
presas observadas están en una situación similar a la propia. Si a las empresas no
les importan mucho las diferencias en el agregado, el modelo se comporta como en
el caso de información global. Si son muy sensibles con respecto a diferencias en
el mercado, obtenemos competencia perfecta (como en Vega-Redondo 1997). En
casos intermedios el resultado es más competitivo cuando las empresas son sensibles
a diferencias en el agregado. Intuitivamente, la cautela en cuanto a imitar empre-
sas en otros mercados tiende a aislar a los mercados, y esto les lleva a evolucionar
independientemente.
En el tercer escenario informacional los mercados están ordenados en un círculo y

las empresas observan el propio mercado y las empresas de algunos mercados vecinos.
Esto re�eja una situación en la que la localización geográ�ca de las empresas impide
que observen todos los demás mercados. Los resultados del caso de información
global son robustos a este escenario. Esto implica que si las empresas utilizan IBA,
el resultado es menos competitivo cuando las empresas observan una cantidad mayor
de mercados.
Una conclusión que es válida a través de los diferentes escenarios es que más

información conduce a resultados menos competitivos. Este debe ser contrastado
con la conclusión de Huck et. al. (1999, 2000), que más información sobre las
empresas del mismo mercado lleva a resultados más competitivos. Cuando hay varios
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mercados, más información sobre las empresas en otros mercados puede conducir a
resultados menos competitivos.
Este capítulo es relacionado a Apesteguia et. al. (2007), quienes fueron los

primeros en descubrir que la información de empresas en otros mercados afecta el
resultado. Sin embargo, el modelo considerado aquí se distingue de Apesteguia et.
al. (2007) de varias maneras. Mientras que Apesteguia et. al. (2007) consideran
un modelo lineal sin costes de producción, aquí solo suponemos que la demanda es
decreciente y cóncava y que los costes son crecientes y convexos. En Apesteguia et.
al. (2007) la capacidad de cada empresa es limitada a la cantidad de competencia
perfecta y cada empresa es asignada aleatoriamente a un nuevo mercado en cada
periodo. Aquí, no suponemos que la capacidad es limitada y los mercados no se
reasignan de un periodo a otro. Las conclusiones que obtenemos son claramente
diferentes. Por ejemplo, en el caso de información global, aquí se predice que todas
las cantidades entre la de Cournot y la de competencia perfecta pueden aparecer en
el largo plazo. Apesteguia et. al. (2007) obtiene competencia perfecta para el caso
correspondiente. En el caso de IBA, aquí se predice una cantidad única estrictamente
entre la de Cournot y la de competencia perfecta, mientras que Apesteguia et. al.
(2007) obtienen la de Cournot. Por lo tanto, este capítulo puede verse como un
estudio ampliado de las dinámicas descubiertas por primera vez en Apesteguia et.
al. (2007). De esta manera se muestra que cuando se relajan ciertos supuestos, se
obtienen diferentes conclusiones.
Este capítulo también es relacionado a modelos en los que las empresas se acuer-

dan del pasado (Alós-Ferrer 2004; Bergin y Berghardt 2009). Esta relación tiene que
ver con el hecho de que el modelo con memoria puede considerarse como un modelo
de varios mercados, en el que los mercados adicionales existen en la memoria de las
empresas.

Capítulo 3: Provisón altruista de bienes públicos e interac-
ción local

Un supuesto estándar en la teoría económica es que los individuos actúan en su
mejor interés. Sin embargo, muchas veces se observan a las personas actuando más
allá de sus propios intereseses, algo que es conocido como altruismo. La teoría
económica ha generado un número de modelos para reconciliar los actos altruistas
con la racionalidad típica de muchos modelos económicos. Por ejemplo, un enfoque
ha sido modelar el altruismo modi�cando la función de utilidad (como en Becker
1974 y 1981), o suponer que la interacción se repite in�nitamente (véase por ejemplo
Fudenberg y Maskin 1986).
Recientemente, una explicación alternativa ha sido propuesta por Eshel, Samuel-

son y Shaked (1998). Si en una población circular los individuos altruistamente
comparten un bien público con los vecinos más cercanos y además hacen sus deci-
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siones imitando a esos mismos vecinos, entonces el comportamiento altruista puede
persistir. Este resultado es robusto aun en presencia de experimentaciones o "mu-
taciones" de parte de los individuos. La intuición es los altruistas se pueden juntar
en grupos, excluyendo a los egoistas. De esta manera obtienen mayores pagos y
tienden a ser imitados.
El supuesto de que la imitación es local es razonable. La imitación require

conocimiento de lo que los demás hacen y como les va. Este tipo de información
la tenemos generalmente sole de un pequeño subconjunto de los miembros de la so-
ciedad. Al otro lado, muchas externalidades son mucho menos locales. Por ejemplo,
tirar basura en la calle afecta a personas que ni siquiera conocemos. En particular
es probable que afecte a más individuos de las que imitamos.
Por esta razón, en este capítulo, analizo un modelo en el que se permito que

el bien público sea menos local que la imitación. En cada periodo cada individuo
decide si proveer un bien público (y ser altruista), o no hacerlo (y ser egoista). El
bien público es compartido con un número arbitrario de vecinos. Para hacer una
decisión, el individuo observa la acción y el pago de los vecinos más cercanos. Luego
escogen la acción que generó el pago más alto en promedio. Además se permite
que los individuos de vez en cuando experimenten y escojan una cantidad al azar.
Se muestra que en ausencia de experimentaciones, el altruismo puede prevaleceer
y coexistir con el egoismo siempre y cuando el bien públio no sea global. En la
presencia de experimentación, el altruismo puede persistir, pero solo si la población
es su�cientemente grande. Por lo tanto, la conclusión es que el resultado de Eshel
et. al. (1998) es relativamente robusto a situaciones en las que la imitación es más
local que el bien público.
La intuición es que el hecho que el bien público es local permite que los altruistas

se junten en grupos, excluyendo así a los egoistas. De esta manera los altruistas
obtienen un mayor pago y por tanto tienden a ser imitados. Al hacerse menos local
el bien público, los altruistas tienen que juntarse en grupos más grandes para excluir
a los egoistas en su�ciente grado. Esto implica que al ser casi global el bien publico,
al máximo un grupo altruista cabe en la población. Resulta que una constelación
así es muy sensible a la experimentación y es su�ciente que un solo altruista cambie
a egoismo para que la población descienda a un estado de egoismo. Por esta razón
cuando el bien público se comparte con más vecinos, se require una población grande
para que el altruismo pueda persistir en presencia de experimentaciones.
La investigación se relaciona con Jun y Sethi (2007), Matros (2008) y Mengel

(2009). Jun y Sethi (2007) y Matros (2008) consideran un modelo en el que el bien
público es compartido con exactamente el mismo (potencialmente grande) conjunto
de individuos que cada individuo imita. Por lo tanto, en estos artículos la estructura
de interacción es menos estilizada que en Eshel et. al. (1998). No obstante, cuando
el bien pública es casi global, no es probable que se cumpla el supuesto de que el
conjunto de individuous que comparte el bien público coincide con el conjunto que
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cada individuo imita. Mengel (2009) supone que la imitación es menos local que
el bien público. Encuentra que en este caso el altruismo no persiste en el largo
plazo. Sin embargo, como ya se mencionó, es probable que en varios casos, sucede
lo contrario. Mientras que los efectos externos de nuestras acciones muchas veces
afectan a un número grande de individuos, a menudo imitamos a un conjunto más
limitado.

Capítulo 4: Comunicación perfecta con costes de comuni-
cación arbitrarios

La comunicación estratégica es un aspecto importante en muchas situaciones económi-
cas en las que alguna parte tiene información privada. Los llamados juegos de per-
suasión, introducidos por Paul Milgrom en 1981 en un artículo in�uyente, se enfoca
en la comunicación estratégica en términos de información veri�cable. En su modelo,
un emisor pretende in�uir en el comportamiento de un receptor, comunicando infor-
mación por medio de un reporte. Milgrom (1981) mostró que si la comunicación no
tiene costes y las preferencias sastisfacen una condición de monotonicidad, entonces
el emisor revela toda su información privada al receptor. Es decir, la comunicación
es perfecta en la presencia tanto de preferencias incongruentes y comportamiento
estratégico.6

Sin embargo, mientras Milgrom (1981) supuso que la comunicación no tiene
costes, reportar información veri�cable muchas veces es costoso. A menudo requiere
explicaciones cuidadosas y detalladas basadas en hechos. Por ejemplo, un emprende-
dor que elabora un plan de negocio para convencer a un inversor gasta tiempo y
esfuerzo explicando los detalles técnicos del producto, los costes de producción y
demás información relevante. Además, puede implicar certi�cación costosa de insti-
tuciones acreditadas, como auditoría por parte de contadores externos, o un patente
que acreditar la originalidad del producto. Al mismo tiempo, la literatura existente
indica que el resultado de Milgrom (1981) es sensible al supuesto de que la comu-
nicación no tiene costes (véase Jovanovic 1982; Verecchia 1983 y Cheong y Kim
2004).
En este trabajo se llega a una conclusión diferente. Estudio un modelo basado en

el juego de persuasión de Milgrom (1981), en el que el coste de reportar información
privada crece continuamente en la precisión del reporte. La conclusión es que el
resultado de Milgrom (1981) es relativamente robusto a los costes de comunicación.
Más especí�camente, mientras que Milgrom (1981) mostró que si la comunicación no
tiene costes, entonces cada equilibrio es separador, aquí se muestra que un equilibrio
separador siempre existe, sin importar los costes. La intuición es que los costes de

6Diferentes generalizaciones del resultado de Milgrom 1981 se pueden encontrar en Milgrom y
Roberts (1986), Seidman y Winter (1991) y Mathis (2008).
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comunicación introducen señalamiento costoso al juego de persuasión. El reporte
revela información y al mismo tiempo los costes funciona como un dispositivo de
señalamiento. Cuando es demasiado caro reportar toda la información, un emisor
de tipo alto puede impedir que los tipos más bajos copien su reporte a través de los
costes. Resulta que una combinación de revelación de información y señalamiento
costoso siempre puede lograr la separación completa
Se muestra que pueden haber varios equilibrios separadores, pero todos ellos

son equivalentes en términos de los pagos. Cuando los costes son bajos, todos los
equilibrios son separadores. La unicidad del equilibrio separador aparece ya que con
costes bajos, los tipos emisores altos siempre pueden desviarse de cualquier equilibrio
agrupador revelando su tipo verdadero. Cuando los costes son altos, aparece un
equilibrio. En este equilibrio, los reportes no contienen ninguna información. La
intuición es que con costes altos, el escepticismo de parte del receptor puede hacer
que sea demasiado caro para cualquier emisor revelar su tipo verdadero.
La razón por la que Jovanovic (1982), Verecchia (1983) y Cheong y Kim (2004)

llegan a una conclusión distinto, es que en sus modelos el emisor tiene que reportar
toda su información, o ninguna. Así, siempre hay algunos tipos de emisores que
no revelan su información, y si el coste es demasiado alto, el emisor nunca revela
ninguna información en absoluto. En este trabajo, el emisor tiene más discreción en
este respecto. Decide continuamente cuanta información reportar. Por lo tanto, si
los costes son altos, puede reportar una cantidad pequeña de información sin incurrir
demasiados costes.
Finalmente, se introduce una extensión al juego de persuasión en el receptor tiene

que haer un esfuerzo costoso para acceder la información contenida en el reporte. La
idea es tomar en cuenta el hecho de que muchas veces es costoso leer y entender un
reporte. Cuando el receptor decide activamente si lee un reporte, puede condicionar
su decisión a la primera impresión de él. Una cuestión relevante es como se relaciona
esta primera impresión con el contenido del reporte y en que grado el emisor puede
manipularlo. Aquí supongo que el aspecto de un reporte se relaciona a la cantidad de
información contenida en ella y que los aspectos pueden ser manipulados, incurriendo
un coste. Se caracterizan dos clases de equilibrios separadores. En una de ellas,
equilibrios sin lectura, el receptor nunca lee ningun reporte. Dependiendo de los
costes, el emisor puede no manipular el aspecto del reporte, o invertir recursos para
hacer que se parezca más preciso de lo que es. En la otra clase de equilibrios,
equilibrios de lectura, el receptor lee todos los reportes. Como los dos equilibrios son
separadores, el receptor pre�ere el primero, en el que no hace ningún esfuerzo para
leer los reportes.
Este capítulo se relaciona con Mathis (2008), quien considera comunicación en

términos de información parcialmente veri�cable. La información parcialmente ver-
i�cable se puede tratar como un modelo de comunicación costosa en el que ciertos
reportes no tienen costes y otros tienen costes arbitrariamente altos. En otras pal-
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abras, los costes son discontinous. Mathis (2008) encuentra que si es arbitrariamente
costoso revelar el tipo verdadero, no existe ningún equilibrio separador, lo cual con-
trasta con la conclusión de esta trabajo. La diferencia se debe a que en Mathis
(2008) los costes son discontinuos. Por tanto, al tratar la veri�cabilidad parcial en
términos de comunicación costosa, la continuidad de los costes tiene un impacto
importante en el resultado.
Otro trabajo relacionado es Kartik (2009), quien considera mentiras costosas.

En el modelo de Kartik (2009), el emisor puede reportar información falsa a un
coste. Sin embargo, en contraste con el trabajo presente, el coste no se relaciona
con la precisión del reporte. Kartik (2009) encuentra que la separación completa es
imposible y caracteriza equilibrios en los cuales tipos bajos se separan y tipos altos
se agrupan.
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Introduction

This thesis contains the results of my doctoral studies in the Quantitative Economics
Doctorate (QED) at the Universidad of Alicante. The title of the thesis is �Essays in
Microeconomic Theory�and it consists of four di¤erent chapters. The focus of the
thesis is on imitation dynamics in economic models and it also contains a chapter
on strategic transmission of information.
The �rst chapter analyzes imitative behavior in a heterogenous population. The

underlying idea is that an individual can use the information contained in others�
choices and outcomes in order to make choices. If individuals are similar, this may
lead a population to choose the optimal action in the long run (e.g., Ellison and
Fudenberg, 1995; Schlag, 1998). However, in a heterogeneous population a problem
arises, since what works well for one individual may not be a good choice for another.
We incorporate a notion of social comparison (see for example Festinger 1954 or Suls,
Martin and Wheeler 2000) which allows individuals to circumvent this problem and
extract relevant information from the choices and outcomes of others. We analyze a
population of individuals who repeatedly choose an action, thereby obtaining payo¤s
according to some unknown payo¤distributions, which additionally may be di¤erent
across individuals. In each period, each individual observes the action and payo¤ of
some randomly selected individual, as well as a random signal that is informative
about di¤erences between the individual and the sampled individual. Individuals use
this information to determine their behavior in the next period through a decision
rule. We characterize payo¤ monotone decision rules, which allow the individual
to on average choose the better among two sampled actions. This means that
individuals can make choices such that heterogeneity per se does not mislead them.
The main concern is the dynamics of choices in a heterogenous population when

each individual updates the probabilities of playing each action using a payo¤
monotone decision rule. We consider a population with two types of individuals,
A and B; who choose between two actions, a and b. a (b) is optimal for type A (B)
individuals. Our main results (Propositions 2 and 3) show that the choices of the
population converge to a rest point determined by the fraction of each type in the
population and the magnitude of the di¤erence in payo¤s between the optimal and
suboptimal action for each type. If the fractions of the two types in the population
are di¤erent enough, then the whole population converges to the majority type�s
optimal action. The intuition is that both the majority and the minority move to-
ward their respective optimal actions. However, the motion of the majority type
is stronger and since both types imitate each other this motion pulls the minority
along. Hence, the minority may end up choosing the wrong action in spite of using
a rule that makes the right choice, on average, among the actions observed. If the
sizes of the population of each type are about the same, then the whole population
converges toward the type that bene�ts the most from its optimal action. Intuitively,
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due to properties of the decision rule, the optimal action of the type that bene�ts the
most from its optimal choice propagates faster, which leads the population toward
this action in the long run.
The chapter contributes to the literature on imitation dynamics, with semi-

nal papers Ellison and Fudenberg (1993, 1995), Vega-Redondo (1997), and Schlag
(1998) (for a thorough survey, see Alos-Ferrer and Schlag 2009). Most of this work
allows little role for heterogeneity and the fact that individuals may be aware of
it and adjust accordingly. A notable exception is Ellison and Fudenberg (1993), in
which individuals observe mostly neighbors who have the same optimal actions. The
smaller the "window" of neighbors, the closer is the system to convergence to the
optimal choice for the whole population. In contrast, our analysis does not assume
that individuals tend to observe individuals that are more similar to them. This
allows for the possibility that in particular minorities end up choosing a suboptimal
action.
The second chapter of the thesis studies imitation in Cournot oligopolies when

there are multiple markets. The study imitation of in oligopolies makes sense, since
these are complex situations and it is likely that �rms sometimes make decisions
through processes that are cognitively simpler than pro�t maximization. There
are also several experimental papers that con�rm the importance of imitation in
oligopoly games (Huck, Normann and Oechssler 1999, 2000, O¤erman, Potters and
Sonnemans 2002 and Apesteguia, Huck and Oechssler 2007, 2009).
In models of imitation dynamics in oligopolies, the information available about

the performance of �rms in other markets is an important variable (Apesteguia,
Huck and Oechssler 2007). Still, there is not much literature on how di¤erent as-
sumptions with respect to this information a¤ect the outcome. Hence, the present
paper provides a thorough analysis of how the information available about �rms
in other markets a¤ect the long run behavior of the markets. I assume that there
is a set of identical and separated markets and that in each period �rms observe
the �rms in the own market and a sample of �rms from the other markets. They
then choose a quantity by using a decision rule. Either, they choose the quantity
that generated the highest pro�t in the sample (Imitate the Best Max, IBM). Else,
they compute the average pro�t of each observed quantity and imitates the quantity
that generated the highest average pro�t (Imitate the Best Average (IBA)). Firms
also sometimes experiment and choose a quantity randomly. I analyze the resulting
dynamic process by using the techniques developed by Young (1993) to character-
ize the stochastically stable states, which constitutes the long run prediction of the
dynamics.
Three di¤erent informational settings are considered. First, in the benchmark

case, �rms observe all �rms in all markets. When �rms use IBM all quantities
between the Cournot and perfectly competitive quantities appear in the long run.
The reason is that quantities closer to the perfectly competitive one tend to perform
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the best in each market, whereas markets closer to the Cournot quantity perform
better than other markets. This creates countervailing tendencies in the dynamics
which balance out in the long run. When �rms use IBA, all �rms produce a quantity
strictly between the Cournot and Walrasian outcome in the unique stochastically
stable state. This quantity decreases in the number of markets and increases in the
number of �rms per market. The outcome also corresponds to the unique symmetric
Nash equilibrium of a game in which �rms are concerned about pro�ts in both
absolute and relative terms.
In the second informational setting, �rms observe markets where the aggregate

quantity is su¢ ciently close. The idea is that imitation intuitively makes more
sense if the sampled �rms are in a similar situation as oneself. If �rms are not very
concerned about di¤erences in the aggregate, the model behaves as in the benchmark
case. If �rms are very sensitive about di¤erences in the aggregate, markets tend
to evolve independently and we obtain the perfectly competitive outcome. For
intermediate cases the outcome becomes more competitive as �rms become more
sensitive to di¤erences in the aggregate and thereby less willing to imitate across
markets.
In the third informational setting the markets are arranged around a circle and

�rms observe some of the neighboring markets. This re�ects a setting in which �rms�
geographical locations prevent them from observing all the remaining markets. The
results from the benchmark case are relatively robust to this setting. This means
that if �rms use IBA, the outcome becomes less competitive as �rms observe a larger
set of markets. A conclusion that holds across these di¤erent settings is that more
information tends to lead to less competitive outcomes. This should be contrasted
with the conclusion of Huck et. al. (1999, 2000), that more information about the
�rms in the own market leads to more competitive results.
This chapter is related to the seminal paper of Vega-Redondo (1997) who showed

that a single market always converges to the perfectly competitive outcome. Here
it is shown that when there are several markets, less competitive outcomes are
obtained. The chapter is closely related to Apesteguia et. al. (2007), who were the
�rst to discover that information about �rms in other markets a¤ects the outcome in
models of imitation dynamics. However, the setting considered in this paper di¤ers
from that of Apesteguia et. al. (2007) in several ways. Apesteguia et. al. (2007)
consider linear demand, zero costs, a capacity constraint at the Walrasian quantity
and markets that are remixed in each period. Here we only assume that demand
is decreasing and concave, that the costs are increasing and convex and there is
no capacity constraint and markets are not remixed. The conclusions obtained are
also clearly di¤erent from those of Apesteguia et. al. (2007). The benchmark
case of the present paper can be seen as thoroughly studying some of the dynamics
�rst uncovered by Apesteguia et. al. (2007). This chapter is also related to the
single market models with memory analyzed in Alós-Ferrer (2004) and Bergin and
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Berghardt (2009). This relationship comes from the fact that the memory model
can be seen as a multimarket model, in which the additional markets exist in the
memories of the �rms.
In the third chapter "Altruism and Local Interaction" I study the altruistic

provision of a local public good when imitation is more local than the public good.
Altruism refers to acts beyond the self-interest. There are several approaches to
reconcile such acts with the rationality typical of many economic models. One is to
modify the utility function (Becker, 1974 and 1981), or to consider in�nitely repeated
interaction (Fudenberg and Maskin 1986). Recently, an alternative explanation was
proposed by Eshel, Samuelson and Shaked (1998). They show that if individuals
decide whether to altruistically provide a local public good by imitating the closest
neighbors (with whom the good is shared), then altruistic behavior can persist. The
assumption that imitation is local is reasonable, since it requires knowledge of others�
actions and payo¤s, which we have only about a small subset of society�s members.
However, many externalities are relatively less local. For example, littering close to
where we live a¤ects people that we do not even know. In particular, it is likely to
a¤ect a larger set of individuals than the ones we learn from.
In this chapter, I therefore analyze a model where the public good is assumed

to be less local than imitation. Individuals live on a circle and decide whether to
provide a public good (to be an altruist), or not do it (and be an egoist). The
public good is shared by an arbitrary number of neighbors. To make a decision,
the individual observes the actions and payo¤s of the two closest neighbors and
imitates the action that generated the highest average payo¤. The individuals also
sometimes experiment, in which case they choose an action randomly. In the absence
of experimentation, altruism can persist and coexist with egoistic behavior as long
as the public good is non-global. With experimentation, altruism can persist in the
long run, but only if the population is large. Hence, the conclusion is that the result
of Eshel et. al. (1998), is relatively robust to settings where imitation is more local
than the public good.
The intuition behind the result is that since the public good is local, altruists

can group together and exclude egoists. In this way, altruists have mainly altruist
neighbors, and egoists have mainly egoist neighbors. Therefore, the altruists have
higher payo¤s and tend to be imitated. As the public good becomes less local,
altruists need to gather in larger groups in order to exclude the egoists. As the public
good becomes nearly global, at most one altruist group can �t in the population.
It turns out that such a constellation is very sensitive to experimentation and it
is actually enough that a single altruist switches to egoism for the population to
descend into egoism. This is why a large population is needed for altruism to persist
when the public good becomes less local.
The paper is related to Jun and Sethi (2007), Matros (2008) and Mengel (2009).

In Jun and Sethi (2007) and Matros (2008) the public good is shared with the same
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(possibly large) set of individuals that each individual imitates. In these papers the
local interaction structure is not as stylized as in Eshel et. al. (1998). But the
assumption that the public good is shared with the individuals that are imitated is
unlikely to hold when the good is almost global. Mengel (2009) instead assumes that
imitation is less local than the public good. She �nds that altruism will not survive
in the long run. However, in many cases it is likely that precisely the opposite is
true. The external e¤ects of our actions often a¤ect a larger number of individuals
than the ones we learn from.
The fourth chapter studies strategic transmission of veri�able information when

there are communication costs. Strategic communication is an important aspect of
many economic situations in which some party is privately informed. In an in�uential
paper Milgrom (1981) showed that if information can be veri�ably communicated
without costs and preferences satisfy a monotonicity requirement, then all private
information is revealed. This is known as the unraveling result. However, reporting
information is many times costly. It often requires careful and detailed explaining
based on facts. It may also involve costly certi�cation by accredited institutions.
At the same time, the existing literature indicates that unraveling is sensitive to the
assumption of costless reporting. (Jovanovic 1982, Verecchia 1983 and Cheong and
Kim 2004).
In this work I study a model, in which, in contrast to previous literature, the cost

of veri�ably reporting private information continuously increases in the precision of
the report. The conclusion is, contrary to previous work, that unraveling is rather
robust to costly reporting. The model consists of a privately informed Sender and an
uninformed Receiver. The Sender chooses which information to include in a report,
which is given to the Receiver, who responds by choosing an action. The cost of the
report increases continuously in the amount of information it contains. The Sender
wants the Receiver to believe that he is of as high type as possible. It is shown
that a separating equilibrium always exists, regardless of the reporting costs. The
intuition is that the costs function as a signaling device. When the costs are high, a
high Sender type can discourage lower types from mimicking the report through the
costs. A combination of disclosure of information and costly signaling can always
accomplish full separation. It is further shown that all separating equilibria are
payo¤ equivalent. When the costs are low, all equilibria are separating. The reason
is that with low reporting costs, high sender types can always break out of any
pooling equilibrium by disclosing their true type. When the costs are high, a pooling
equilibrium emerges. The intuition is that with high costs, Receiver scepticism
makes it too expensive for the Sender to disclose his true type.
The reason that Jovanovic (1982), Verecchia (1983) and Cheong and Kim (2004)

reach a di¤erent conclusion, is that the Sender is restricted to either report all his
information, or none of it. This means that there are always some Sender types
that will not disclose their information and if the cost is too high, the sender never
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reports any information. Here, the Sender can instead continuously decide howmuch
information to report. When the reporting costs are arbitrarily high, the sender can
thus report a small amount of information without incurring too high costs.
Finally, an extension is introduced in which the receiver must make a costly

e¤ort to access the information in the report. The idea is that it requires both time
and e¤ort to understand a report. I assume that the receiver can condition her
reading decision on the appearance of the report, that the appearance is related to
the amount of information in the report and that appearances can be manipulated
at a cost. Two classes of separating equilibria are characterized. In non-reading
equilibria, the receiver never reads any report. Depending on the reporting and
manipulation costs, the sender either does not manipulate the appearance, or makes
it look more precise than what it is. In reading equilibria, the receiver reads all
the reports. Since both equilibria are separating, the receiver prefers the former, in
which she incurs no costs.
This chapter is related to Mathis (2008), who considers communication in terms

of partially veri�able information. Mathis�(2008) approach to partial veri�ability
can be treated as a model of costly reporting in which reports are either costless or
arbitrarily costly. I.e., the reporting costs are discontinuous. In the present paper
it may also be arbitrarily costly, to report all private information. However, in
contrast to Mathis (2008), a separating equilibrium exists. The di¤erence arises due
to the continuity of the reporting costs in the present work. Hence, when treating
partial veri�ability in terms of costly reporting, the continuity of the costs has an
important impact on the outcome. Another related paper is Kartik�s (2009) work on
costly lying. In Kartik�s (2009) model, the sender can provide false information at a
cost. However, in contrast to the present paper, the cost of the report is unrelated
to its precision. Kartik (2009) �nds that full separation is impossible and instead
characterizes equilibria in which low types separate and high types pool.
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Chapter 1

Social Comparison-based Learning
in a Heterogeneous Population

1.1 Introduction

In this paper we study decision making processes when little information is available

about the outcome an individual may obtain when choosing among di¤erent actions.

While individuals may use information from their own previous experience, they may

also use information obtained by other individuals. However, in many situations

it is unlikely that the choices of one individual would lead to similar outcomes for

another. For instance, a person whose height is less than 1.75 meters, can hardly be

expected to play basketball as well as Kobe Bryant or Pau Gasol of the Los Angeles

Lakers, whose heights are 1.98 and 2.13, respectively. Similarly, a monopolist with

low production costs maximizes pro�ts charging a low price, while another one with

higher costs may be better o¤with a higher price. Even if individuals face cognitive

and informational restrictions, they may be aware of these di¤erences and take them

into account in their decision processes. This heterogeneity and how individuals deal

with it has received little attention in the literature on social learning and almost

no attention within the literature of boundedly rational social learning. This paper

is a �rst attempt to �ll this gap.

We approach the problem by incorporating a notion of social comparison (e.g.,
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Festinger 1954, Suls, Martin and Wheeler 2000) into a simple model of boundedly

rational social learning. The theory of social comparison argues that in the absence

of objective information, individuals have a drive to assess their skills, abilities and

attributes relative to other individuals1. Furthermore, individuals use these assess-

ments to evaluate their potential performance relative to others at di¤erent tasks.

We show that when comparisons like these are part of individuals�decision processes

in the presence of heterogeneity, outcomes are obtained that are qualitatively dif-

ferent from those identi�ed by the previous literature. In particular, there is a

strong tendency to obtain outcomes that favor some, but hurt others. Indeed, it is

not unlikely to reach a state in which a fraction of all individuals always makes a

good choice, whereas all others consistently make a bad one. More speci�cally, �nal

outcomes tend to favor (1) the type of individuals that constitutes a majority of the

population and (2) individuals that bene�t the most from their optimal choice over

their suboptimal choice.

We consider a population of individuals who repeatedly make a choice between

two actions, which are the same across all individuals and time periods. As a con-

sequence of her choice, each individual receives a payo¤ according to some unknown

payo¤ distribution. These distributions may vary across individuals and may be

interpreted as being determined by the individual�s type. Yet, we assume that

individuals do not know their own type, nor the type of any other individual in the

population. The structure of information we consider is similar to the canonical

setup in which decision makers are able to observe the experience of others (e.g.,

Fudenberg and Ellison, 1993, 1995; Vega-Redondo 1997; Schlag 1998, 1999). In

particular, in each time period each individual observes the most recent action and

payo¤ of an individual who is selected at random from the population according to

an exogenous probability distribution. She also observes her own most recent action

and consequent payo¤. In contrast to the existing literature, we assume that each
1In economics, some papers have also studied social comparisons (e.g., Santos-Pinto and Sobel

2005), however this literature has focused on explaining observed over con�dence and positive self
assessment, whereas here we assume that decision makers compare themselves to others to assess
what payo¤s to expect with observed actions.
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individual also perceives a random comparison-signal. This signal is informative

about the di¤erence in expected payo¤ of the individual and the observed individ-

ual with respect to the sampled action. We assume the comparison-signal to be

unbiased, i.e., individuals do not make systematic mistakes in their assessment of

the di¤erence in expected payo¤. The comparison signal can be understood as the

individual�s assessment of how much better or worse she would do than the observed

individual, if she were to choose the same action as him.

Individuals use all this information to update their choice. The observed actions,

obtained payo¤s, and the perceived comparison-signal are mapped to the probability

of choosing each action through a function called the decision rule. We impose a

standard "must see" condition (e.g. Ellison and Fudenberg 1995, Cubitt and Sugden

1998), such that individuals consider switching action only when they observe an

action di¤erent from the one that they are currently using. I.e., if an individual

samples someone who is currently using the same action as herself, she does not

switch.

Our analysis is con�ned to decision rules with which an individual who observes

two di¤erent actions is always more likely to choose the one with the highest ex-

pected payo¤ for her. We call this class of decision rules payo¤-ordering. In a

preliminary result (Proposition 1.1) we show that for payo¤-ordering decision rules,

the updated probability of choosing each action depends on the di¤erence between

two terms: (1) the sum of the observed individual�s payo¤and the comparison signal

and (2) the own obtained payo¤. Intuitively, with payo¤-ordering decision rules the

probability of playing each action depends on the perceived di¤erence in expected

payo¤s of the two actions. Our assumption that the comparison signal is unbiased

implies that the perceived expected payo¤ of the sampled action is an unbiased

estimator of the objective expected payo¤ of that action. Hence, this leads to a

higher expected probability of choosing an action when its expected payo¤ is higher.

More importantly, the comparison-signal assures that heterogeneity per se does not

mislead individuals in their assessment of the expected payo¤ that they themselves
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would receive upon switching to the observed individual�s action.

The focus of this paper is on the dynamics of the choices of individuals in a

heterogenous population in which all of them update the probabilities of playing each

action using a payo¤-ordering decision rule. We consider a population with two types

of individuals, A and B; who may choose between two actions, a and b. The payo¤

distributions associated with each action are the same for all individuals of the same

type and the expected payo¤ of action a (b) is greater than the expected payo¤ of

action b (a) for all type A(B) individuals. We �rst analyze the case in which each

individual observes each of the remaining individuals with uniform probabilities,

which we refer to as uniform sampling. Our main results (Propositions 1.2 and

1.3) show that the choices of the population converge to a rest point determined

by two factors: (1) the fraction of types in the population and (2) each type�s

di¤erence in expected payo¤s across actions, i.e. the risk-sensitivity of each type�s

decision problem (e.g., Persico 2000). If the two types� risk-sensitivity is about

the same, then the relative fractions of types in the population determine the long

run prediction of the dynamics. In particular, if the fractions of the two types are

di¤erent enough, then the whole population converges to the action that provides

the highest payo¤ for the majority type and hence, to the action with the lowest

payo¤ for the minority. Intuitively, in order for an individual to switch to her

optimal action she must observe someone who is using it. At the same time, each

individual is more likely to observe someone from the majority type, who, due to the

payo¤ ordering decision rule, is likely to be choosing his optimal action. This leads

the optimal action of the larger type to propagate faster than the one of the smaller

type. Eventually the entire population converges to the majority type�s optimal

action. Hence, the minority may end up choosing the wrong action in the long run,

despite using a rule with which they are more likely to make the right choice among

the observed actions.

The action to which the population converges is also determined by the risk-

sensitivity of each type�s decision problem. If the fractions of types are about the
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same, and the di¤erence in risk-sensitivity across types is large enough, then the

whole population converges to the optimal action of the most risk-sensitive type.

In other words, the population converges to the optimal action of the type that

bene�ts the most from moving to its optimal action. Intuitively, since choices

are driven by payo¤-ordering decision rules, and the relative fractions of types are

about the same, the optimal action of the type that bene�ts the most from choosing

optimally propagates faster than the other action. This eventually leads the system

to converge to the action that provides the highest payo¤ for the most risk-sensitive

type.

If the fractions of types in the population are similar and the risk-sensitivities of

both types decision problems are about the same, then the population converges to

a rest point in which a fraction strictly between zero and one of each type chooses its

optimal action. Moreover, most individuals of at least one of the types choose their

optimal action. While not all individuals make the right choice, payo¤ ordering

assures that at least one type of individuals perform better than if they were to

choose randomly. In this case, the balanced composition of the population make

both actions propagate in a more balanced way, which eventually leads the popula-

tion to a more balanced �nal state. However, in such a �nal state individuals from

time to time sample an individual choosing a di¤erent action and this implies that

some individuals of each type choose their suboptimal action.

We show (Proposition 1.4) that in all the asymptotically stable rest points of the

system the average expected payo¤ of the population is greater than the average

expected payo¤ if all individuals randomize their choices. In other words, if one

type is better o¤ in a stable rest point and the other type is worse o¤, then the gains

of the type that is better o¤ more than o¤set the losses of the other type. The

intuition behind this result is simple. The system tends to converge to a state that

favors the type that is either larger or face the most risk-sensitive decision problem,

and this has a positive impact on the average expected payo¤ of the population.

Individuals may have a stronger (or weaker) tendency to observe individuals that
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are similar to them. We take this into account by allowing homophilous as well as

heterophilous sampling, i.e. a bias toward observing the own and the other type,

respectively. We refer to this as biased sampling. Homophilic tendencies are widely

documented (see Currarini, Jackson and Pin 2009 and the references therein) and

may be due to segregation or preferences for having friends that are similar to you.

We show (Proposition 1.5) that the predictions are qualitatively similar to the case

of uniform sampling, with some important quali�cations. Each type is favored by

being more homophilous. The reason is that this creates a stronger tendency for an

individual to observe someone with the same optimal action, which in turn makes

her more likely to observe an individual that is currently using her optimal action.

On the other hand, each type is negatively a¤ected by an increase in the other type�s

homophily, since this makes it more likely that the individuals of the opposite type

are using their optimal action. Finally, as both types become more homophilous,

the positive e¤ects of the bias in sampling dominates and the population outcome

improves. Thus, in our model segregation leads to better outcomes.

Finally, we discuss how our model can be applied to analyze the di¤usion of

innovations. There is an important literature that takes note of the fact that many

innovations are not adopted instantaneously and study the process through which

innovation di¤use in society (see, e.g, Geroski 2000 and Young 2009). Our model

can be used to analyze the di¤usion of innovation through social learning, when

the innovations is bene�cial for a fraction of the population, whereas the remainder

is better o¤ with the status quo. We discuss some related models and show that

our model tends to generate the S-curves typical of many empirical studies of the

di¤usion of innovations2. We argue that our model is consistent with some features

of the di¤usion of hybrid corn in Kenya found by Suri (2011). In particular, Suri

(2011) �nds less than full �nal adoption, heterogeneities in returns to adoption and

equilibrium switching behavior. All of these features are consistent with our model.

This paper is related to the seminal papers of Ellison and Fudenberg (1993,

2I.e., the rate of adoption is �rst slow, later fast and �nally levels out.
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1995), Vega-Redondo (1997), and Schlag (1998), which model individuals as having

feedback from their own and others�choices, and using cognitively simple rules to

choose their actions (for a thorough survey, see Alos-Ferrer and Schlag 2009). In the

analysis of decision problems with a homogeneous population, relatively simple imi-

tation rules allow most individuals to choose the optimal action in the long run. An

important issue, not addressed by this literature, is the possibility that individuals

are heterogeneous, and that being able to infer something about this heterogeneity

may a¤ect the choices and population outcome. A remarkable exception is Ellison

and Fudenberg (1993), in which individuals only observe neighbors who, in most of

the cases, have the same optimal actions as them. In fact, the smaller the "window"

of neighbors an individual interacts with, the closer is the system to convergence

to the optimal choice for the whole population in the long run. In contrast, here

individuals are able to extract relevant information also from the experiences of

individuals that are di¤erent from them, and observe all individuals with positive

probability. This creates qualitatively di¤erent dynamics and e.g. allows for the

possibility that minorities end up choosing a suboptimal action.3

In Section 2 we provide the framework and a characterization of payo¤-ordering

decision rules. Section 3 describes the dynamics of the two-type population. In

Section 4 apply our model to the analysis of technology adoption. Section 5 explores

the implications of biased sampling. Section 6 concludes.

1.2 Framework

We analyze a continuum population of individuals, denoted by W . Our model is

intended to capture a situation in which the expected outcome of di¤erent choices
3Our paper also relates to the growing literature that studies empirically the role of social

interactions in shaping individual choices, e.g. Manski 2000,Munshi 2004, A. Sorensen 2006, Bayer,
Ross and Topa 2008. This literature has identi�ed two factors that are fundamental to understand
the role of social interactions on individual decisions, referred to as "endogenous-interaction e¤ects"
and "correlated-e¤ects." Our model provides a description of how these e¤ects may arise as a
consequence of social learning. Endogenous interaction e¤ects arise in our model since individuals
are in�uenced by the population state through the sampling procedure. Correlated e¤ects arise
since individuals of the same type make similar choices.
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may be di¤erent across individuals. For simplicity, we consider a population com-

posed by two types of individuals, denoted by A and B, i.e., W = A [ B. Let

�(i) 2 T := fA;Bg denote the type of individual i 2 W . Each individual chooses

an action c 2 S = fa; bg. The action chosen by an individual i, denoted by c(i),

yields a payo¤ x 2 [0; 1]; i.e., we assume there is a lower and upper bound for pay-
o¤s. The distribution of the payo¤ that an individual i 2 � receives when she plays
action c(i) = c is the same for all the individuals of that type, and it is denoted

by F�c; for all � 2 T and c 2 S. The corresponding expected value is denoted by

��c :=
R
xdF�c(x). The probability measure of every measurable set X � [0; 1]

under the distribution F�c is denoted by ��c(X) and if X is a singleton fxg then, its
probability is denoted simply by ��c(x). Notice that we use c to denote the mapping

from i 2 W to her chosen action at any time, and also to denote a typical action

in S (we may also use d and e to denote generic actions). In the same manner, a

generic type is often denoted by � or � 0.

From time to time, each individual i observes another individual j 6= i in the pop-

ulation and �nds out the action he played and the payo¤he obtained. The sampling

procedure is governed by exogenously given probabilities, denoted by (p�;� 0)�;� 02T .

In other words the probability that i observes j is determined only by �(i) and �(j).

At the same time the individual realizes that she may be of a di¤erent type than

the observed individual and, hence the payo¤ distribution she faces when playing

an action may be di¤erent from that of the observed individual. In particular we

assume that whenever a type � individual observes a type � 0 individual who has cho-

sen c, she perceives a random variable ��� 0c which takes values in [�1; 1] and that
we refer to as the comparison-signal. This random variable is informative about

her relative performance if she were to choose c, compared to the performance of

the observed individual when he chooses c. This comparison-signal is assumed to

be unbiased in that
R
�dF��� 0c(�) = ��c � �� 0c. In other words, the expected value

of ��� 0c is positive (negative) when the individual who perceives it would do better

(worse) with c than the observed individual. For instance, if i perceives � > 0

when she samples j who chose c, this may be interpreted as a judgement "I would
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do better than what j did if I choose c." The payo¤ of all individuals and per-

ceived comparison-signals are all assumed to be mutually independent. The pro�le

of distributions F := (F�c; F��� 0c)�;� 02T;c2S is called the environment of the decision

problem and it is assumed to be unknown to the decision makers.

Individuals choose actions according to a decision rule, which is a mapping

from the observed actions and corresponding payo¤s, and the perceived comparison-

signal, to the probability of choosing each action the next time. We denote this deci-

sion rule by L, thus L : S�[0; 1]�S�[0; 1]�[�1; 1]! �(S). Here, L(c; x; d; y; �)(e)

is the updated probability that an individual chooses e 2 S, given that she chose c,
obtained the payo¤x, observed an individual who chose d and obtained the payo¤ y,

and perceived the comparison-signal �. As is common in the literature (e.g. Ellison

and Fudenberg 1995, Cubitt and Sugden 1998), we assume L(c; x; c; y; �)(c) = 1 for

all c 2 S: This means that individuals only contemplate switching their action when
they observe an action di¤erent from the one that they are currently using. This

assumption is motivated in several manners (see Ellison and Fudenberg 1995 and

the references therein).

For an individual i 2 � , with decision rule L, given that she chooses action c and
observes another individual j 2 � 0 who chooses action d, the expected probability

that she chooses action e the next time she makes a choice is denoted by Lecd(� ; �
0),

i.e.,

Lecd(� ; �
0) :=

Z Z Z
L(c; x; d; y; �)(e)dF�c(x)dF� 0d(y)dF��� 0d(�):

In other words, Lecd(� ; �
0) captures the probability of choosing e, ex-ante to the draws

from the payo¤ and comparison-signal distributions. This expression is important

in the analysis of the decision rules that we focus on below.

It is important to observe that individuals are not assumed to know their types

or, in other words, they do not know the payo¤ distribution of the di¤erent actions

they may choose. They know neither the number of types in the population nor the

distributions of comparison-signals. The only information they have is their own

choice and payo¤, and another individual�s choice and payo¤. Furthermore, individ-
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uals have a basic understanding of the heterogeneity in the population, incorporated

in the comparison-signal they perceive. However, in spite of these severe informa-

tion restrictions, there are simple rules of decision which allow individuals to often

make good decisions. In particular our analysis focuses on decision rules which

satisfy the property that each individual is most likely to choose the action that

provides her with the highest expected payo¤ whenever she observes two di¤erent

actions.

De�nition 1.1. A decision rule L is payo¤-ordering if for any environment F , and

actions c and d, if ��d > (<)��c, then, Ldcd(� ; �
0) > (<)Lccd(� ; �

0) for all � ; � 0 2 T .

It turns out that the characterization of the class of payo¤-ordering decision rules

is simple and intiuitive. These rules choose the action of the sampled individual

with a probability that is an a¢ ne transformation of the observed payo¤s and the

comparison-signal.

Proposition 1.1. L is payo¤-ordering if and only if L(c; x; d; y; �)(d) = 1=2+�(y+

� � x), with � 2 (0; 1=4] for c 2 S; d 6= c; x; y 2 [0; 1]; and � 2 [�1; 1].

We provide here the proof for the �if�statement. The argument for the �only if�

part is lengthy so we provide it in Appendix A.

Proof. For any � ; � 0 2 T , and c; d 2 S;

Ldcd(� ; �
0) =

Z Z Z
(1=2 + �(y + � � x))dF�c(x)dF� 0d(y)dF��� 0d(�)

= 1=2 + �(�� 0d + ��d � �� 0d � ��c)

= 1=2 + �(��d � ��c):

Therefore, if ��d > ��c, then Ldcd(� ; �
0) > 1=2.

Since the comparison-signal is unbiased, y+ ��� 0d is an unbiased estimator of the

expected payo¤ of individual i 2 � if she chooses the action chosen by the sampled
individual j 2 � 0. Therefore, y+ ��� 0d�x is an unbiased estimator of the di¤erence
between the expected payo¤ of individual i when she chooses c(j) and when she
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chooses c(i). Hence, since � > 0; in expected terms, the probability of choosing the

action that provides her the greatest expected payo¤ is greater than the probability

of choosing the action that provides her the smallest expected payo¤. Notice also

that since � 2
�
0; 1

4

�
, and ��d � ��c � 1, by the proof of Proposition 1.1, we have

that Ldcd(� ; �
0) 2

�
1
2
; 3
4

�
when ��d > ��c:

Previous work on imitation in homogeneous populations has focused on either

some arbitrary, yet appealing rules, or decision rules that satisfy some desirable

properties. For instance, Schlag (1998) studies improving rules, which satisfy that

the average expected payo¤ of the population is expected to be non-decreasing in

time. However in our model, heterogeneity rules out this possibility (see Claim 8

in Appendix B). Yet, every payo¤-ordering decision rule is improving when the

population is homogeneous (see Claim 9 in Appendix B).

It would be desirable that the decision rule guaranteed individuals not only to

be more likely to choose their optimal action, but that they also did so with high

probability. Unfortunately, this is not possible in our model. Indeed, it can be

shown that for every decision rule, the expected value of the updated probability of

choosing the action with the highest payo¤ of two observed actions, is arbitrarily

close to one half for some environment. The (omitted) argument follows directly

from the proof of Proposition 1.1.

Finally, we notice that perceiving comparison-signals allows individuals to make

choices which in expectation are independent of the observed individuals type,

and depend only on his choice. This result follows from the assumption that the

comparison-signal is unbiased; the formal argument for its proof follows directly

from the proof of Proposition 1.1 and it is omitted.

Remark 1. For all i; j; k 2 W; c; d 2 S; Ldcd(�(i); �(j)) = Ldcd(�(i); �(k)):

This means that in expectation, individuals make equally good choices regardless

of whether they observe an individual of the same or of the other type. In the next

section we analyze the dynamics of choices of a heterogeneous population in which

all individuals make decisions according to a payo¤-ordering decision rule. As we

38



Chapter 1 Social Comparison-based Learning in a Heterogeneous Population

show below, even though each time an individual makes a choice she is more likely

to choose her best action, frequent interaction with individuals choosing their own

optimal action may lead her to end up choosing the worst action for her. Before

proceeding to the population dynamics, we specify the dynamic structure of the

model.

Dynamic Structure of theModel: The model outlined above can in principle

proceed in discrete as well as in continuous time. In a discrete time version of the

model, in each period each individual observes her action and consequent payo¤ in

the previous period, as well as those of an individual selected at random from the

population and a comparison signal. She uses this information to make a choice and

in the next period the same pattern is repeated. Here, for analytical convenience we

choose to focus on continuous time. A set of results very similar to those presented

below for the case of continuous time holds in discrete time. The main di¤erence

between the continuous and discrete time versions of the model, is that in discrete

time all individuals make their choices at exactly the same instant in time, whereas

with continuous time, choices are made at di¤erent points in time.

We will assume that each individual is equipped with an artefact known as a

Poisson alarm clock (see, e.g., Sandholm 2010). Each time this clock rings an indi-

vidual is given an opportunity to make a choice. All clocks are independent and the

times between the rings of an individual agent�s clock follow a rate � exponential

distribution. By a well known result in probability theory, this means that the

number of rings in any time period [0; t] follow a Poisson distribution with mean

�t. In other words, with larger �, individuals revise their choices more frequently.

When the clock of i 2 W rings, she observes her most recent choice and payo¤ as

well as those of another individual in the population and a comparison signal, as

described above. She uses this information and a payo¤-ordering decision rule to

make a new choice. Once the choice is made a payo¤ is drawn from the corre-

sponding distribution. This payo¤ can be thought of as a payo¤-rate, which gives

an instantaneous payo¤ to i at each point in time and remains the same until the
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next time the clock rings and the individual again makes a choice. It can also be

thought of as a once and for all payo¤ that is given to the individuals at the exact

time that she makes her choice. A possible concrete interpretation of this timing

is that an individual buys a product, e.g. a computer, which breaks after some

random amount of time and when this happens, the individual makes a new choice.

More generally, the timing implies that individuals periodically revise their choices

and the points in time at which they do this is given by an exogenous probability

distribution.4

1.3 Population dynamics

In this section we analyze the dynamics of choices when individuals make their

choices according to a payo¤-ordering decision rule. We assume that a is the optimal

action for type A and that b is the optimal action for type B. The probability that

any type A individual is matched with another type A individual is denoted by

�A 2 [0; 1] and the probability that any type B individual is matched with a type

B individual is denoted by �B 2 [0; 1]. We denote the sizes of the populations of

types A and B by jAj and jBj, respectively
From Remark 1, for any actions a; b and c in S, Lcab(� ; �

0) does not depend

on � 0. Let Lcab(�) denote the expected probability that a type � individual, with

� 2 fA;Bg, chooses c given that she played a and was matched with an individual
playing b. Let p(t) be the fraction of A types in the population choosing a at

time t and let q(t) be the fraction of B types in the population choosing b in t.

Since we assume that the populations of type A and type B individuals consist of a

continuum of individuals, the dynamics that arise from the process of sampling and

social learning are approximately deterministic. Let _p and _q be the time derivatives

of p(t) and q(t), respectively. Let the rate of the Poisson alarm clock be � = 1. The

evolution of the fractions of individuals choosing a and b in the populations of A

types and B types, respectively, is described by the system of quadratic di¤erential

4Note also, that if the di¤erent individuals�alarm clocks are perfectly correlated, we obtain a
discrete time dynamics.
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equations

_p(p; q) = �Ap(1� p)(Laba(A)� Lbab(A)) (1.1)

+(1� �A)((1� p)(1� q)Laba(A)� pqLbab(A))

_q(q; p) = �Bq(1� q)(Lbab(B)� Laba(B)) (1.2)

+(1� �B)((1� q)(1� p)Lbab(B)� qpLaba(B));

where the time dependence of p and q has been omitted. The �rst term on the right-

hand side of (1.1) re�ects the net �ow to action a of type A individuals as a result of

sampling within the population of A types. The term (1��A)((1�p)(1� q)Laba(A)
gives the �ow to action a in the type A population as a consequence of sampling

type B individuals choosing action a. Finally, �(1 � �A)pqL
b
ab(A)) re�ects the

�ow to action b in the population of type A individuals through sampling type B

individuals choosing b. An analogous interpretation applies to (1.2).

Let L := Laba(A) and R := Lbab(B) and notice that for payo¤-ordering decision

rules L;R 2 (1=2; 3=4]. Since payo¤-ordering decision rules satisfy Lbab(�) = 1 �
Laba(�) for � 2 fA;Bg; the system of di¤erence equations (1.1)-(1.2) can be written

as

_p(p; q) = �Ap(1� p)(2L� 1) + (1� �A)((1� p)(1� q)L� pq(1� L)) (1.3)

_q(p; q) = �Bq(1� q)(2R� 1) + (1� �B) ((1� q)(1� p)R� qp(1�R)):(1.4)

From equation (1.3) we see that _p(p; q) is increasing in L. Intuitively, a higher L

means that type A individuals are more likely to choose a both when they play a and

observe an individual playing b and vice versa. _p(p; q) is decreasing in q. Intuitively,

as q increases there are fewer type B individuals choosing a, therefore, when a type

A individual samples a type B individual, the probability that this individual has

played b is greater. This makes it more likely for type A individuals to choose b.

The e¤ect of p on _p is ambiguous. In both a heterogeneous and a homogeneous

population _p is a concave polynomial in p. In a homogeneous population (or an
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isolated populations with �A = 1), when p is very small there are too few type A

individuals from whom to imitate a: On the other hand, when p is very large, just

a few type A individuals are left to switch from b to a. As long as 0 < p < 1; _p > 0

because the �ows from a to b are more than compensated by �ows in the opposite

direction, since L > 1=2. However in a heterogeneous (non-isolated) population,

p < 1 is compatible with _p < 0. This occurs for high values of p, when an important

fraction of A types may be mislead by encounters with type B playing b which may

cause _p < 0. Yet, in the heterogeneous population, and for each q 2 (0; 1), for small
enough values of p, the response of _p to increases in p are greater than for higher

values of p. An analogous reasoning applies to _q and (1.4).

In this section we assume that the sampling probabilities are uniform and hence,

the probability that any individual observes a type A individual is � := jAj=(jAj+
jBj) 2 (0; 1) and the probability that any individual observes a type B individual

is 1� �. In this case �A = � and �B = (1� �). We abandon this assumption in

Section 5 where we allow sampling to be biased.

1.3.1 The Rest points of the System

Let the set of rest points of the system (1.3)-(1.4) be denoted by RP , i.e.,

RP := f(p; q) 2 [0; 1]2 : _p(p; q) = _q(q; p) = 0g:

First we characterize the set RP . It is natural that (0; 1) and (1; 0) are rest points,

since in this case all individuals of both types choose the same action. Our next re-

sult shows that for some values of �, L; andR there is a third rest point located in the

interior of [0; 1]2. We denote this point by (p�; q�), with p� := L(�(L+R�1)�(1�L)(2R�1))
�(2L�1)(L+R�1)

and q� := R((1��)(L+R�1)�(1�R)(2L�1))
(1��)(2R�1)(L+R�1) . This third rest point exists if and only if

� 2 (�; �), with � := (1�L)(2R�1)
L+R�1 and � := L(2R�1)

L+R�1 .

Proposition 1.2. If � 2 (�; �) ; then RP = f(0; 1); (1; 0); (p�; q�)g, otherwise RP =
f(0; 1); (1; 0)g.

Proof. Notice that if p = 1, then _p = 0 if and only if q = 0. Correspondingly, if
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q = 1, then _p = 0 if and only if p = 0. This implies that f(0; 1); (1; 0)g are rest
points.

From (1.3) and (1.4), the points (p; q) that satisfy _p = _q = 0 are those that

satisfy both

q =
�p(1� p)(2L� 1) + (1� �)(1� p)L

(1� �)((1� p)L+ p(1� L))
; (1.5)

p =
(1� �)q(1� q)(2R� 1) + �(1� q)R

�((1� q)R + q(1�R))
: (1.6)

De�ne the function q : [0; 1]! R such that, for every p 2 [0; 1]; q(p) is given by the
right hand side of (1.5). Therefore, for any p 2 [0; 1]; q(p) gives the point q such
that �p(p; q) = 0: Analogously, the function p : [0; 1] ! R can be de�ned using
the right hand side of (1.6) to determine p(q). p(�) and q(�) are strictly concave in
[0; 1] and they pass through (0; 1) and (1; 0). If (p�; q�) is a rest point of the system,

then p� = p(q(p�)) and q� = q(p�) (or equivalently, q� = q(p(q�)) and p� = p(q�)).

Hence, for (p�; q�) to be a rest point, p� must satisfy

p(q(p�)) =
(1� �)q(p�)(1� q(p�))(2R� 1) + �(1� q(p�))R

�((1� q(p�))R + q(p�)(1�R))
= p�:

This yields p� = p�. For this to be a rest point not in f(0; 1); (1; 0)g we also need
p� 2 (0; 1). The inequality p� > 0 simpli�es to � > � and p� < 1 simpli�es

to � < �. In other words p� 2 (0; 1) if and only if � 2 (�; �). Further, it is

obtained that q(p�) = q� which can be shown to lie in (0; 1) if and only if � 2 (�; �).
Hence, there is a rest point given by (p�; q�) if and only if � 2 (�; �), and thus
RP = f(0; 1); (1; 0); (p�; q�)g :
If � 62 (�; �) there is no rest point in (0; 1)�(0; 1) and thus, RP = f(0; 1); (1; 0)g.

The rest point (p�; q�) only exists for some parameter values of �, L, and R.

Abusing notation, let the functions � : (1=2; 3=4]2 ! R and � : (1=2; 3=4]2 ! R be
respectively de�ned by �(L;R) := (1�L)(2R�1)

L+R�1 and �(L;R) := L(2R�1)
L+R�1 for all (L;R) 2

(1=2; 3=4]2. For an internal rest point to exist we need � 2 (�(L;R); �(L;R)). It is
instructive to analyze how � and � respond to changes in L and R. Let �i, and �i
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denote the �rst derivative of � and �; respectively, with respect to its ith argument

for i = 1; 2: Then, di¤erentiating, we obtain that �1(L;R) =
�(2R�1)R
(L+R�1)2 < 0: The

interpretation of this is as follows. As is shown below, if � < �, then the fraction of

the population of type A is small, thus action a propagates slowly and the dynamics

of the system drive the population to (0; 1); i.e., virtually every individual in the

population will choose b: When L is larger, this is prevented for a greater range of

values of � and, hence, � is smaller. In contrast, when R is large, a small range

of values of � prevents that the population converges to choose b and, hence, � is

increasing in R. This provides an interpretation for �2(L;R) =
(2L�1)(1�L)
(L+R�1)2 > 0: On

the other hand, as it is also shown below, if � > �, then the fraction of the population

of type A is so large that action a propagates very fast and the dynamics of the

system drive the population to (1; 0); i.e., virtually every individual in the population

will choose b: Then an analogous interpretation can be provided for the signs of the

partial derivatives �1(L;R) =
�(2R�1)(1�R)
(L+R�1)2 < 0 and �2(L;R) =

(2L�1)L
(L+R�1)2 > 0:

Let (p̂(L;R; �); q̂(R;L; 1� �)) denote the internal rest point, i.e.,

p̂(L;R; �) =
L(�(L+R� 1)� (1� L)(2R� 1))

�(2L� 1)(L+R� 1)

q̂(R;L; 1� �)) =
R((1� �)(L+R� 1)� (1�R)(2L� 1))

(1� �)(2R� 1)(L+R� 1) :

p̂(L;R; �) and q̂(R;L; 1� �) can be expressed in terms of �(L;R) and �(L;R) as

p̂(L;R; �) =
L

2L� 1
�� �(L;R)

�

q̂(R;L; 1� �) =
R

2R� 1
(1� �)� (1� �(L;R))

(1� �)
:

This reveals that given L and R; the internal rest point depends on the distance

of � from �(L;R) and �(L;R).5 Then, for � 2 (�(L;R); �(L;R)) we obtain the
following comparative statics result for the interior rest points. Let bpi, denote the
�rst derivative of p̂(L;R; �) with respect to its ith argument, for i = 1; 2; 3: Then,

di¤erentiating, we obtain the following result.

5Notice that q̂(R;L; 1� �) = p̂(R;L; 1� �).
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Remark 2. bp1, bp2, and bp3 satisfy6
p̂1(L;R; �) =

(1�R)�(L;R)

�(2L� 1) +
(�(L;R)� �)(L+R� 1)

�(2L� 1)2 > 0

p̂2(L;R; �) = �
L(1� L)

�(L+R� 1)2 < 0

p̂3(L;R; �) =
�(L;R)

�2(2L� 1) > 0:

The intuition of these results is slightly subtle. A greater L leads to a higher

probability that a type A individual chooses a both when she currently chooses a and

samples an individual choosing b and vice versa. In the interior rest point (p�; q�)

an increase in p makes _p(p; q) < 0. As _p(p; q) is increasing in L; this allows that

_p(p; q) = 0 for a higher value of p. An analogous reasoning reveals that an increase

in R causes that in an equilibrium with greater value for R, we have a greater value

for q as well. Since an increase in the fraction of type B individuals choosing b

causes a decrease in _p(p; q); the new equilibrium requires a decrease in the fraction

of type A individuals choosing a. A similar, but slightly more intricate (omitted)

argument reveals why an increase in � causes the fraction of type A individuals to

increase and the fraction of type B individuals to decrease.

1.3.2 Stability of the Rest points

Next we analyze the conditions for the di¤erent rest points to be stable. The notion

of asymptotic stability requires the system to remain close and to converge to the

rest point whenever the system starts su¢ ciently close to it (e.g., Hofbauer and

Sigmund 1998). Formally a rest point (p�; q�) is asymptotically stable if for any

" > 0 there exists some � 2 (0; ") such that if jj(p(t); q(t)) � (p�; q�)jj < �; then

jj(p(t0); q(t0))� (p�; q�)jj < " for all t0 > t, and (ii) there exists some � > 0 such that

if jj(p(t); q(t))� (p�; q�)jj < �, then limt0!1(p(t
0); q(t0)) = (p�; q�).7

6Since q̂(R;L; 1� �) = p̂(R;L; 1� �), (omitted) analogous results hold for q̂(R;L; 1� �).
7 jj � jj stands for the euclidean norm of the corresponding vector dimension.
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In the following proposition we characterize the stability properties of the di¤er-

ent rest points of system (1.3)-(1.4) for virtually all the possible parameter values.8

Furthermore, we show that in each case, the asymptotically stable rest point is a

global attractor, i.e., the system converges to this point, regardless of the initial con-

ditions (as long as the path does not start in a di¤erent rest point). The proof is

provided in the appendix.

Proposition 1.3. Suppose sampling is uniform and let (p�; q�) be the asymptotically

stable point of the system. Then

(p�; q�) =

8<:
(0; 1) if � < �(L;R)

(p̂(L;R; �); q̂(R;L; 1� �)) if �(L;R) < � < �(L;R)
(1; 0) if � > �(L;R):

Furthermore, in each of these cases limt!1(p(t); q(t)) = (p
�; q�) for all paths such

that (p(0); q(0)) =2 RP:

Whenever a rest point is a global attractor, it satis�es the second condition of

asymptotic stability. However, in general, it does not necessarily satisfy the �rst

part, i.e. it is possible that the dynamics move away from the rest point before

eventually converging to it. Nevertheless, Proposition 1.3 reveals that a rest point

of (1.3)-(1.4) is asymptotically stable if and only if it is a global attractor of the

system.

Proposition 1.3 implies that if there is an internal rest point, it is the only

asymptotically stable point and additionally it is a global attractor. Otherwise,

either (0; 1) or (1; 0) is asymptotically stable and a global attractor. In particular,

if � < �(L;R) we have that (0; 1) is asymptotically stable, whereas if � > �(L;R)

we have that (1; 0) is asymptotically stable. Intuitively, if � < �(L;R); the fraction

of the population of type A individuals is relatively small, so b propagates much

faster. This eventually leads the whole population to choose b: Analogously, if

� > �(L;R); the fraction of the population of type A individuals is relatively large,

8We only exclude � = � and � = ��. The reason for this is that the techniques that we use in the
proof of the following result applies only to hyperbolic rest points (see the proof of Proposition 1.3)
and at � = � and � = �� some of the rest points are not hyperbolic.
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so a propagates much faster and eventually, the whole population ends up choosing

a. Finally, if the fraction of the population of type A is neither large enough nor

small enough, then neither a nor b fully dominate and (p̂(L;R; �); q̂(R;L; 1� �)) is
the asymptotically stable rest point. As we show below, in this rest point, at least

one of the two types are better o¤ than simply choosing their actions randomly.

1.3.3 Phase Diagrams

In this section we derive the phase diagrams corresponding to the system (1.3)-(1.4).

This is done by using equations (1.5)-(1.6) and observing that

_p(p; q) S 0() q T �p(1� p)(2L� 1) + (1� �)(1� p)L

(1� �)((1� p)L+ p(1� L))
(1.7)

_q(q; p) S 0() p T (1� �)q(1� q)(2R� 1) + �(1� q)R

�((1� q)R + q(1�R))
: (1.8)

In other words, the direction in which the system (1.3)-(1.4) moves in the (p; q) space

given some initial point (p0; q0) will depend on whether this point is above or below

the graphs of the functions p(q) and q(p) de�ned in the proof of Proposition 1.2.

There are three possibilities: (i) "p(q) is always above q(p);" i.e., p�1(p) > q(p) for

all p 2 (0; 1), (ii) "p(q) is always below q(p);" i.e., q(p) > p�1(p) for all p 2 (0; 1), and
(iii) "p(q) and q(p) intersect," i.e., q(p) = p�1(p) for some p 2 (0; 1). In Appendix 3,
we provide the formal analysis that reveals that these are all the possible cases.

The three cases are described in Figures 1, 2 and 3, respectively, for a represen-

tative parameter con�guration corresponding to each case. In all three plots the

solid line represents p(q) and the dashed line represents q(p). The parameter values

used for the plots are (i) L = 3=5; R = 3=4 and � = 1=2, (ii) L = 3=4; R = 3=5 and

� = 1=2 and (iii) L = R = 3=4 and � = 1=2.

The phase diagrams give an idea about the direction in which the system moves

given di¤erent initial points. In case (i), in which p(q) is above q(p), the phase

diagram in Figure 1 suggests that the system moves in the direction of (0; 1) from

any initial point other than (1; 0). This case corresponds to � < �(L;R). In this

case, although the population is perfectly balanced, the two-armed bandit faced by
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type B individuals is more risk sensitive than the bandit faced by type A individuals

because L = 3=5 < R = 3=4.

Figure 1: p(q) is above q(p): L = 3=5; R = 3=4 and � = 1=2

Analogously, in case (ii), in which q(p) is above p(q), the phase diagram in

Figure 2 suggests that the systemmoves towards (1; 0) from any initial point di¤erent

to (0; 1). This case corresponds to � > �(L;R).
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Figure 2: q(p) is above p(q), L = 3=4; R = 3=5 and � = 1=2

Finally, in case (iii) (Figure 3) the system appears to be moving towards the point

of intersection (p̂(L;R; �); q̂(R;L; 1��)) from any initial point other than (0; 1) and
(1; 0). It is easy to verify that in this case � 2 (�(L;R); �(L;R)).

Figure 3: There is a point of intersection, L = R = 3=4 and � = 1=2.
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1.3.4 Average Expected payo¤s

The minority�s curse. The system converges to (0; 1); (1; 0) or an interior point,

depending on parameter values. Each population type bene�ts from being large

relative to the other population type, in the sense that, if the fraction of type A (B)

individuals is large enough, namely, � > � (� < �), then the fraction of individuals

of that type playing their optimal action, a (b); converges to one.

Since � > 0; both L and R are sensitive to the di¤erence between the expected

payo¤ between the two actions. This has the consequence that, for a relatively

balanced population, if the di¤erence between the expected payo¤ of actions a and b

for the individuals in A (B) is large enough compared to the di¤erence between the

expected payo¤ of actions a and b for the type B (A) individuals, then the system

converges to a state where all individuals choose a (b), the optimal action for type

A (B) individuals.

It is noteworthy that the system predicts one of the extreme points for a relatively

large set of parameter values. Thus, even though all individuals make their choices

according to a payo¤-ordering decision rule, the population dynamics may well lead

one of the types to a state in which all of them choose the action that is optimal

for the other type, but not optimal for them. The reason is that the forces leading

the individuals of the other type towards their optimal action can be stronger and

imitating them may overwhelm the e¤ect of payo¤ordering. In particular, imitation

in a heterogenous population may be harmful for minorities. If � is su¢ ciently large,

type B individuals would converge to b in the long run only if type A individuals

are nearly indi¤erent between a and b. In other words, if a minority interacts with

a majority and preferences over actions are the opposite, the majority will exert

a negative in�uence on the minority leading them to choose the action that is not

optimal. This contrast sharply with previous results obtained for homogenous

population where these adverse e¤ects do not arise.

The adverse e¤ect for the minority is driven by the popularity of the suboptimal

action, in the sense that more popular actions are chosen more frequently. A more
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popular action is more likely to be chosen since sampling an individual playing it is

more likely. The larger the fraction of a type, the more in�uential their decisions

will be for the population dynamics. For example, if a type B individual playing a

is matched with another individual playing b; the probability that he will choose b is

R > 1=2. However, the probability that he will choose b ex-ante to the outcome of

the matching process will be (�(1� p) + (1� �)q)R which is less than 1=2 for many

values of p and q. At the same time, the larger is � the greater is the weight of p in

this probability. This contrasts with the manner in which popularity is introduced

in Ellison and Fudenberg (1993). They assume that when individuals make their

choices they are biased towards more popular actions. In our analysis, popularity

weighting is not an exogenously imposed bias toward more popular actions, but it

rather arises endogenously as a result of the sampling procedure.

The adverse e¤ect over minorities however may not appear if the di¤erence be-

tween the expected payo¤s among actions for the majority is small. In fact, notice

that lim
R!1=2

�(L;R) = lim
R!1=2

�(L;R) = 0 and lim
L!1=2

�(L;R) = lim
L!1=2

�(L;R) = 1. This

implies that for small enough R (and for �xed � and L) the system converges to

(1; 0), whereas for small enough L (and for �xed � and R) the system converges to

(0; 1). In other words, even if, for instance, group A is much larger than group B, if

A is close to indi¤erent between a and b the system will converge to a state in which

the minority (B) chooses the right action, whereas A chooses the wrong one. On

the other hand, since �(L;R); �(L;R) 2 (0; 1), for any L;R there exist some � such
that the system predicts either (1; 0) or (0; 1). This means that even if, for exam-

ple, type A individuals are close to indi¤erent between a and b, if the population of

individuals type A is su¢ ciently large relative to the population of individuals type

B; the system will converge to a state in which all type A individuals choose the

optimal action, while all type B individual choose their suboptimal action.

It is instructive to contrast the choices individuals make in an asymptotically

stable rest point with simple random choice. When choice is random, on average,

half of the individuals of each type choose the right action. We can thus consider

imitation to be detrimental for a type of individuals whenever it leads to a popu-
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lation state in which less than half of its members chooses the right action in the

asymptotically stable rest point. Imitation is detrimental for one of the types when

the asymptotically stable rest point is either (0; 1) or (1; 0). At the same time,

in an internal rest point imitation can only be detrimental for at most one of the

population types, which follows since p(q) and q(p) are concave functions and both

go through (0; 1) and (1; 0), which implies that if they intersect they do so above the

line q = 1�p. In an internal rest point imitation is detrimental for type A individu-
als whenever p̂(L;R; �) < 1=2 which can be rewritten � < 2L�(L;R). Analogously,

imitation is detrimental to type B individuals if � > 1�2R(1��(L;R)). Imitation
is bene�cial for both types of individuals when these two inequalities hold in the

opposite direction.

The average expected payo¤ of the population. At most one of the two

population types may be better o¤ choosing randomly than when choices are lead

by a payo¤-ordering decision rule. However, if so, this type of individuals represents

a small fraction of the population or has the smallest di¤erence in expected payo¤s

between the optimal and suboptimal action. Let �X(a) (�X(b)) be the expected

payo¤ of an individual type X 2 fA;Bg when she plays action a (b). The average
expected payo¤ of the population in the state (p; q), denoted W (p; q), is given by

W (p; q) = �(p�A(a) + (1� p)�A(b)) + (1� �)(q�B(b) + (1� q)�B(a)):

The average expected payo¤of the population when all individuals choose randomly

with uniform probability, denoted by WRC ; is given by

WRC =
1

2
(�(�A(a) + �A(b)) + (1� �)(�B(b) + �B(a))):

We then obtain

Proposition 1.4. W (p�; q�) � WRC > 0 for any asymptotically stable rest point

(p�; q�) of system (1.3)-(1.4).

Proof. First, consider � > �(L;R). Then (p�; q�) = (1; 0) and W (1; 0) �WRC =

1
2
(�(�A(a) � �A(b)) � (1 � �)(�B(b) � �B(a))) =

1
4�
(�(2L � 1) � (1 � �)(2R �
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1)), which means that W (1; 0) � WRC > 0 if � > 2R�1
2(L+R)

and this holds since
2R�1
2(L+R)

< �(L;R). An analogous argument holds if � < �(L;R). Suppose � 2
(�(L;R); �(L;R)). For simplicity assume � = 1

4
(a similar argument holds if � 2

(0; 1
4
). Then W (p̂(L;R; �); q̂(R;L; 1 � �)) � WRC = �(p̂(L;R; �) � 1

2
)(�A(a) �

�A(b)) + (1� �)(q̂(R;L; 1� �)� 1
2
)(�B(b)� �B(a)) = (2R� 1)(2L� 1) > 0:

This shows that in any interior rest point the imitation process leads to a higher

average expected payo¤, despite of the fact that it may be detrimental for one of the

population types. In fact, the amount by which it increases welfare in an interior

rest point is increasing in both L and R. In other, words, the gains over random

choice of the individuals of the type that bene�ts from the imitation process always

exceeds the loss incurred for the the type of individuals that is hurt by the imitation

process. Note also that it is not necessarily the case that one of the types is worse

as compared to random choice. For instance, if � = 1=2; L = 3=4 and R = 3=4,

then (p̂(L;R; �); q̂(R;L; 1 � �)) = (3=4; 3=4), so the population converges to an

asymptotically stable state in which 75% of individuals of each type choose their

optimal action.

1.4 Application to the Di¤usion of Innovations

There is a large literature studying how innovations are adopted and di¤use in soci-

ety.9 The basic observation is that innovations are rarely adopted instantaneously

and it rather takes a long time for adoption to take place. A prominent stylized

fact about slow di¤usion is that the time path of the fraction of adopters follows an

S-curve, i.e. adoption is �rst slow, then accelerates and �nally slows down.10 Much

of the literature on di¤usion of innovations aims to explain how such patterns of

adoption may arise. In this section we illustrate how our model can used to analyze

9See for example, Rogers (1995), Geroski (2000), Young (2009), Conley and Udry (2010), and
Suri (2011).
10For instance, see Ryan and Gross (1943), Griliches (1957), Dixon (1980), and Henrich (2001).
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di¤usion of innovations. We discuss some related models and derive some empirical

predictions some of which are consistent with a number of empirical �ndings.

Suppose that a population is using a technology a, when a new technology b

is introduced in the market. Suppose this technology provides, in expected value,

higher payo¤s than technology a for each type B individual. Yet, the expected

payo¤s of type A individuals is lower with the new technology than with the current

technology a. Consider an initial state in which q ' 0 and p = 1, i.e. a small amount
of type B individuals initially adopt the new technology b, and the remainder use the

status quo technology a. All type A individuals use technology a in the initial state.

We can then study how b is adopted by type A individuals, type B individuals, and

the entire population. In particular, our model captures di¤usion of an innovation

which is optimal for a fraction of the population, whereas the remainder does better

with the status quo. An example of such a situation is the di¤usion of hybrid corn in

Kenya examined by Suri (2011), where the returns to adoption depend on di¤erences

in infrastructure and other factors. Suri (2011) explains patterns of heterogeneity in

adoption by considering rational heterogenous adopters who choose the technology

that is optimal to them. Here we give a complementary explanation in which

heterogeneity in adoption arises from a process of social learning and comparison

when the payo¤s of di¤erent technologies vary across individuals. The idea that

social learning can in�uence di¤usion of innovations is not new and in fact empirical

evidence supports it. For example, Conley and Udry (2010) �nd evidence that

farmers in Ghana are in�uenced by successful neighbors.11 However, the impact of

heterogeneity of payo¤s across the population on the di¤usion process, or how agents

consider this heterogeneity in their decisions has received virtually no attention in

the literature.

Contagion models. Di¤usion arising from the type of social learning studied

11Foster and Rosenzweig (1995) reached a similar conclusion for Indian agriculture in an earlier
study. Another example is Munshi (2003). He �nds that individuals are less likely to learn from
neighbors that di¤er from them in unobserved characteristics. This means that individuals do not
have access to the information implicit in the similarity signal contemplated in our model. This
information is based on observable characteristics and is what allows the extraction of relevant
information even from the experience of an individual of a di¤erent type.
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in this paper is closely related to a process of di¤usion known as contagion (e.g.,

Geroski 2000, Young 2009). In models of contagion, individuals are assumed to adopt

a technology when they observe or interact with others who have already adopted.

Hence, adoption depends on the prevalence of the technology in the population.

The model analyzed in this paper relates to a two-population model of contagion in

which individuals may also disadopt at a positive rate, i.e. choose to abandon the

new technology. To see this relationship we consider a relatively standard version of

the model of contagion analyzed in Young (2009). In his analysis there is only one

type of individuals in the population, say type B, and the dynamics of the fraction

of the population who have adopted at time t, denoted by q(t), are given by the

equation of motion

_q(t) = (�q(t) + )(1� q(t)); �;  > 0, (1.9)

where q(t) is the fraction of current adopters and _q(t) its time derivative.12 The

parameter � is the (exogenous) rate at which individuals adopt the technology after

hearing about it from another individual. The parameter  measures adoption

through external in�uences such as advertising. The term q(t)(1 � q(t)) can be

thought of as the number of encounters between adopters and non-adopters.

The contagion model and equation (1.9) in particular bear some similarity to

(1.3) and (1.4). This is not surprising, in our model individuals sample others from

the population and mimic their action at some rate, which is similar to a process of

contagion. To see more clearly the nature of this relationship, consider an extension

of the model of contagion to the case of a two type population where  = 0.13

Let 1 � p and q be the fraction of agents who has adopted the new technology

in populations A and B respectively. Suppose further that type A individuals

who have not adopted the new technology b, adopt at rate �Ab whenever they have

12Young also considers a process of di¤usion through social learning. However, in his model
individuals are far more rational than in ours and update a prior belief as information accumulates.
It turns out that our model of boundely rational social learning is more related to a process of
contagion.
13A two-population model of contagion is discussed in Geroski (2000) who also provides a liter-

ature review on the contagion model.
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encounters with other individuals of any type who have adopted b. Suppose also

that disadoption may occur as well at rates �Aa when type A individuals who have

adopted b have encounters with individuals who have not adopted. Similarly let

the adoption and disadoption rates of type B individuals be denoted by �Bb and

�Ba; respectively. Then, the resulting dynamics are given by

_p = �p(1� p)(�Aa � �Ab) + (1� �)((1� q)(1� p)�Aa � pq�Ab) (1.10)

_q = (1� �)q(1� q)(�Bb � �Ba) + �((1� p)(1� q)�Bb � pq�Ba): (1.11)

The constants �Aa � �Ab, �Aa; and �Ab in (1.10) play the same role as 2L � 1, L;
and 1 � L in (1.3) (for (1.11) the corresponding analogies hold). Hence our social

comparison-based learning model may be interpreted as a two-population contagion

model with adoption and disadoption rates given by, respectively, 1� L and L; for

type A individuals and R and 1�R for type B individuals.

Whereas disadoption would have little e¤ect if incorporated in (1.9), the e¤ect of

disadoption in a heterogeneous two type population is important. For example, as

shown in the previous sections, it is plausible that the population converges to a state

in which only a fraction of it adopts the new technology. Oftentimes, disadoption

seems plausible, in particular if the returns to the innovation are uncertain, and

moreover it is worse than the status quo for a part of the population. Indeed,

Young (2009) allows for disadoption in the analysis of the model of social learning

and Suri (2011) �nds evidence of disadoption and switching when returns to adoption

may be negative. Additionally, by considering di¤usion of innovations through the

learning model considered here, we obtain dynamics governed by rates of adoption

and disadoption that are related to economic fundamentals such as payo¤s and the

decision rules of individuals.

Adoption curves. The literature on technology di¤usion has paid consider-

able attention to the adoption curve, i.e. the time path of the fraction of current

users. The adoption curve of (1.9) has a standard S-shape that is often found in

the empirical literature on technology adoption (e.g., Griliches 1950, Dixon 1980).

Although �nding explicit solutions to (1.3) and (1.4) is intractable, the adoption
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curves of our model are S-shaped for a range of typical parameter values. It is

instructive to analyze the dynamics of the dicrete time version of (1.3) and (1.4).

We illustrate the dynamics of the model in two cases; one where full adoption

occurs, and another where only partial adoption is observed. In Figure 4, the dash-

dot line is the adoption curve for type B individuals, the dashed line corresponds

to type A individuals and the solid line is for the entire population. On the left-

hand side of Figure 4, � = 0:4, whereas on the right-hand side � = 0:66. In both

parts L = 0:6 and R = 0:7 so, as before, a is better for type A individuals and b

is better for type B individuals. In the left-hand side the entire population adopts

the new technology, which means that 40% of the population ends up using the new

technology in spite of being better o¤ with the status quo. It can be seen that at

any point in time type B individuals have a larger fraction of adopters than type A

individuals. Eventually, most type B individuals choose b and the same occurs with

type A individuals later on. On the right-hand side, slightly more than half of the

population adopt. Most type B individuals eventually adopt the new technology,

whereas most type A individuals choose the status quo. The reason that adoption

is lower is that type A individuals are a greater fraction of the population in this

case. This is consistent with our stability analysis in Section 3.
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Figure 4: Adoption curves with full and less than full adoption

Less than full adoption and switching behavior. A distinctive feature of our

model is that it allows for less than full adoption in equilibrium. Whenever this
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happens, there is a constant �ow of individuals switching from the status quo to the

new technology and vice versa. Indeed, what de�nes the interior equilibrium is the

balance of these �ows. At any state (p; q) the �ow into the innovation is given by

f+(t) := (�(1�p(t))+(1��)q(t))(�p(t)(1�L)+(1��)(1�q(t))R) and the �ow away
from it is f�(t) := (�p(t) + (1��)(1� q(t)))(�(1� p(t))L+ (1��)q(t)(1�R)) for
all t � 0. Figure 5 provides three examples of equilibrium switching behavior. The
parameters are set at L = 0:6; R = 0:7 and � equal to 0:558, 0:611 and 0:637. There

are three sets of pairs of nearly parallel curves. The curves on the top of each pair

represents f+(t) and the one on the bottom represents f�(t). Low �nal adoption

corresponds to high values of �. The �nal fraction of adoption for each of these pair

of curves is, going from bottom to top, 0:91, 0:71 and 0:61 and the corresponding

fraction of individuals switching each time period is 0:078; 0:19 and 0:218.14 We can

obtain the maximum �ow to and from the innovation in equilibrium by maximizing

f+(t); evaluated at (p(t); q(t)) = (p̂(L;R; �); q̂(R;L; 1��)); with respect to L; R and
� for all those triplets (L;R; �) such that (p̂(L;R; �); q̂(R;L; 1 � �)) is an internal

equilibrium. The numerical solution of this problem shows that these �ows involve

at most 25% of the population in equilibrium.15

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Switching in Equilibrium

14These numbers correspond to the sum of f+(t) and f�(t) once convergence is attained.
15The maximum is attained at L = 0:500022, R = 0:500014 and � = 0:384143, or R = 0:500022,

L = 0:500014 and 1� � = 0:384143.
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These results are consistent with a number of empirical �ndings in Suri�s (2011)

study of the adoption of hybrid corn in Kenya. He notes that aggregate adoption

has �attened out at about 70% of the population since the 1990s, suggesting that

adoption has reached an equilibrium level. Suri estimates production functions for

agricultural output and found the return to adoption to be heterogenous across farm-

ers. It is also found that some farmers switch back and forth between hybrid and

non-hybrid corn. For example, between 1997 and 2004 around 39% of the households

switched on and out in use. Suri suggests that the heterogeneity in adoption is due

to the heterogeneity in returns and that close to indi¤erent farmers are responsible

for the switching, since their decisions are sensitive to shocks to the costs of hybrid

seed and fertilizers. Our model provides an alternative explanation for both facts.

Here, less than full adoption is possible for a large set of parameter values. This

occurs if there is a level of �nal adoption such that the �ow of individuals switching

into hybrid corn equals the �ow of agents switching out. Hence, �nding switching

in equilibrium is a necessary consequence of less than full adoption in our model.

Our model also provides an additional prediction. The fraction of adopters in the

part of the population for which hybrid corn is not optimal, increases in the fraction

of the population for which adoption is optimal. If for example infrastructure is

improved, so hybrid corn becomes the optimal choice for a larger fraction of the

population, then the fraction of adopters in the remaining part of the population

should increase as well.

1.5 Biased Sampling

In this section we relax the assumption of uniform sampling and allow �A 6= � and

�B 6= 1 � �, so that each type may have stronger (or weaker) tendency to sample

individuals of the same type. In other words, we allow for homophily (bias towards

sampling same type individuals) and heterophily (bias towards sampling other type

individuals) in the population. Homophilic tendencies are widely documented (see

Currarini, Jackson and Pin 2009 and the references therein) and may be due to
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segregation or individual preferences for having friends that are similar to them.

We introduce homophily and heterophily in our model allowing �T =
"T jT j

"T jT j+jWnT j

where "T 2 (0;1); is a constant that measures the bias of type T individuals to

sample individuals of the same type for T 2 fA;Bg. If "T = 1 we obtain uniform
sampling, whereas if "T > 1 type T individuals are homophilous, and if "T < 1; they

are heterophilous.

Stable Equilibria. The resulting dynamics are similar to the case of uniform

sampling, yet the analysis allows us to obtain insights about the role of these biases

on the choices of the population. As before, we obtain convergence either to a

corner rest point or to an internal rest point. Thus, the corresponding results that

we obtained for uniform sampling are robust to biased sampling. However now we

obtain some other results that cannot arise under uniform sampling. We show that

convergence of the population to the non-optimal action for a type of individuals

can always be ruled out if this type is su¢ ciently homophilous. More generally,

the fraction of both types of individuals choosing a (correspondingly, b) increases

in �A (correspondingly �B). This means that a type bene�ts from being more

homophilous and is a¤ected negatively by the homophily of the other type. In the

limit, as �A and �B go to one, so each type is completely homophilous, the global

attractor of the system goes to (1; 1), i.e., the entire population makes the right

choice. Hence, the limit of the model corresponds to the case of two homogenous

populations.

Formally, �x L;R 2 (1
2
; 3
4
]; let �A : R! R such that �A(z) = R�L+zR(2L�1)

(1�L)(2R�1) for all

z 2 R; and �B : R! R such that �B(z) = L�R+zL(2R�1)
(1�R)(2L�1) for all z 2 R. It is easy to

see that �A(�B) >
�
��1B

�
(�B) for all �B 2 (0; 1); where

�
��1B

�
is the inverse function

of �B: The following lemma characterizes virtually all the pairs (�A; �B) such that

(1; 0) is asymptotically stable and such that (0; 1) is asymptotically stable.16

Lemma 1.1. Suppose �A 6= �A(�B) and �B 6= �B(�A); then (i) (1; 0) is asymptot-

16The only possibilities we do not consider here are when �A = �A(�B) or �B = �B(�A), in
which case some restpoints may not be hyperbolic and hence may not be determined using the
Jacobian of the system.
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ically stable if and only if �A > �A(�B), (ii) (0; 1) is asymptotically stable if and

only if �A <
�
��1B

�
(�B), (iii) if (1; 0) is asymptotically stable, then (0; 1) is not

asymptotically stable (and vice versa).

Proof. (i) We use the determinant and trace of the Jacobian matrix. Det(J(1; 0)) =

L � R + �BR(1 � 2L) + �A(2R � 1)(1 � L)) > 0 i¤ �A > �A(�B). �A(�B) � 1

for all �B � 1�R
R
, so if �A > �A(�B), then �B < 1�R

R
. Finally, if �B < 1�R

R
,

then Tr(J(1; 0)) = �A � 1 � L(1 + �A) + R(1 + �B) < 0. (ii) is established

analogously. (iii) follows from (i) and (ii) and the fact that �A(�B) >
�
��1B

�
(�B)

for all �B 2 (0; 1):

Corollary 3. (i) If �B > 1�R
R
then (1; 0) is not asymptotically stable, and if L >

R and �B < L�R
R(2L�1) , then (1; 0) is asymptotically stable. (ii) If �A > 1�L

L
then

(0; 1) is not asymptotically stable, and if R > L and �A < R�L
L(2R�1) , then (0; 1) is

asymptotically stable.

Part (i) of Corollary 3 follows by observing that if �B > 1�R
R
then �A(�B) > 1

and if L > R and �B < L�R
R(2L�1) , then �A(�B) < 0 (and the analogous argument

proves (ii)).

Lemma 1.1 implies that for any L;R 2 (1
2
; 3
4
] and �A; �B 2 (0; 1) either (i)

(1; 0) is asymptotically stable, (ii) (0; 1) is asymptotically stable, or (iii) neither is

asymptotically stable. For large values of �A relative to �B, (1; 0) is asymptotically

stable, whereas for large values of �B relative to �A, (0; 1) is asymptotically stable.

For more similar values of �A and �B, neither (1; 0), nor (0; 1) is asymptotically
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stable. This is illustrated in Figure 6 for L = 0:7 and R = 0:6.

Figure 6: The solid line corresponds to �A and the dashed
line to �B.

Furthermore, if and only if
�
��1B

�
(�B) < �A < �A(�B) (i.e., if neither (1; 0) nor

(0; 1) are asymptotically stable) there is also a unique internal rest point (for details,

see Appendix D). The following results show that the asymptotically stable rest

points are global attractors.

Proposition 1.5. If (p(0); q(0)) =2 RP; then limt!1(p(t); q(t)) = (p
�; q�); where

(p�; q�)

8<:
= (0; 1) if �A <

�
��1B

�
(�B)

2 (0; 1)2 if
�
��1B

�
(�B) < �A < �A(�B)

= (1; 0) if �A(�B) < �A:

Proof. Since _p2(p; q); _q2(q; p) < 0 the system always converges to a rest point as

t!1. If �A > �A then by Remark 11 and Lemma 1.11, RP = f(1; 0); (0; 1)g. By
Lemma 1.1, (0; 1) is unstable and has no stable arm in [0; 1]2. Hence, the system

converges to (1; 0). The converse holds for �B > �B. If �A < �A and �B < �B, then

by Lemma 1.11, RP = f(1; 0); (0; 1); (p̂; q̂)g, with (p̂; q̂) 2 (0; 1)2. By Lemma 1.1,

(1; 0) and (0; 1) are unstable and have no stable arm in (0; 1)2. Hence, the system

converges to (p̂; q̂).
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In Figure 6, the northwest (correspondingly southeast) region corresponds to the

parameter values such that (1; 0) (correspondingly (0; 1)) is a global attractor. In

the center region the internal rest point is the global attractor.

We shall emphasize two implications of the results above. First, together with

Corollary 3, Proposition 1.5 implies that if individuals of a given type are su¢ ciently

homophilous, then the population will not converge to choose the action that is not

optimal for that type of individuals. For example, if �B > 1�R
R
then the system will

not converge to (1; 0) regardless of �A and L. An implication is that if both types

are su¢ ciently homophilous, then the population always converge to the internal

rest point. Second, if the bandit of type B individuals is less risk sensitive than

the bandit of type A individuals, and additionally type B is relatively small or

heterophilous, so �B is below a threshold value (determined by L and R), then the

population converges to choose a, regardless of �A. This is seen clearly in Figure

6, where if �B is below around 0:15, then the population converges to choose a even

if �A is arbitrarily small.

Comparative Statics. The more likely is a type of individuals to sample indi-

viduals of their own type, the larger the fraction of that type that chooses its optimal

action in an internal rest point. Fix L;R 2
�
1
2
; 3
4

�
and let (p̂(�A; �B); q̂(�B; �A))

be the internal rest point, when it exists, as a function of �A and �B. Using im-

plicit di¤erentiation, it is easy to establish that p̂1(�A; �B) > 0, p̂2(�A; �B) < 0,

q̂1(�B; �A) > 0 and q̂2(�B; �A) < 0 (see Appendix D). The intuition of this result

follows from the fact that internal rest points are characterized by the fact that �ows

in to and out of each action for each type are balanced. Since internal rest points

(p�; q�) always satisfy (p�; q�)� (1
2
; 1
2
); in equilibrium, a higher tendency to sample

own-type individuals, makes it more likely to sample an individual playing the ac-

tion that is optimal for both types. This allows that in equilibrium, to maintain

the balance, there are a greater fraction of the population playing the already the

optimal action (and hence likely to be an out�ow) and a smaller fraction playing

the non-optimal action (and hence likely to be an in�ow).

Furthermore, within the internal rest points, as the probability of a type of
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sampling individuals of their own type goes to one, in equilibrium, the fraction of

those individuals who choose their optimal action goes to one. This is formalized

in the following remark (the proof is provided in Appendix D).

Remark 4. If �B > 1�R
R
; then lim

�A!1
p̂(�A; �B) = 1 and if �A > 1�L

L
, then lim

�B!1
q̂(�B; �A) =

1.

The role of the quali�ers in the remark is just to guarantee that we are in a case

where there is an internal rest point. Finally, notice that this result implies that

a heterogenous population behaves as two homogenous population, in the limit, as

each type becomes completely homophilous.

1.6 Discussion

The model of social comparison and learning we analyze in this paper allows us

to obtain sharp results. In a two-type population where each type faces a bandit

with relatively similar risk sensitivities, the population is lead towards the action

that is optimal for the majority but non-optimal for the minority. This result is

obtained even though individuals of di¤erent types are somehow aware of the fact

that di¤erent actions may lead to di¤erent payo¤s for di¤erent individuals. This

is less likely to occur if the population is relatively balanced. In such a case, the

population may converge to an asymptotically stable state in which most individuals

of both types choose the action that is optimal for each type.

Despite the fact that a type of individuals may be lead to their non-optimal

action in the steady state, the average expected payo¤ of the population in every

asymptotically stable point is greater than the expected payo¤ of a heterogeneous

population of individuals who choose their actions randomly. Intuitively, when the

type of individuals converging to its non-optimal action is relatively small or faces

a bandit that is not very risk-sensitive, the losses associated with not choosing the

optimal action are relatively small.

Overall, the model of social learning and comparison can suitably be applied to

di¤usion of innovations when the returns to adoption are heterogenous. The rates

64



Chapter 1 Social Comparison-based Learning in a Heterogeneous Population

of adoption, L and R, re�ect the relative merit of the innovation and the status quo

for the corresponding types in the population. The adoption curves tend to have

the typical S-form. Final outcomes of less than full adoption are fully consistent

with this process of di¤usion. Equilibrium switching behavior arises as a natural

consequence of any such outcome.

In our analysis of a heterogeneous population we assume that individuals are

equally likely to observe the choice and payo¤ of any other individual. Indeed,

depending on the degree of segregation of a population, individuals may be more

or less likely to observe the choices and outcomes of individuals that are di¤erent

from them. Our results suggest that minorities are better o¤ when there is some

segregation, than in integrated heterogeneous population.

There are several extensions of the model we have left for future research. In

our setup there is no role for the accuracy of the signal. It is intuitive that the

experiences of people who are perceived as di¤erent may be less informative, and

indeed, some empirical evidence suggests that information about di¤erent individu-

als is often discarded (e.g., Munshi, 2004). In our model, however, the information

about di¤erent individuals is as informative as the information about similar in-

dividuals, the only di¤erence is that, since the comparison-signal is random, yet

unbiased, the perceived payo¤ from the sampled individual (the payo¤ he obtained

plus the comparison-signal) is a mean preserving spread of the perceived payo¤ from

the sampled individual if the signal were not assumed to be noisy. Nevertheless, as

the expected probability of playing each action is not a¤ected by mean preserving

spreads, in terms of the expected probability of choosing each action, the randomness

of the comparison-signal does not play an important role in our analysis.

Our model assumes as given the exogenous sampling process. However, in the

presence of heterogeneity individuals may have incentives to search for individuals

that are similar to them and therefore suitable to learn from. At the same time, it

seems that individuals would prefer to sample others who have made good choices.

An analysis that considers an endogenous sampling process might provide interesting

insights into the implications of heterogeneity in the search for suitable role model.
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We leave for future research a more thorough consideration of these issues.

1.7 Appendix A: Proof of Necessity in Proposi-
tion 1.1

Necessity in Proposition 1.1 is argued using the following lemmata.

Lemma 1.2. If L is payo¤-ordering, then, if ��d = ��c; then Ldcd(� ; �
0) = 1=2.

Proof. Consider an environment F such that ��d = ��c and assume Ldcd(� ; �
0) < 1=2.

We will now consider a small " perturbation of this environment, which we denoteeF . First we perturb F�d by letting eF�d be such that for any interval I � [0; 1)

we have e��d(I) = (1 � ")��d(I) and e��d(1) = ��d(1) + "��d[0; 1). We obtaine��d = (1 � ")��d + ". Next, we perturb F�c by letting eF�c be such that for any
I � (0; 1] we have e��c(I) = (1 � ")��c(I) and e��c(0) = ��c(0) + "��c(0; 1]. We

obtain e��c = (1� ")��c and

E[e��� 0d] = (1� ")��d + "� ��d

= (1� ") (��d � �� 0d) + "(1� �� 0d)

= (1� ")E [��� 0d] + "(1� �� 0d):

Suppose the distribution of e��� 0d is given by a compounded distribution which
weights with probabilities 1 � " and " the distributions F��� 0d and a degenerate

distribution which assigns all the probability mass to 1� �� 0d. In all the other re-

spects, the environments F and eF are the same. Let eLdcd(� ; � 0) denote the expected
updated probability of choosing d when i 2 � chooses c, observes j 2 � 0 who chooses
d; and the comparison-signal e��� 0d in the environment eF . eLdcd(� ; � 0) can be written as
a continuous function of " and when " = 0; eLdcd(� ; � 0) = Ldcd(� ; �

0) < 1=2. Thus, for

small enough ", eLdcd(� ; � 0) < 1=2 and, since e��d > e��c, L is not payo¤-ordering.
Corollary 5. If L is payo¤-ordering, x; y 2 [1;�1], � 2 [�1; 1], and x = y+ � then,

L(c; x; d; y; �)(d) = 1=2:
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Proof. Consider x; y; � which satisfy the hypothesis and an environment in which

��c(x) = ��d(y + �) = �� 0d(y) = ���� 0d(�) = 1. In this environment Ldcd(� ; �
0) =

L(c; x; d; y; �)(d), and thus, the previous lemma implies L(c; x; d; y; �)(d) = 1=2.

Lemma 1.3. If L is payo¤-ordering, then,

L(c; x� "; d; y; �)(d) = L(c; x; d; y + "; �)(d) = L(c; x; d; y; � + ")(d)

for all x; y 2 [1;�1], � 2 [�1; 1], and " such that x�"; y+" 2 [0; 1] and �+" 2 [�1; 1].

Proof. Consider an environment in which ��c(x) = ��c(x�") = 1=2; ��d(x�"=2) =
�� 0d(y) = 1 for some x; y ; " such that x � "; y + " 2 [0; 1] and � + y + "=2� x 6= 0.
Let ���� 0d(�) = p and ���� 0d(�

0) = 1�p, for some � > x�y�"=2 and �0 < x�y�"=2
such that � + "; �0 + " 2 [�1; 1] and p� + (1 � p)�0 = ��d � �� 0d = x � y � "=2,

which implies p = x�y��0�"=2
���0 and 1 � p = �+y+"=2�x

���0 . Payo¤ ordering imposes

pL(c; x; d; y; �)(d)+pL(c; x�"; d; y; �)(d)+(1�p)L(c; x; d; y; �0)(d)+(1�p)L(c; x�
"; d; y; �0)(d) = 1: Now consider an environment in which �� 0d(y) = �� 0d(y+") = 1=2;

��c(x) = ��d(x) = 1, ���� 0d(�) = p and ���� 0d(�
0) = 1 � p. Payo¤ ordering im-

poses pL(c; x; d; y; �)(d) + pL(c; x; d; y + "; �)(d) + (1 � p)L(c; x; d; y; �0)(d) + (1 �
p)L(c; x; d; y + "; �0)(d) = 1: Subtract this from the equality in the preceding para-

graph to obtain pL(c;x�";d;y;�)(d)�L(c;x;d;y+";�)(d)
p�1 = L(c; x� "; d; y; �0)(d)�L(c; x; d; y+

"; �0)(d) and L(c;x�";d;y;�)(d)�L(c;x;d;y+";�)(d)
�+y+"=2�x = L(c;x�";d;y;�0)d�L(c;x;d;y+";�0)(d)

�0+y+"=2�x : Note that

the left and right hand side of this expression are independent of � and �0. By the

preceding Corollary, if we take � = x� y� " (which satis�es �+ " = x� y 2 [�1; 1])
we obtain L(c; x � "; d; y; x � y � ")(d) = L(c; x; d; y + "; x � y � ")(d) = 1=2, and

hence, L(c; x� "; d; y; �)(d)� L(c; x; d; y + "; �)(d) = 0.

Now, let ��c(x) = ��d(x) = �� 0d(y) = 1. Let ���� 0d(�) = p=2; ���� 0d(� + ") = p=2

and ���� 0d(�
0) = (1 � p)=2 and ���� 0d(�

0 + ") = (1 � p)=2. Then, E[��� 0d] = p� +

p"=2+ (1� p)�0+ (1� p)"=2 = p�+ (1� p)�0+ "=2 = x� y and pL(c; x; d; y; �)(d) +
pL(c; x; d; y; � + ")(d) + (1 � p)L(c; x; d; y; �0)(d) + (1 � p)L(c; x; d; y; �0 + ")(d) =

1: Combining this with the expression above we obtain p(L(c; x � "; d; y; �)(d) �
L(c; x; d; y; � + "))(d) + (1 � p)(L(c; x � "; d; y; �0)(d) � L(c; x; d; y; �0 + ")(d)) = 0,
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or L(c;x�";d;y;�)(d)�L(c;x;d;y;�+")(d)
(�+y+"=2�x) = L(c;x�";d;y;�0)(d)�L(c;x;d;y;�0+")(d)

(�0+y+"=2�x) . Again, take � =

x� "� y, which yields L(c; x� "; d; y; x� "� y)(d) = L(c; x; d; y; x� y)(d) = 1=2,

and therefore, L(c; x� "; d; y; �)(d)� L(c; x; d; y; � + ")(d) = 0.

The results for � = y + "=2 � x are obtained by considering an environment in

which � = �0 and doing analogous computations.

Corollary 6. For all x; y; x0; y0 2 [0; 1], and �; �0 2 [�1; 1] such that y + � � x =

y0 + �0 � x0; we have L(c; x; d; y; �)(d) = L(c; x0; d; y0; �0)(d).

Proof. Note that in this case

L(c; x; d; y; �)(d) = L(c; x0 + y � y0 + � � �0; d; y; �)(d)

= L(c; x0; d; y � y + y0; � � � + �0)(d)

= L(c; x0; d; y0; �0)(d);

where the second equality follows from the preceding lemma.

This result implies that L(c; x; d; y; �)(d) can be written as a function of y+��x
only. Let this function be denoted by g : [�2; 2] ! [0; 1]. Corollary 1 implies

g(0) = 1=2. The following results show that g is also linear, i.e., g(z) = 1=2 + �z

for some real number � and all z 2 [�2; 2]:

Lemma 1.4. If L is payo¤-ordering then, g(�z) + g(z) = 1 for z 2 [�1; 1].

Proof. Let ��c(0) = ��d(0) = �� 0d(0) = 1 and ���� 0d(�z) = ���� 0d(z) = 1=2 ; z 2
[0; 1]. Then, payo¤ ordering imposes 1=2g(�z) + 1=2g(z) = 1=2:

Lemma 1.5. If L is payo¤-ordering then g(�z) + g(z) = 1 for z 2 [�2; 2].

Proof. Let ��c(x) = ��c(0) = �� 0d(x) = �� 0d(0) = 1=2, ��d(x=2) = 1 and ���� 0d(�x) =
���� 0d(x) = 1=2, x 2 [0; 1]. Payo¤ ordering imposes

1

8
g(�2x) + 2

8
g(�x) + 2

8
g(0) +

2

8
g(x) +

1

8
g(2x) = 1=2:

This expression and the preceding lemma imply g(�2x) + g(2x) = 1, which along

with the preceding lemma yield the result.
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Corollary 7. If L is payo¤-ordering then g(0) = 1=2g(�z) + 1=2g(z).

Lemma 1.6. If L is payo¤-ordering then g(z) = 1=2g(z + ") + 1=2g(z � ") for

z 2 [�1; 1] and " 2 [0; 1� jzj].

Proof. Let ��c(0) = ��d(0) = �� 0d(0) = 1 and ���� 0d(�z) = 1=2 and ���� 0d(z + ") =

���� 0d(z � ") = 1=4 ; z 2 [0; 1] and " 2 [0; 1� z]. Then, payo¤ ordering implies

1

2
g(�z) + 1

4
g(z � ") +

1

4
g(z + ") =

1

2

g(�z) + 1
2
(g(z + ") +

1

2
g(z � ")) = 1:

By substituting this in g(�z) + g(z) = 1 we obtain g(z) = 1=2g(z + ") + 1=2g(z �
").

A consequence of the preceding lemma is that payo¤ ordering requires g to be

linear over the interval [�1; 1]. Linearity follows from the standard result that if

g(1=2z + 1=2z0) = 1=2g(z) + 1=2g(z0) for all z; z0 in some interval [z; z] then, g is

both concave and convex over [z; z]. In the following lemma we show that linearity

holds over the whole domain of g:

Lemma 1.7. If L is payo¤-ordering then, g(z) = 1=2g(z + ") + 1=2g(z � ") for

z 2 [�2; 1] [ [1; 2] and " 2 [0; 1� jzj].

Proof. Let ��c(0) = �� 0d(0) = �� 0d(x) = 1=2, ��c(x + ") = ��c(x � ") = 1=4;

���� 0d(�1) = ���� 0d(1) = 1=2 and ��d(��c) = 1, with x 2 [0; 1] and " 2 [0; 1 � x].

Then, by using payo¤ordering, symmetry around zero and by applying the preceding

lemma, it can be derived that g(x + 1) = 1=2g(x + 1 + ") + 1=2g(x + 1� ") which

implies g(z) = 1=2g(z+")+1=2g(z�") for z 2 [�2; 1][ [1; 2] and " 2 [0; 1�jzj].

This lemma implies that g(z) is linear in [�2; 1][ [1; 2]: Hence, the two preceding
lemmata imply linearity in [�2; 2]. Consequently, a payo¤-ordering decision rule

must satisfy L(c; x; d; y; �)d = 1=2+�(y+��x). Consider x; y 2 [0; 1] and � 2 [�1; 1]
such that y+� > x and the environment F such that ��c(x) = ��d(y+�) = �� 0d(y) =

���� 0d(�) = 1. Since L
d
cd = L(c; x; d; y; �)d = 1=2+�(y+��x), payo¤ordering implies

69



Chapter 1 Social Comparison-based Learning in a Heterogeneous Population

that � > 0: Finally, since the range of L is [0; 1] and in the domain x; y 2 [0; 1] and
� 2 [�1; 1]; we also need � � 1=4.

1.8 Appendix B: Properties of Payo¤-Ordering
Rules

Claim 8. For any decision rule L and pro�le of choices (c(i))i2W ; there is an envi-

ronment F such thatZ Z
pi(j)L

c(j)
c(i)c(j)(�(i); �(j))��(i)c(j)djdi <

Z
��(i)c(i)di

The (omitted) proof follows from the simple observation that for every (non-

trivial) improving rule in an homogeneous population such that (c(i))i2W satis�es

c(i) 2 argmaxc2Sf��(i)cg for all i 2 W; there is an environment in which, with

strictly positive probability, some individual i observes another individual j and

changes her action from c(i) to c(j) although c(j) =2 argmaxc2Sf��(i)cg:

Claim 9. If �ic = �jc for all c 2 S and pij = pji; for all (i; j) 2 W 2; then for any

payo¤-ordering decision rule L and pro�le of decisions (c(i))i2W ;Z Z
pi(j)L

c(j)
c(i)c(j)(�(i); �(j))��(i)c(j)djdi �

Z
��(i)c(i)di:

The omitted argument is quite intuitive and it follows from the fact that every

individual who may change her action is more likely to change to a an action with

a greater payo¤ (when, as it is usually assumed in the analysis of homogeneous

populations, matching probabilities are symmetric).

1.9 Appendix C: Proof of Proposition 1.3

Proof. First we establish asymptotic stability. Let

J(p; q) :=

�
_p1(p; q) _p2(p; q)
_q2(q; p) _q1(q; p)

�
;

where _pi and _qi denote their corresponding partial derivatives with respect to their

ith argument. A rest point (p�; q�) is asymptotically stable if the real part of
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the eigenvalues of J(p�; q�) are negative. This is equivalent to Det(J(p�; q�)) > 0

and Tr(J(p�; q�)) < 0, where Det(J(p�; q�)) and Tr(J(p�; q�)) are the determinant

and trace of J(p�; q�) respectively. Consider �rst (1; 0). We have Tr(J(1; 0)) =

2R�(1+L)��(L+R�1) < 0. Next, Det(J(1; 0)) = L(1�2R)+�(�1+L+R) > 0
is equivalent to � > L(1�2R)

L+R�1 = �(L;R). An analogous calculation holds for (0; 1).

Now, consider (p̂(L;R; �); q̂(R;L; 1 � �)). Note that Tr(J(p̂(L;R; �); q̂(R;L; 1 �
�))) = 2L(1�L)(�+(1�2R)2)+2R(1�R)(2��)�1

(2R�1)(2L�1) < 0. Next, Det(J(p̂(L;R; �); q̂(R;L; 1 �
�))) = (�(L+R�1)�(1�L)(2R�1))(L(2R�1)��(L+R�1))

(2L�1)(2R�1) > 0 if � > (1�L)(2R�1)
(L+R�1) = �(L;R) and

� < L(2R�1)
(L+R�1) = �(L;R).

In order to prove that the asymptotically stable points are global attractors,

notice that _p2; _q2 < 0; hence limt!1(p(t); q(t)) 2 RP for all paths. Finally for

all (p; q) 2 RP which are not asymptotically stable, both eigen values of J(p; q)

are positive. Hence there is no neighborhood around (p; q) that contains a path

converging to it.

1.10 Appendix D: Phase Diagram Analysis

In this section we derive the phase diagrams corresponding to the system (1.3)-

(1.4). This is done by using equations (1.5)-(1.6) and observing that _p S 0 ()
q T q(p) and _q S 0 () p T p(q). In other words, the direction in which the

system (1.3)-(1.4) moves in (p; q) space given some initial point (p(0); q(0)) will

depend on whether this point is above or below the graphs of the functions p(�) and
q(�) de�ned in the proof of Proposition 1.2. In what follows we will characterize

the behavior of the dynamics in three di¤erent regions of [0; 1]2, which allows us

to make conclusions about the long run convergence of the process. De�ne the

function [p�1] : [0; 1] ! [0; 1] with [p�1](p) = q where p(q) = p; for p 2 [0; 1); and
[p�1](1) = maxfq 2 [0; 1] : p(q) = 1g.17 [p�1] is continuous, decreasing and concave.

The following lemma is obtained by straightforward di¤erentiation.

Lemma 1.8. � < �(L;R) if and only if q0(0) < [p�1]0(0).

17Notice that fq : p(q) = pg is a singleon for p 2 [0; 1):
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Lemma 1.9. (i) If � < �(L;R); then for all p 2 (0; 1) we have q(p) < [p�1](p).
(ii) If � > ��(L;R); then for all p 2 (0; 1) we have q(p) > [p�1](p).
(iii) If � 2 (�(L;R); ��(L;R)); then for p 2 (0; p�) we have q(p) < [p�1](p) and

for p 2 (p�; 1) we have q(p) < [p�1](p).

Proof. (i) Since � < �(L;R) we have q0(0) < [p�1]0(0). Given that [p�1](0) =

q(0) = 1, this means that for some (small) p we have q(p) < [p�1](p). Since with

� < ��(L;R) there is no point p 2 (0; 1) such that q(p) = [p�1](p); the continuity

of q(p) and [p�1] implies q(p) < [p�1](p) for all p 2 (0; 1). (ii) is established by an
analogous argument. (iii) Since � 2 (�(L;R); ��(L;R)) we have q0(0) > [p�1]0(0).

This means that for some (small) p we have q(p) > [p�1](p). Given that there is a

single point of intersection (p�; q�) 2 (0; 1) at which q(p�) = [p�1](p�), it must hold
that q(p) > [p�1](p) for all p 2 (0; p�). By a similar argument it is established that
q(p) < [p�1](p) for all p 2 (p�; 1).

Since [p�1](p) is decreasing if for (p; q) we have q < [p�1](p) then p(q) > p. This

implies that for (p; q) such that q 7 [p�1](p) we have _q ? 0. Using this argument

the following can be established.

Corollary 10. (i) If � < �(L;R); then for any p 2 (0; 1) and q 2 (q(p); [p�1](p))
we have _p < 0 and _q > 0.

(ii) If � > ��(L;R); then for any p 2 (0; 1) and q 2 ([p�1](p); q(p)) we have _p > 0
and _q < 0.

(iii) If � 2 (�(L;R); ��(L;R)); then for p 2 (0; p�) and q 2 ([p�1](p); q(p)) we
have _p > 0 and _q < 0 and for p 2 (p�; 1) and q 2 (q(p); [p�1](p)) we have _p < 0 and
_q > 0.

Using these results we partition [0; 1]2 in four subsets. First, let z1 := f(p; q) 2
[0; 1]2 : _p; _q > 0g; z2 := f(p; q) 2 [0; 1]2 : _p; _q < 0g. Notice that z1 = f(p; q) 2
[0; 1]2 : q < minfq(p); p�1(p)gg andz2 = f(p; q) 2 [0; 1]2 : q > maxfq(p); p�1(p)gg;i.e.
they are located to the southwest and northeast ,respectively, in the [0; 1]2 plane, and

they cannot be empty since (0; 0) 2 z1 and (1; 1) 2 z2. Let z3 := f(p; q) 2 [0; 1]2 :
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q 2 (minfq(p); p�1(p)g;maxfq(p); p�1(p)g)g, i.e., the area between q(p) and p�1(p).
The lemma implies that z3 is non-empty. We also know that if � < �(L;R), then

at any (p; q) 2 z3 it holds that _p < 0 and _q > 0. If � > ��(L;R) then for any

(p; q) 2 z3 we have _p < 0 and _q > 0. Finally, if � 2 (�(L;R); ��(L;R)) then for any
(p; q) 2 z3 such that p 2 (0; p�) we have _p > 0 and _q < 0 while at p 2 (p�; 1) we
have _p < 0 and _q > 0. To complete the partition, let z4 := f(p; q) 2 [0; 1]2 :
q = q(p) _ p = [p�1](p)g, and notice that z1 [ z2 [ z3 [ z4 = [0; 1]2. z3 [ z4
"separates" z1 from z2, in the sense that for any continuous path (p(t); q(t)) in
which (p(t0); q(t0)) 2 z1(z2) and (p(t00); q(t00)) 2 z2(z1); there exists � 2 (0; 1) such
that (p(�t0 + (1 � �)t00); q(�t0 + (1 � �)t00)) 2 z3 [ z4. Similarly, z4 separates z3
from z1 and z2:
We now have su¢ cient information to draw the phase diagrams corresponding to

the system (1.3)-(1.4) for all the three possible cases (i) � < �(L;R), (ii) � > �(L;R)

and (iii) � 2 (�(L;R); �(L;R)). An example for each of these cases is given

in Figures 1, 2 and 3, respectively, for a representative parameter con�guration

corresponding to each case. In all three plots the solid line represents p(�) and
the dashed line q(�). The parameter values used for the plots are (i) L = 3=5;

R = 3=4 and � = 1=2, (ii) L = 3=4; R = 3=5 and � = 1=2 and (iii) L = R = 3=4

and � = 1=2. Even though these plots are for speci�c parameter con�gurations,

the qualitative properties of the phase diagram are identical for each of the cases

� < �(L;R), � > �(L;R) and � 2 (�(L;R); �(L;R)).

1.11 Appendix E: Proof of Proposition 1.5

Here we provide the lemmata used to prove Proposition 1.5. De�ne [p�1] : [0; 1] !
[0; 1] with [p�1](p) := fq : p(q) = pg for p 2 [0; 1) and [p�1](1) = maxfq 2 [0; 1] :
p(q) = 1g. De�ne [q�1] : [0; 1] ! [0; 1] with [q�1](q) = fp : q(p) = qg for q 2 [0; 1)
and [q�1](1) = maxfp 2 [0; 1] : q(p) = 1g. [p�1] and [q�1] are continuous, decreasing
and concave.

Remark 11. (i) �A > (<)�A if and only if p0(0) < (>)[q�1]0(0). (ii) �B > (<)�B
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if and only if q0(0) < (>)[p�1]0(0).

Proof. (i) According to a well known result [q�1]0(0) = 1
q0(q�1(0)) =

1
q0(1) . Next,

p0(0) = �BR+R�1
R(1��B) and

1
q0(1) =

(1�L)(1��A)
�A(1�L)�L and �BR+R�1

R(1��B) < (1�L)(1��A)
�A(1�L)�L can be written

�A >
L�R+�BR(1�2L)
(1�L)(1�2R) = �A. Analogous calculations hold for (ii).

The following results follow from straightforward calculus:

Remark 12. q(p(q))� q = 0 is a polynomial equation of degree 4, and consequently
has at most 4 di¤erent solutions in q 2 (�1;1).

Remark 13. q(p) has the following properties: (i) q(0) = 1 and q(1) = 0, (ii)

limp!1 q(p) = � limp!�1 q(p) = limp!1
�A(2L�1)�L
(1��A)(1�2L)+

�A
1��Ap, (iii) q(p) is discontin-

uous only at L
2L�1 . In particular limp!( L

2L�1 )
� q(p) = �1 and limp!( L

2L�1 )
+ q(p) =1

and (iv) q(p) has two local extrema, a local maximum at some p < 1 and a local min-

imum at some p > L=(2L� 1).

The following Lemma shows that one of the four solutions to q(p(q)) � q = 0

occur outside of [0; 1], which implies that if there is an internal rest point it is unique.

Lemma 1.10. If �A 6= 1��B, then there is some q̂ 62 [0; 1] such that q(p(q̂))� q̂ = 0
with p(q̂) 2 ( L

2L�1 ;1) [ (0;�1).

Proof. (i) Consider the case �A
1��A < 1��B

�B
. Consider q(p) restricted to ( L

2L�1 ;1)
and p(q) restricted to ( R

2R�1 ;1). Both q(p) and p(q) are continuous on (
1

2L�1 ;1)
and ( R

2R�1 ;1) respectively. Since lim
p!1

q(p) = 1 and lim
q!( R

2R�1 )
+
p(q) = 1 there

is a point q0 2 ( R
2R�1 ;1) (close to

R
2R�1) such that q

0 < q(p(q0)), which means

that (p(q0); q0) is in the subgraph of q(p). Next, given that �A
1��A < 1��B

�B
there is

some q00 2 ( R
2R�1 ;1) (su¢ ciently large) such that p(q

00) ' �B(2R�1)�R
(1��B)(1�2R) +

�B
1��B q

00,

q(p(q00)) ' �A(2L�1)�L
(1��A)(1�2L) +

�A
1��Ap(q

00) and q00 ' � (1��B)(1�2R)
�B(2R�1)�R

1��B
�B

+ 1��B
�B

p(q00) >

74



Chapter 1 Social Comparison-based Learning in a Heterogeneous Population

q(p(q00)). This means that (p(q00); q00) is in the epigraph of q(p). Since p(q) is con-

tinuous on ( R
2R�1 ;1), since limp!1q(p) = lim

p!( L
2L�1 )

+
q(p) = 1 and q(p) is continuous

on ( L
2L�1 ;1), and since (p(q

0); q0) is in the subgraph of q(p) and (p(q00); q00) is in

the epigraph of q(p), with q0; q00 2 ( R
2R�1 ;1), there must be a point (p(q̂); q̂) with

q̂ 2 ( R
2R�1 ;1) that is both in the subgraph and in the epigraph of q(p). Hence

q(p(q̂)) = q̂ for some q̂ 62 [0; 1], at which p(q̂) 2 ( L
2L�1 ;1).

Consider �A
1��A > 1��B

�B
. Consider q(p) and p(q) restricted to [0;�1). Both

q(p) and p(q) are continuous on [0;�1). The point (p(q0); q0), with q0 2 [0;�1)
such that p(q0) = 0 is in the subgraph of q(p), since q(p(q0)) = 1 > q0.Next,

given that �A
1��A > 1��B

�B
there is some q00 2 (0;�1) (su¢ ciently small) such

that p(q00) ' �B(2R�1)�R
(1��B)(1�2R) +

�B
1��B q

00, q(p(q00)) ' �A(2L�1)�L
(1��A)(1�2L) +

�A
1��Ap(q

00) and q00 '
� (1��B)(1�2R)

�B(2R�1)�R
1��B
�B

+ 1��B
�B

p(q00) > q(p(q00)). This means that (p(q00); q00) is in the

epigraph of q(p).Since p(q) and q(p) are continuous on [0;1), and since (p(q0); q0)
is in the subgraph of q(p) and (p(q00); q00) is in the epigraph of q(p), there must be a

point (p(q̂); q̂) with q̂ 2 (0;�1) that is both in the subgraph and in the epigraph
of q(p). Hence q(p(q̂)) = q̂ for some q̂ 2 (0;�1) at which p(q̂) 2 (0;�1).
Hence, q(p(q̂))� q̂ = 0 for some q̂ 2 (0;�1) [ ( R

2R�1 ;1).

Lemma 1.11. (i) If �A > �A or �B > �B , then there is no internal rest point.

(ii) If �A < �A and �B < �B, then there is a unique internal rest point.

Proof. (i) Suppose �A > �A. Then by Remark 11 p0(0) < [q�1]0(0). De�ne [eq�1] :
[0;�1) ! R with [eq�1](q) := fp : q(p) = qg for q 2 [0;�1). Both eq�1(q) and
p(q) are continuous on [0;�1). Since p0(0) < [eq�1]0(0) there is some q0 < 0 (close

to 0) such that p(q0) > [eq�1](q0). Next, lim
q!1

p(q) = �1 while lim
q!1

[eq�1](q) = L
2L�1 .

This means that there is some q00 (su¢ ciently large) such that p(q) > [eq�1](q).
Hence, there is some q̂ 2 (0;�1) such that p(q̂) = [eq�1](q̂) and 1 < p(q̂) < L

2L�1 .

Since there are at most four solutions to q(p(p)) � p = 0 and there is one with

p(q) 2 ( L
2L�1 ;1) [ (0;�1) and one such that p(q) 2 (1;

L
2L�1) there is no solution

in (0; 1). An analogous argument holds if �B > �B.

(ii) Suppose. �A < �A or �B < �B. By Remark 11 q0(0) > [p�1]0(0), which
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means that there is some p0 2 (0; 1) (close to 0) such that q(p0) > [p]�1(p0). By

Remark 11 p0(0) > [q�1]0(0), which means that there is some p00 2 (0; 1) (close to 1)
such that q(p00) < [p]�1(p00). Since [p]�1(p) and q(p) are continuous on (0; 1) there

is some p̂ 2 (0; 1) such that [p]�1(p̂) = q(p̂) and hence there is an internal rest

point.

Lemma 1.11 establishes, together with Lemma 1.1, that if we ignore the cases

�A 6= �A and �B 6= �B, then there is an internal rest point if and only if neither

(1; 0) nor (0; 1) are asymptotically stable.

Remark 14. (i) p̂1(�A; �B) > 0, (ii) p̂2(�A; �B) < 0, (iii) q̂1(�B; �A) > 0 and (iv)

q̂2(�B; �A) < 0.

Proof. q̂(�B; �A) is de�ned by q(p(q̂)) � q̂ = 0. To establish (iii), we di¤erentiate

implicitly and obtain @q̂
@�B

= �
q0(p(q̂)) @p(q̂)

@�B

q0(p(q̂)p0(q̂)�1 . Consider �rst the denominator. It

holds that [p�1]0(p̂) > q0(p(q̂)). This means 1
p0(q̂) > q0(p(q̂)), or 1 < q0(p(q̂))p0(q̂).

Therefore, the denominator is positive. Now consider the denominator. Note

that @p(q̂)
@�B

> 0 and q0(p(q̂)) < 0. Hence, the numerator is negative, so @q̂
@�B

> 0.

Proceeding in the same way with (iv) we obtain @q̂
@�B

= �
@q(p(q̂))
@�A

q0(p(q̂)p0(q̂)�1 < 0. Analogous

arguments apply to (i) and (ii).

Remark 15. If �B > 1�R
R
; then lim

�A!1
p̂(�A; �B) = 1 and if �A > 1�L

L
, then

lim
�B!1

q̂(�B; �A) = 1.

Proof. Consider a value of �A large enough such that there is some p0 2 (0; 1) with
_p(p0; 1) = 0. Then since q(p) is concave and passes through (p0; 1) and (1; 0) it holds

that p̂(�A; �B) > p0. Next, _p(p0; 1) = �Ap
0(1� p0)(2L� 1)� (1� �A)p

0(L� 1) = 0
means p0 = aAL+L�1

aA(2L�1) , which approaches 1 as �A ! 1. Since p̂(�A; �B) > p0 it must

then hold that lim
�A!1

p̂(�A; �B) = 1. An analogous argument holds for q̂(�B; �A).
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Chapter 2

Imitation in Cournot Oligopolies
with Multiple Markets

2.1 Introduction

A fundamental assumption in many economic models is that agents arrive at their

decisions by maximizing an objective function. In Cournot oligopolies, this trans-

lates into the typical assumption of pro�t maximization. However, in recent years

a literature has emerged that studies quantity decisions based on imitation of suc-

cessful behavior, rather than on maximization of pro�ts. There are several reasons

to do this. Oligopolies are complex situations, which means that it is likely that

�rms sometimes make decisions through processes that are cognitively less demand-

ing than pro�t maximization (e.g. Conlisk 1996 or Gigerenzer, Todd and the ABC

Research Group 1999). At the same time, imitation of successful behavior is an

intuitive and cognitively simple heuristic, and is often observed in everyday life.

Sometimes, it eventually leads an entire population to the optimal choice (Schlag

1998). Several experimental papers have also documented imitative behavior in

oligopoly games (Huck, Normann and Oechssler 1999, 2000; O¤erman, Potters and

Sonnemans 2002; Apesteguia and Selten 2005; Apesteguia, Huck and Oechssler 2007,

2008) as well as in other situations1.

1For example, Pingle and Day (1996) focus on imitation as a means to reduce decision costs and
O¤erman and Schotter (2009) study imitation in situations characterized by exogenous uncertainty.
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However, in oligopolies there is a tendency for imitative behavior to lead to very

competitive outcomes and corresponding low pro�ts, even if the �rms imitate only

�rms which obtained high pro�ts (Vega-Redondo 1997). The reason is that �rms

competing aggressively tend to do better and therefore also to be imitated, which

leads to competitive behavior in the market. On the other hand, this tendency is

reduced if �rms sometimes imitate non-competitors, acting in other markets. In this

case, �rms in markets displaying more cooperative behavior obtain higher pro�ts.

This leads more cooperative strategies to sometimes be imitated (Apesteguia, Huck

and Oechssler 2007). This suggests that the extent to which the �rms have infor-

mation about �rms in other markets is important for the outcome when quantities

are chosen by imitation. Yet, there is not much literature exploring how di¤erent

assumptions with respect to the availability of such information a¤ect the outcome.

This paper contributes to the literature on imitation in Cournot games by thor-

oughly studying the countervailing tendencies that arise when �rms observe and

imitate both competitors and non-competitors. The key parameter under study

is the amount of information available about �rms in other markets. The general

conclusion is that more information about �rms in other markets leads to less com-

petitive outcomes.

I assume that there is a set of identical and separated markets. In each period

each �rm observes the quantities and pro�ts obtained in the previous period by

the �rms in the own market, as well as those of a sample of �rms from the other

markets. They then choose a quantity by using a decision rule. Either, they choose

the quantity that generated the highest pro�t in the sample. This decision rule is

referred to as Imitate the Best Max (henceforth, IBM). IBM has been studied in a

number of di¤erent contexts and is often motivated by its simplicity and by the nat-

ural salience of high payo¤s.2 However, when there are several markets, a quantity

can perform well in one market and poorly in another. In this case it is not clear

that �rms would �nd it appealing to follow IBM and imitate such a quantity. The

2See Alós-Ferrer 2004 for a discussion of IBM. It has been studied, e.g., in Ellison and Fudenberg
1993; Vega-Redondo 1997; Tanaka 1999, 2000; Alós-Ferrer and Ania 2005.
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second decision rule that I consider takes this into account by computing the aver-

age pro�t of each observed quantity and choosing the quantity that generated the

highest average pro�t. This decision rule is referred to as Imitate the Best Average

(henceforth IBA).3 Firms also sometimes experiment and choose a quantity at ran-

dom. I analyze the resulting stochastic process by using the techniques developed

by Young (1993) to characterize the stochastically stable states, i.e. the support of

the limiting distribution of the stochastic process. The stochastically stable states

constitute the long run prediction of the model.

Three di¤erent informational settings are considered. In a benchmark case, �rms

observe all �rms in all markets. If �rms use IBM, all quantities between the Cournot

and Walrasian quantities appear in the long run4 (Proposition 2.1). Intuitively,

quantities closer to the Walrasian quantity tend to perform the best in each market,

whereas markets closer to the Cournot quantity tend to perform better than other

markets. This creates countervailing tendencies in the dynamics which balance out

in the long run. If �rms instead use IBA, then there is a unique stochastically stable

state, in which all �rms produce the same quantity (Proposition 2.5). This quantity,

which I denote qs, lies strictly between the Cournot and Walrasian quantities. In-

tuitively, if all �rms produce qs, an experimentation toward the Walrasian quantity

increases the pro�ts with respect to the �rms in the own market. However, this is

outweighed by the decrease in pro�ts in absolute terms (i.e. in comparison to �rms

in other markets) in the computation of average pro�ts. The converse holds for

experimentation toward the Cournot quantity. This means that qs is in some sense

stable. It turns out that it is the only quantity with these properties. Moreover, qs

decreases in the number of markets and increases in the number of �rms per market.

This is a prediction that is suitable for experimental testing. It is also shown that

qs corresponds to the unique symmetric Nash equilibrium of a game in which �rms

are concerned about pro�ts in both absolute and relative terms (Proposition 8).

3IBA has been studied, e.g., by Eshel, Samuelson and Shaked 1998; Jun and Sethi 2007; Bergin
and Bernhardt 2009; Apesteguia et al. 2007; and Mengel 2009.

4I follow Vega-Redondo 1997 and refer to the quantity that each �rm produces in a symmetric
perfectly competitive equilibrium as the Walrasian quantity.
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In the second informational setting, �rms observe markets where the aggregate

quantity produced is su¢ ciently close to the aggregate quantity in the own market.

The idea is that imitation intuitively makes more sense if the sampled �rms are in

a similar situation as oneself. In this way, the extent to which �rms imitate across

markets can be continuously varied, from the benchmark case studied here, to the

single-market case analyzed by Vega-Redondo (1997), including all intermediate

cases. Moreover, the willingness to imitate across markets is endogenous, since

it is sensitive to ex-post di¤erences between the markets. In Proposition 2.9, it

is shown that if �rms are su¢ ciently insensitive to di¤erences in the aggregate, the

model behaves as in the benchmark case. If �rms instead are very sensitive, markets

evolve independently and we obtain the perfectly competitive outcome (as in Vega-

Redondo (1997)). For intermediate cases �rms produce quantities in an interval

with lower bound strictly between the Cournot and Walrasian quantity and upper

bound at the Walrasian quantity. The lower bound is increasing in �rms�sensitivity

to di¤erences in the aggregate. Hence, less competitive outcomes are obtained when

�rms are less willing to imitate across markets.

In the third informational setting the markets are arranged around a circle and

�rms observe some of the neighboring markets. For example, this can re�ect a

situation in which �rms�geographical locations prevent them from observing all the

remaining markets. As long as there is some positive inertia (in the sense that not all

�rms necessarily adjust quantities in each period), the results from the benchmark

case are robust to this setting (Proposition 2.11 and 12). This means that if �rms

use IBA, the outcome becomes less competitive as �rms observe a larger set of

markets. A conclusion that holds across the di¤erent informational settings is that

more information tends to lead to less competitive outcomes. This contrasts with

the conclusion of Huck et. al. (1999, 2000), that more information about the �rms

in the own market leads to more competitive results.

This paper is related to the seminal paper of Vega-Redondo (1997), who showed

that if decisions are made through imitation, a single market converges to the per-

fectly competitive outcome. There is also a close relationship with Apesteguia, et.
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al. (2007), who study a model in which there are several markets and �rms some-

times imitate across markets. Apesteguia et. al. (2007) were the �rst to show

that in this case imitation need not lead to competitive outcomes. This is shown

in a setting with linear demand, zero costs, a capacity constraint at the Walrasian

output and markets that are remixed from one period to another. The present pa-

per reinforces the conclusion of Apesteguia et. al. (2007) and complements their

analysis in several ways. First, by considering information structures di¤erent from

those in Apesteguia et. al. (2007) it is shown that outcomes gradually becomes less

competitive as �rms�tendency to imitate across markets gradually increases. This

analysis is not present in Apesteguia et. al. (2007). Second, I consider more general

demand and cost functions, and relax the assumption of a capacity constraint at

the Walrasian quantity and that markets are remixed. The general conclusion that

imitation across markets reduces competition, �rst uncovered by Apesteguia et. al.

(2007), is robust to this more general setting. However, the speci�c results obtained

here are very di¤erent from those of Apesteguia et. al. (2007). For example, here

the benchmark setting predicts all quantities between the Cournot and Walrasian

quantity for IBM and a unique quantity in this interval for IBA. In contrast, in a

similar informational setting Apesteguia et. al. (2007) predict the Walrasian and

Cournot outcome for IBM and IBA, respectively. Hence, the speci�c results obtained

by Apesteguia et. al. (2007) indeed depend on the speci�c set of assumptions used

by these authors.

This paper is also related to Alós-Ferrer (2004) and Bergin and Berghardt (2009).

In these papers, there is a single market but �rms remember past quantities and

pro�ts. The relationship arises since the memory model can be seen as a multimarket

model, in which the additional markets exist in the memories of the �rms. I discuss

this relationship in Appendix C and use it in section 3.1 to prove Proposition 2.1.

Finally, this paper is related to the various extensions on Vega-Redondo (1997),

for example to asymmetric oligopolies (Tanaka, 1999), industries of di¤erentiated

goods (Tanaka, 2000), more general technical conditions (Schenk-Hoppé, 2000) more

general classes of games (Alós-Ferrer and Ania, 2005) and industries with both
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optimizers and imitators (Schipper, 2008).

The model is presented in Section 2. Section 3 contains the results for IBM for

the benchmark informational setting and Section 4 contains those for IBA. Section

5 analyzes the second and third informational settings. Section 6 concludes.

2.2 The Model

2.2.1 Market Structure

Consider a population of kn �rms consisting of k � 2 disjoint groups with n � 2

�rms in each. Let K = f1; 2; :::; kg denote the set of groups and N = f1; 2; :::; ng
denote the �rms in a generic group. A group is thus identi�ed by an index j 2 K

and an individual �rm is identi�ed by a double index ij 2 N �K, where j indicates
the group and i is the identity of the individual �rm within the group. The model

proceeds in discrete time. At each point in time t = f0; 1; :::g each �rm ij 2 N �K
produces a quantity qij(t) 2 � at cost C(qij(t))5, where � = f0; �; 2�; :::; v�g is a
common �nite grid and the step size � can be arbitrarily small6. In Apesteguia et.

al. (2007) v� = qw (qw is de�ned below), which turns out to be important for the

results they derive. Here we assume that v� is "very large", in the sense that there

will not be a capacity constraint that a¤ect the dynamics of the system. The good

is sold in group-speci�c, completely isolated markets, facing a demand represented

by a function P (Qj), where Qj =
X

i2N
qij; 8j 2 K. The pro�t of �rm ij can then

be written �(qij; Qj) = P (Qj)qij � C(qij). A �rm thus competes only with �rms

belonging to the same group, introducing a sharp division between local, neighboring

�rms and those operating in other markets. For tractability we work with a well

behaved Cournot oligopoly, i.e. we assume:

Assumption 1: C(q) is twice continuously di¤erentiable, C 0(q) > 0 and
5In order to keep notation light, in what follows we suppress time indexes as long as this does

not create any ambiguity.
6This is a technical assumptions which ensures that we will be working with a �nite markov

chain, which allows us to use the techniques of Young (1993) when analyzing the dynamics of this
system.

85



Chapter 2 Imitation in Cournot Oligopolies with Multiple Markets

C 00(q) � 0.

Assumption 2: P (Q) is twice continuously di¤erentiable, P 0(Q) < 0 and

P 00(Q) � 0.

Assumption 3: P (0) > 0 and there is a quantity Q such that P (Q) = 0;

8Q � Q.

Next we proceed to de�ne the following quantities:

De�nition 2.1. The symmetric Walrasian output qw is a quantity such that P (nqw)qw�
C(qw) � P (nqw)q0 � C(q0), 8q0 2 �.

De�nition 2.2. The symmetric Cournot output qc is a quantity such that P (nqc)qc�
C(qc) � P ((n� 1)qc + q0)q0 � C(q0), 8q0 2 �.

As usual the symmetric Walrasian output is a quantity that maximizes pro�ts

taking the price as given, whereas the symmetric Cournot output maximizes pro�t

taking the quantities produced by the remaining �rms as given. Assumptions 1-

3 guarantee that unique symmetric Walrasian and Cournot equilibria exist. We

assume for simplicity that qw and qc belong to the grid �.

2.2.2 Decision and Dynamics

Firms do not necessarily decide upon quantities in all periods. We assume that

in each period �rms are picked independently with identical probability � 2 (0; 1]
to revise the strategy. When � 2 (0; 1) we say that decisions are revised with

inertia. Inertia re�ects both an unwillingness to adjust the quantity too often and

the possibility that �rms do not adjust their quantities in a perfectly coordinated

way. The main results of this paper do not depend on the presence or absence of

inertia and the proofs we provide hold for both cases.
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We will consider two di¤erent decision rules. The �rst one is called Imitate the

Best Max (IBM). Under this rule an agent adjusting his strategy7 in t observes the

quantities and pro�ts of all �rms in t � 1. He then assigns positive probabilities
according to some probability distribution of imitating all those quantities that

generated the highest payo¤ in the population in the previous period. Formally, the

agent assigns positive probabilities to all quantities in

B(t)IBM = argmax
qij(t�1):ij2N�K

f�(qij(t� 1); Qj(t� 1)): (2.1)

IBM simply prescribes imitating the most successful �rm observed. This rule has

received a great deal of attention in the literature and is considered in for example

Vega-Redondo (1997), Tanaka (1999, 2000), Alós-Ferrer (2004) and Alós-Ferrer and

Ania (2005). It has found experimental support in Apesteguia et. al. (2007).

However, as argued by Apesteguia et al. (2007), in a multi-market framework

the same strategy is likely to obtain di¤erent payo¤s in di¤erent markets. It is then

not clear that a �rm would �nd it attractive to imitate the quantity that generated

the highest maximum payo¤, since this same quantity may have performed poorly

in other markets. A more prudent imitator may want to take into account this

information. One way of doing this is by computing the average payo¤s of the

observed quantities and copy the quantity that rendered the highest average payo¤.

We refer to this rule as Imitate the Best Average (IBA). Let fqij(t � 1)g = fi0j0 2
N � K : qi0j0(t � 1) = qij(t � 1)g. Then, an agent using IBA assigns positive

probabilities to all quantities in

B(t)IBA = argmax
qij(t�1):ij2N�K

1

jfqij(t� 1)gj
X

fqij(t�1)g

�(qi0j0(t� 1); Qj0(t� 1)): (2.2)

IBA has also received attention in the literature, but in oligopoly models far

less than IBM. A reason for this is that when there is only one market, as in most

existing papers, the rules are equivalent and there is thus no point in talking about

7By "strategy" we mean the choice of a quantity.
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averages. IBA becomes suitable when there is localness in some sense in the model,

such as in the present paper. It has been considered in for example Eshel, Samuelson

and Shaked (1998), Jun and Sethi (2005), Bergin and Bernhardt (2009), Apesteguia

et al. (2007) and Mengel (2009).

The model outlined so far de�nes a �nite Markov chain. A state of this process is

a vector of the quantities produced by the di¤erent �rm, denoted by (q11; q21; :::; qn1;

q12; q22; :::; qn2; :::; q1k; q2k; :::; qnk). The state space is �kn. The transition probabili-

ties are determined by the inertia parameter � and the imitation rule. We follow

the convention in the literature and refer to the process described so far as the un-

perturbed process. We say that a state x such that P (m)x;y = 0, 8y 2 �knnfxg, 8m 2 N
is an absorbing state, where P (m)x;y is the probability of reaching state y in m steps,

starting from x. An absorbing state is then a state that once entered is left with

probability zero. In the unperturbed process, any state in which all �rms produce

the same quantity is an absorbing state. Moreover, the fact that the imitation rule

assigns positive probabilities to all quantities that generated the highest (or the

highest average) payo¤ implies that only the states in which all �rms produce the

same quantity are absorbing. We denote by !(q) the state in which all �rms produce

q and state what we just mentioned as a �rst lemma. Let 
M := f!(q) : q 2 �g8,
i.e. 
M is the set of states in which all �rms produce the same quantity, and denote

the set of absorbing states by 
. Then, as in Vega-Redondo (1997):

Lemma 2.1. 
 = 
M .

Proof. As argued above.

Next, following the common methodology in the literature, we incorporate an

"error term" into the model, which captures deviations from the behavior prescribed

by the imitation rule. Such deviations may be due to experimentation or an error

on part of the �rm. We assume that a �rm follows the prescription of the imitation

8The "M" stands for "monomorphic", re�ecting the fact that all �rms use the same strategy.
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dynamics with probability 1 � � and that with probability � it picks a quantity

randomly from � according to some probability distribution over � with full support.

These experimentations are identically and independently distributed across �rms.

With the error term a di¤erent Markov process results. We refer to this process as the

perturbed process. Since an agent deviating from the decision rule picks any quantity

with positive probability, a transition between any two states occurs with positive

probability and the perturbed process is therefore ergodic. Then, by a standard

result a unique limiting distribution exists which describes average behavior in the

long run. We use the techniques developed by Freidlin and Wentzell (1988) and

introduced into economics by Young (1993) and Kandori, Mailath and Rob (1993),

to �nd the support of this limiting distribution as � goes to zero, referred to as the

stochastically stable states, which we will denote by 
ss. As noted by these authors,


ss � 
. This implies that we can focus our study on the absorbing states, which
by lemma 1 coincides with the states in which all �rms produce the same quantity.

There are two di¤erent ways of �nding the stochastically stable states. The �rst one

involves the construction of a tree originating in a certain absorbing state, where

the remaining absorbing states constitute the nodes, and the weights or costs of

the edges is the minimum number of experimentations needed for a transition from

one absorbing state to another. Finding the stochastically stable states involves

�nding the state with the minimum cost tree. (For this approach see Young (1993)

and Kandori et al. (1993)). The other way is a shortcut due to Ellison (2000),

who observes that a su¢ cient condition for stochastic stability of a state is that

the minimum number of experimentations necessary to exit this state be smaller

than the maximum number of experimentations needed to enter it. We sketch these

results in Appendix A9. The interpretation of the stochastically stable states is that

in the long run, the process will spend almost all of its time in these states.

9We refer the reader to Fudenberg and Levine (1998) for a treatment of these methods.
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2.3 Imitate the best max

2.3.1 Stochastically Stable States

To characterize the stochastically stable states, it is of importance to determine the

conditions under which experimentation leads the system with positive probability

from one absorbing state to another. In the multi-market model, regardless of

whether � = 1 or � 2 (0; 1) , a single experimentation q0 leads the system from !(q)

to !(q0) with positive probability if and only if

D(q; q0) := �(q0; (n� 1)q + q0)�maxf�(q; (n� 1)q + q0); �(q; nq)g � 0: (2.3)

That is, an invading strategy must obtain the highest pro�t in the own market

and a higher pro�t than the �rms in other markets. In other words, the experimenter

must achieve both a relative payo¤ improvement (outdoing the competition) and an

absolute payo¤ improvement (increasing his own pro�t). If n; k > 2, two deviations

facilitate such a transition if and only if �(q0; (n � 2)q + q0 + q00) � maxf�(q; (n �
2)q + q0 + q00); �(q; nq)g � 0, where q00 is the second deviating quantity. In the

special case of k = 2, if a single deviator is placed in each market it is su¢ cient that

�(q0; (n � 1)q + q0) � �(q; (n � 1)q + q0), (q0 is better in relative terms). If n = 2,

then �(q0; nq0) � �(q; nq) is su¢ cient, i.e. any quantity that is "collusively" better

makes a transition possible.

In order to �nd the stochastically stable states we will rely heavily on Alós-

Ferrer (2004), who analyzes �rms who use IBM in a single Cournot market in which

�rms recall past quantities and pro�ts. The reason that we can use his results is

that a single market model with memory closely resembles a multi-market model.

Intuitively, in a single market model with memory, the additional, outside markets

in a sense exist in the memory of agents.

Proposition 2.1. When �rms use IBM and there are k markets with n �rms in

each, the set of stochastically stable states is f!(q) : q 2 [qc; qw]g10.
10The correct notation is f!(q) : q 2 [qc; qw] \ �g, but here and in what follows we suppress the
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Proof. We will use the proofs of theorems 1 and 2 in Alós-Ferrer (2004). He shows :

(i) D(q; q0) < 0 for all q 2 [qc; qw], q0 6= q.

(ii) For any q 2 �n[qc; qw] there is some q0 2 [qc; qw] such that D(q; q0) > 0.
(iii) For any q 2 [qc; qw) we have �(q0; (n � 2)q + q0) �maxf�(q; (n � 2)q + q0);

�(q; nq)g > 0 for q0 2 (q; qw].
(iv) For any q 2 [qc; qw] there is a '(q) > qw such that �('(q); (n� 2)q+'(q))�

maxf�(q; (n� 2)q + '(q)); �(q; nq)g > 0 and at the same time there is some q0 < q

such that D('(q); q0) > 0 for all [q0; '(q)).

A combination of radius-coradius and tree-surgery arguments (see Appendix A)

can now be used to show that f!(q) : q 2 [qc; qw]g is the set of stochastically stable
states.

First, (i) means that R(f!(q) : q 2 [qc; qw]g) > 1 and (ii) implies that Cr(f!(q) :
q 2 [qc; qw]g) = 1. Hence, R(f!(q) : q 2 [qc; qw]g) > Cr(f!(q) : q 2 [qc; qw]g) = 1;
which means that the set of stochastically stable states is contained in f!(q) : q 2
[qc; qw]g.
Next, (iii) implies that a !(qw)-tree can be constructed in which all arrows exiting

states in f!(q) : q 2 [qc; qw)g have cost 2, which means that !(qw) has minimum
stochastic potential and is therefore stochastically stable.

Finally (iv) implies that for any state in f!(q) : q 2 [qc; qw)g a !(q)-tree can
be constructed in which all states in f!(q) : q 2 (q; qw]g have exiting arrows at
cost 2. This is accomplished through sequences of transitions !(qi) 2! !('(qi))

1!
!(qi)

2! !('(q
i
))

1! !(qi+1) ! ::: ! !(qi+1), in which qi 2 (q; qw] and qi > qi+1 >

qi+1::: and so on (!(q) x! !(q0) denotes a transition from !(q) to !(q0) through

x experimentations). By (iii) the arrows exiting states in f!(q) : q 2 [qc; q)g also
have cost 2. The implication is that !(q) has minimum stochastic potential and is

therefore stochastically stable. Since this can be done for any f!(q) : q 2 [qc; qw)g,
all these states are stochastically stable.

The set of stochastically stable states here corresponds precisely to those in Alós-

\� part to lighten notation.
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Ferrer (2004), which points to the close relationship between the single market model

with memory and the multimarket model analyzed here. An important di¤erence

is that Alós-Ferrer�s (2004) results hold only under an assumption of no inertia,

whereas inertia is inconsequential in the setting analyzed here. In Appendix C we

discuss a bit more closely the relationship between the model of Alós-Ferrer (2004)

and the model analyzed here.

The intuition behind Proposition 2.1 is that quantities outside the interval [qc; qw]

are easily destabilized since experimentations that are better in both relative and

absolute terms are available. Quantities within this interval are harder to destabilize,

since an experimentation cannot be better both in relative and absolute terms. In

fact, for any q 2 [qc; qw] a deviation q0 > (<)q is better (worse) in absolute terms,

but worse (better) in relative terms. The result is that the entire interval [qc; qw] is

stochastically stable.

Proposition 2.1 should be contrasted with the corresponding result in Apesteguia

et. al. (2007), who obtain that !(qw) is the unique stochastically stable state when

�rms use IBM. The di¤erence arises mainly due to the capacity constraint they

impose at qw. As seen in the proof of Proposition 2.1, in order to leave !(qw) with

two experimentations, one �rm must experiment to a quantity q0 > qw. With the

capacity constraint this is not possible. In fact, it can be shown that if we impose

some capacity constraint v� 2 [qc; qw] the unique stochastically stable state is !(v�).
Proposition 2.1 can be related to the concept of �nite population evolutionary

stability (Scha¤er (1988)). An evolutionary stable strategy according to the de�ni-

tion of Scha¤er (1988), is a strategy q such that any single deviation from !(q) leaves

the deviator worse o¤ than the incumbents. That is, if we consider a single popula-

tion, q is evolutionary stable if and only if �(q0; (n� 1)q0 + q) � �(q; (n� 1)q0 + q)

for any q0 6= q. If we extend this de�nition to the multi-market setting by requir-

ing any deviator to be worse o¤ than either the incumbents in his group or those in

other groups, the above result implies that [qc; qw] are evolutionary stable strategies,

whereas �n[qc; qw] are not.
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2.3.2 Maximization over Aspiration Levels

It is possible to give an alternative interpretation of the result obtained above.

Scha¤er (1988) shows that in the case of a single market, the evolutionary stable

strategy can be obtained as a symmetric Nash equilibrium in a setting where �rms

maximize relative payo¤s. A result of a similar �avor can be obtained here. Consider

a single Cournot market as speci�ed above. Let each �rm i 2 N in each period t

choose a strategy in

q�i = argmax
qi

f�(qi; Q�i(t� 1) + qi)�

maxfK(�(q�i; Q�i(t� 1) + qi)); �(qi(t� 1); Q(t� 1))g: (2.4)

where Q�i(t � 1) =
P

j 6=i qj(t � 1), and K(�(q�i; Q�i(t � 1) + qi)) is a convex

combination of the pro�ts of the �rms in Nnfig. This means that the �rms choose a
strategy to myopically maximize pro�ts over the maximum of two aspiration levels:

the pro�ts of the competition and the own pro�t obtained in the previous period.

Note that if K(�(q�i; Q�i(t � 1) + qi)) were removed from (4), the decision rule is

equivalent to one of myopic best response (see for example Vega-Redondo (2003)).

We refer to the dynamic system implied by decision rule (4) as Maximization over

Aspiration levels. We say that the system is in a symmetric rest point if q�i =

qi(t� 1) = q� for all i 2 N . Then:

Proposition 2.2. The set of symmetric rest points of the system Maximization over

Aspiration Levels is f!(q) : q 2 [qc; qw]g.

Proof. The quantity q� is a symmetric rest point if and only if q� = argmax
qi

f�(qi; (n�

1)q� + qi)�maxf�(q�; (n� 1)q� + qi); �(q�; nq�)g = argmax
q0

D(q�; q0). We note that

D(q; q) = 0 for all q 2 �. Together with (i) in the proof of Proposition 2.1, this
implies that argmax

q0
D(q; q0) = q for all q 2 [qc; qw] and hence these quantities are

symmetric rest points. Next, D(q; q) = 0 for all q 2 � together with (ii) implies that
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argmax
q0

D(q; q0) 6= q for q 2 �n[qc; qw] and hence these quantities are not symmetric

rest points.

In an analogous way it can also be obtained that [qc; qw] is the set of symmetric

Nash equilibria when �rms maximize pro�ts over the maximum of the pro�t obtained

by �rms in the same market and in other markets.

The prediction obtained with IBM is thus closely related to that obtained in

a system in which �rms are concerned about both outdoing the competition and

increasing pro�ts in absolute terms. An implication of the above decision rule is

that a �rm is unwilling to choose a strategy that improves absolute payo¤s if this

worsens its position with respect to the competition too much. On the other hand,

a �rm is not willing to produce a quantity that improves its position with respect

to the remaining �rms if by doing this its absolute payo¤s decreases to a su¢ cient

degree. The result is that quantities in [qc; qw] become symmetric rest points. It

turns out that at these points it is not possible to choose a quantity that improves

both absolute payo¤s and position with respect to the remaining �rms.

As mentioned, IBM may be overly naive in a multimarket context, since a given

strategy may render di¤erent pro�ts in di¤erent markets and this is not taken into

account by this rule. In the following section we study a rule that does take this

into account.

2.4 Imitate the Best Average

Again, to analyze the dynamic properties of the system we focus on the absorbing

states of the process - the states in which all �rms produce the same quantity. We

are interested in pinpointing the conditions under which experimentation makes

transitions from one absorbing state to another occur with positive probability.

Fortunately, the dynamics under IBA are "well behaved" and it is actually su¢ cient

to consider single experimentations to �nd the stochastically stable state. A single
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experimentation q0 leads the system from !(q) to !(q0) with positive probability if

and only if (regardless of whether � = 1 or � 2 (0; 1))

f(q; q0) := �(q0; (n� 1)q0 + q)� ( n� 1
nk � 1�(q; (n� 1)q

0 + q) +
n(k � 1)
nk � 1 �(q; nq)) � 0:

(2.5)

The �rst element in f(q; q0) is the pro�t of the experimenter, which must exceed

the average of the pro�ts of the competitors (the �rst term in brackets) and the

non-competitors (the second term in brackets), who all produce q since we are in

an absorbing state. Whereas for a transition to be possible when IBM is used, the

experimenter�s payo¤must be better both in relative and in absolute terms, here it

is then su¢ cient that it be better than a weighted average of the pro�ts of the �rms

in the own market and those in other markets. The weights are determined by n

and k. In what follows we write � := n�1
nk�1 , where we note that � 2 (0; 1=2) and

that @�=@k < 0, @�=@n > 0, limn!1 � = 1=k and limk!1 � = 0.

If we compare (5) with (3) it is directly seen that f(q; q0) � 0 is less demanding
than D(q; q0) � 0 and we can thus expect fewer absorbing states to be stable against
single experimentations in the case of IBA. This expectation holds true. As we will

show, a single absorbing state, which we will denote by !(qs), remains stable against

single experimentations when we consider IBA. This means that qs in some sense

(to be made precise in the following section) is an evolutionary stable strategy. It

turns out that qs also has the property of being able to invade any other absorbing

state. These results imply that !(qs) is stochastically stable and that waiting times

to arrive at it are as low as they can get. Furthermore, local experimentation tends

to drive the system ever closer to !(qs). In what follows we will study the function

f(q; q0) in order to prove these claims.

2.4.1 The Evolutionary Stable Strategy

If we �x the �rst argument of f(q; q0), the points q0 at which f(q; q0) � 0 coincide

with the strategies that are capable of invading !(q). If there is some q such that
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f(q; q0) < 0 for all q0 6= q, then this implies that there is no strategy capable of

invading !(q). Such an uninvadeable quantity is related to the concept of �nite

population evolutionary stable strategy by Scha¤er (1988) mentioned in section 3.1.

An adaptation of this concept to the multi-market context, taking into account

average payo¤s, renders the following:

De�nition 2.3. The quantity q is an evolutionary stable strategy with respect to

average payo¤s if and only if f(q; q0) < 0, for all q0 2 �, q0 6= q.

If a strategy q is evolutionary stable according to this de�nition it follows that

a single experimentation will be lead back by the imitation dynamics to !(q) with

probability one. We now prove the existence and uniqueness of an evolutionary

stable strategy and provide the expression that de�nes it:

Proposition 2.3. There is a unique evolutionary stable strategy with respect to aver-

age payo¤s qs(k; n) de�ned by f2(qs(k; n); qs(k; n)) := P 0(nqs(k; n))(1� �)qs(k; n) +
P (nqs(k; n))� C 0(qs(k; n)) = 0. Furthermore qs(k; n) 2 (qc; qw).11

Proof. Let hq(q0) be the function obtained by �xing the �rst argument of f(q; q0)

at q. We will show that there is a unique quantity qs such that hqs(q0) < 0 for all

q0 6= qs. We do this in 2 steps: (i) We show that there exists a unique quantity qs

such that h0qs(q
s) = 0 and that qs 2 (qc; qw). Since this implies h0q(q) 6= 0 8q 6= qs and

we know that f(q; q) = 0 8q, the consequence is that for all q 6= qs there exists some

q0 such that hq(q0) > 0. Therefore, no quantity other than qs can be evolutionary

stable. (ii) We study the function hqs(q0) and con�rm that it is increasing to the

left of qs and decreasing to the right, which then guarantees that hqs(q0) < 0 for all

q0 6= qs.

(i) We di¤erentiate hq(q0) and obtain h0q(q
0) = P 0((n�1)q+ q0)(q0��q)+P ((n�

1)q+q0)�C 0(q0). Now, let g(q) := h0q(q) = P 0((nq)(1��)q+P (nq)�C 0(q). We �rst
11In what follows we omit the arguments of qs(k; n) whenever possible and write qs, to slim

notation.
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note that g(q) is strictly decreasing since g0(q) = nP 00((nq)(1 � �)q + P 0((nq)(1 �
�) + P 0(nq) � C 00(q0) < 0. We can also �nd two points at which g(q) is positive

and negative respectively; g(qc) = P 0((nqc)qc + P (nqc) � C 0(qc) � P 0((nqc)�qc =

�P 0((nqc)�qc > 0 and g(qw) = P 0((nqw)(1��)qw+P (nqw)�C 0(qw) = P 0((nqw)(1�
�)qw < 0. By continuity there is thus a unique quantity qs which lies in (qc; qw)

such that g(qs) = h0qs(q
s) = 0 and in fact g(q) = h0q(q) > 0 for q < qs and g(qs) =

h0q(q) < 0 for q > qs.

(ii) We �rst note that hq(q0) is concave for q0 > �q. By di¤erentiating twice we

obtain h00q(q
0) = P 00((n � 1)q + q0)(q0 � �q) + 2P 0((n � 1)q + q0) � C 00(q) which is

negative as long as q0 � �q.

Next, we observe that hq(q0) is increasing when q0 � �q � �qw and (n� 1)q + q0

< nqw. This follows since P 0((n�1)q+q0)(q0��q) > 0 and P ((n�1)q+q0)�C 0(q0) � 0
(since q0 � q � nqw), which guarantees that h0q(q

0) = P 0((n � 1)q + q0)(q0 � �q) +

P ((n� 1)q + q0)� C 0(q0) > 0.

Since qs < qw, we therefore have that hqs(q0) < 0 for all q0 6= qs

The intuition behind this result is that there are experimentations from !(qs)

that increase pro�ts in absolute terms (toward the Cournot quantity) and experi-

mentations generating advantages in relative terms (toward the Walrasian outcome).

However, qs is precisely such that the absolute advantages obtained by experimenting

to lower quantities are outweighed by the disadvantages in terms of relative payo¤s,

and vice-versa for experimentations to higher quantities. It turns out that in the

present setting such a quantity always exists and is unique. Figure 2.1 illustrates

f(q; q0) in a linear setting, �xing the the �rst argument:

As indicated by the preceding plot, qs can also be obtained as a solution to a

maximization problem. This follows as a direct corollary to the Proposition 2.3:

Corollary 16. The evolutionary stable strategy qs is the unique solution to q 2
argmax

q0
f(q; q0).
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Figure 2.1: Invadeable Quantities in a Linear Setting

f(qw,q’)

f(qs,q’)

f(qc,q’)

Proof. We take �rst order necessary conditions and evaluate at q0 = q, obtaining

P 0(nq)(1� �)q + P (nq)�C 0(q). This corresponds to the function g(q) in the proof

of Proposition 2.3, where it is noted that g(q) = 0 if and only if q = qs. The

su¢ cient condition is obtained in part (ii) of the proof, where it is seen that f(qs; q0)

is increasing for q0 < qs and decreasing for q0 > qs.

2.4.2 The Global Invader

If instead of �xing the �rst argument of f(q; q0) we �x its second argument, then

the points q at which f(q; q0) > 0 gives the states !(q) that can be invaded by

single experimentations to q0. These points represent the states from which an

experimentation to q0 gives the experimenter the highest average payo¤. If there is

some q0 such that f(q; q0) > 0 for all q 6= q0, then we say that q0 is a global invader.

We now proceed to show that qs is not only immune to invasion, but that it is indeed

also a global invader, so a single experimentation to qs from any state !(q) moves
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the system with positive probability to !(qs).

Proposition 2.4. qs is the unique global invader.

Proof. Uniqueness is a consequence of the preceding Proposition. Since f(qs; q0) < 0

8q0 6= qs no strategy invades qs and therefore no strategy except qs can be a global

invader. We thus proceed to prove that qs is a global invader. We will do this in

3 steps. Let fq0(q) be the function obtained by �xing the invading strategy q0 in

f(q; q0). We will show that (i) f 0qs(q
s) = 0; (ii) f 0qs(q) > 0, 8q > qs; (iii) f 0qs(q) > 0

8q < qs. Since we know that f(q; q) = 0 8q 2 �, it is then assured that fqs(q) > 0
8q 2 �.
(i) Write f 0q0(q) = (n � 1)P 0((n � 1)q + q0)(q0 � �q) � �P ((n � 1)q + q0) � (1 �

�)nP 0(nq)q� (1��)P (nq)+C 0(q0), which means that f 0q0(q0) = �P 0((nq0)q0(1��)�
P (nq0) + C 0(q0) = �g(q0) = 0 only when q0 = qs.

(ii) Consider f 00q0(q) = (n�1)2P 00((n�1)q+q0)(q0��q)�2�(n�1)P 0((n�1)q+q0)�
(1 � �)n2P 00(nq)q � 2(1 � �)nP 0(nq) + C 00(q0). All terms except the �rst one are

positive and the �rst one is positive for �q > q0. Hence f 00q0(q) > 0 and fq0(q) is

therefore convex for q > q0=�.

We now show that f 0q0(q) > 0, for q 2 (q0; q0=�), q0 � qs. Consider the cross

derivative f12(q; q0). This can be thought of as the change in f 0q0(q̂) for a �xed q = q̂

as we vary q0 . We compute f12(q; q0) = (n � 1)P 00((n � 1)q + q0)(q0 � �q) + (n �
1� �)P 0((n� 1)q + q0) and note that this is negative as long as q � q0=�. We know

that f1(q; q) > 0 for q > qs. Then, take any q0 � qs and q 2 (q0; q0= �). Since
f12(q; q

0) is negative in (q0; q0= �) we must have that f1(q; q0) > f1(q; q) > 0. Hence,

f 0q0(q) = f1(q; q
0) > 0 when q0 � qs and q 2 (q0; q0=�).

Since f 0qs(q) > 0, for q 2 (qs; qs=�) and it is convex when q > qs=�, it follows that

f 0qs(q) > 0; 8q > qs.

(iii) Again we use the cross derivative f12(q; q0). Take any q < q0 � qs. We know

that f1(q; q) < 0, for q < q0. Since f12(q; q0) = (n � 1)P 00((n � 1)q + q0)(q0 � �q) +

(n � 1 � �)P 0((n � 1)q + q0) is negative for all q � q0=�, we have that f1(q; q) is
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decreasing in its second argument. Hence f1(q; q0) < f1(q; q) < 0 for all q < q0 � qs,

which implies f 0qs(q) = f1(q; q
s) < 0, 8q < qs.

An observation of the plots in Figure 2.1 indicates that quantities q < qs are

invaded by q0 > q, whereas q > qs are invaded by q0 < q. This turns out to be true

beyond the linear case. There is a tendency for the system to move in small steps

towards qs, since any strategy is invaded by quantities in the direction of qs but not

in the opposite direction. This is a consequence of the proofs of Proposition 2.3 and

2.4 and is therefore here presented as a corollary:

Corollary 17. (i) Any !(q), q < qs is invaded by (q; qs], but not by [0; q). (ii) Any

!(q), q > qs is invaded by [qs; q), but not by (q; v�].

Proof. (i) We know that fq0(q0) = 0 8q0. In part (iii) of the proof of Proposition 2.4
we showed that f 0q0(q) < 0 for all q � q0 < qs (the non strict inequality q � q0 follows

from f 0q0(q
0) < 0 8q0 < qs). Therefore fq0(q) > 0 8q; q0 such that q � q0 � qs. This

means that any q0 � qs invade all the strategies to its left and hence !(q), q < qs

are invaded by (q; qs]. Next, we know from part (ii) of the proof of Proposition 2.3

that hq(q0) is concave for q0 � �q and that h0q(q
0) > 0 when q0 � �q. Since hq(q) = 0

and h0q(q) > 0 we can thus be sure that hq(q
0) < 0, 8q0 < q, which means that q is

not invaded by any strategy [0; q).

(ii) Part (ii) of the proof of Proposition 2.4 directly gives f 0q0(q) = f1(q; q
0) > 0

8q0; q such that q0 � q > qs. This means that any q0 � qs invades all strategies to

its right and hence !(q), q < qs are invaded by [qs; q). Next, hq(q) = 0, h0q(q) < 0;

8q > qs together with the concavity of hq(q0) for q0 � �q implies hq(q0) < 0 8q; q0

such that q0 � q > qs and q is therefore not invaded by (q; v�].

Figure 2.2 illustrates the function f(q; q0) in a linear setting holding the second

argument �xed, for some di¤erent values of q0.
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Figure 2.2: Invading Quantities in a Linear Setting

f(qc,q)

f(qw,q)

f(qs,q)

2.4.3 Stochastic stability

Given what has been shown so far, it should come as no surprise that !(qs) is

stochastically stable. From any absorbing state !(q) it is possible to reach !(qs) by

means of a single experimentation, but a single experimentation is never enough to

leave this state.

Proposition 2.5. When �rms use IBA !(qs) is the unique stochastically stable state

and the expected waiting time until convergence to !(qs) is in the order of magnitude

of ��1.

Proof. We use a radius-coradius argument (Appendix A). By Proposition 2.3, R(!(qs)) >

1 and by Proposition 2.4, Cr(!(qs)) = 1. Hence R(!(qs)) > Cr(!(qs)) and !(qs)

is stochastically stable. The expected waiting time until convergence to !(qs) is in

the order of magnitude of ��Cr(!(q
s)) = ��1.

In the long run the process will thus spend almost all of its time in !(qs). The

expected waiting time is as low as it can get in this kind of models, which means that

101



Chapter 2 Imitation in Cournot Oligopolies with Multiple Markets

the speed of convergence is relatively high. As a consequence !(qs) is a reasonable

prediction also of what we can expect to see in the medium run.

This result should be contrasted with Apesteguia et. al. (2007), who obtain that

when �rms use IBA, !(qc) is the unique stochastically stable quantity. However this

result depends on the assumption of random remixing of the markets from one

period to another, as well as the speci�c linear setting analyzed, in which only

�ve possible quantities can be chosen. By relaxing these assumptions we obtain

a di¤erent prediction. The quantity qs also depends on the number of markets, a

feature that does not arise in Apesteguia et. al. (2007).

2.4.4 Stochastic Stability Under Local Experimentation

We can use the property that experimentations in the direction of qs are imitated but

not experimentations in the opposite direction (Corollary 17), to prove that !(qs)

is stochastically stable under local experimentation. By local experimentation we

mean that �rms only experiment with small changes in production. Experimentation

is likely to be local if �rms are conservative and reluctant to change output too

abruptly. To capture the idea of local experimentation we therefore assume that a

�rm ij picked to experiment chooses quantity according to some distribution over

f[qij � �; qij + �] \ �g, where � > �, with full support.

In the case of global experimentation it was argued that since a transition from

any state x to any state y occurs with positive probability in the perturbed process,

this is guaranteed to be ergodic. With local experimentation we cannot use this

argument. Nevertheless, with local experimentation any state y is reachable from

any state x by a sequence of experimentations in m steps, and this is also su¢ cient

for ergodicity. Hence, the process remains ergodic, which means that we can apply

the standard results in the literature to characterize the set of stochastically stable

states12. We then obtain:

12As mentioned by Vega-Redondo (2003) p.p. 477, these results continue to hold as long as
the perturbed process is ergodic, even if there are some transitions that occur with probability
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Proposition 2.6. The state !(qs) is the unique stochastically stable state when

experimentation is local.

Proof. We use a radius - modi�ed coradius argument (see Appendix A) to prove

this result.

In Corollary 17 it was shown that experimentations in the direction of qs are

always imitated. If we start from any !(q), q < qs, a state !(q0) = !(q+�) can thus

be reached by one experimentation. From !(q0) a state !(q0 + �) can be reached

by one experimentation. In this way, !(qs) can be reached by a series of successive

transitions between absorbing states, each requiring a single experimentation. Since

each absorbing state reached in this sequence of transitions is left with a single ex-

perimentation, it has radius equal to one. We therefore obtain Cr�(!(qs)) = 1. The

same argument can be repeated if q > qs. At the same time, by Proposition 2.4 !(qs)

cannot be left with single experimentations, which means that R(!(qs)) > 1. Con-

sequently, R(!(qs)) > Cr�(!(qs)) and !(qs) is therefore the unique stochastically

stable state when experimentation is local.

This result shows that the stochastic stability of !(qs) does not depend on qs

being a global invader. In fact, if �rms are prudent and experiment only locally, the

system will tend to move in small steps towards qs.

2.4.5 Comparative Statics

Since we have an expression that de�nes qs implicitly we can perform a comparative

statics exercise to evaluate how this quantity depends on the number of �rms in

each markets and the number of markets.

Proposition 2.7. qs(k; n) decreases in n and k, lim
k!1

qs(k; n) = qc.

zero. I.e. the su¢ cient condition for ergodicity that a transition between any two states ocurrs
with positive probability is not necessary for the standard results in the literature on stochastic
stability to hold.
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Proof. We di¤erentiate qs(k; n) implicitly with respect to k using the expression

P 0(nqs)(1 � �)qs + P (nqs) � C 0(qs) = 0 and obtain @qs

@k
= �P 0(nqs)qs

g0(qs)
n(n�1)
(nk�1)2 < 0.

Next, note that @�
@n
= k�1

nk�1 2 (0; 1), so by implicit di¤erentiation we obtain
@qs

@n
=

�P 00(nqs)(1��)(qs)2�P 0(nqs)qs @�
@n
+P 0(nqs)

g0(qs) = �P 00(nqs)(1��)(qs)2+P 0(nqs)qs(1� @�
@n
)

g0(qs) . Both the de-

nominator and the numerator of this expression are negative so @qs

@n
< 0. Further,

we know limk!1 � = 0 which means lim
k!0

P 0((nqs)(1 � �)qs + P (nqs) � C 0(qs) =

P 0((nqs)qs + P (nqs)� C 0(qs) and if we put this expression equal to zero we obtain

lim
k!1

qs(k; n) = qc(n).

When considering these comparative statics it should be noted that the quan-

tities qc and qw do not change with k. As the number of markets changes, qs thus

moves in the �xed interval (qc; qw), which means that the e¤ect on competition can

be evaluated straightforwardly. In standard Cournot oligopoly models with opti-

mizing �rms, the number of markets has no e¤ect at all. Firms will not consider

what happens in other markets since this is irrelevant for their optimization prob-

lem. Here, more markets make relative payo¤considerations less important, thereby

giving weight to the Cournot outcome. An implication of the results derived here is

that if an additional local market for a certain good appears within a city (keeping

the number of �rms per market �xed), competition in each market will actually

decrease, even if the total number of �rms operating within the city increases. This

e¤ect, which is in stark contrast to traditional predictions, could have interesting

consequences for competition policy.

The prediction provided by the comparative statics exercise is particularly suit-

able for tests in the laboratory, since it provides a direct link between a parameter

that is very easy to vary and the outcome. This is a possibility was not exploited

in the experiments carried out by Apesteguia et. al. (2007) (given that their model

does not generate such a result). An oligopoly experiment can be designed in which

individuals are grouped into di¤erent markets and have information about what

people in the same and in other markets choose and earn. The number of markets is

varied across sessions. If the outcome is una¤ected by the number of markets, this
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indicates that people do not imitate across markets according to IBA.

When it comes to the parameter n, the analysis becomes a bit more complicated.

First, both qc and qw are functions of n. With assumptions 1-3 qc and qw can be

shown to decrease in n. On the other hand, the total competitive output nqw is

constant in n, and nqc approaches nqw as n becomes large (see for example Shapiro

(1989)). Since qs 2 (qc; qw) we can thus be certain that the total output of each
market when �rms use IBA approaches the competitive one as the number of �rms

per market becomes large. This will occur through two di¤erent mechanisms. On

one hand, given any state !(q) the parameter n will determine the e¤ect on the

own and the competitors pro�ts of a given experimentation to q0; via P (Q). On the

other hand, n will a¤ect the weight � in the computation of the average payo¤ of

non-experimenting �rms. We can note that @qs

@�
@�
@n

> 0. This expression in a sense

"isolates" the e¤ect of n on qs that goes through �. The e¤ect of n on � thus makes

qs creep closer to qw. Hence the net e¤ect of n is to increase the weight of the

direct competitors in the average payo¤ computation, thus making relative payo¤

comparisons more important.

2.4.6 An Alternative Interpretation of qs

Corollary 16 can be used to �nd settings in which �rms display optimizing behavior

and that generate the same prediction as IBA. One possibility is to consider a single

market of �rms that care about their pro�t in absolute terms as well as about

outdoing the competition. Consider a single market and let the utility of �rms be:

U(qi; q�i) = (1� �)�(qi; Q) + �(�(qi; Q)�K(�(q�i; Q))), (2.6)

where K(�(q�i; Q)) is a convex combination of the pro�ts of all �rms but i.

A �rm�s utility is then a weighted average of its pro�t in absolute terms and its

advantage over other �rms. The parameter � captures the extent to which �rms

prefer absolute versus relative payo¤s. If � = 0 we obtain a standard Cournot

game, whereas if � = 1 we obtain a game of relative payo¤ maximization. De�ne a
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symmetric Nash equilibrium as a quantity q such that q 2 argmax
q0

fU(q0; (n� 1)q+

q)g. We then have

Proposition 2.8. qs(k; n) such that � = n�1
nk�1 is the unique symmetric Nash equi-

librium of the game in which �rms�utility is captured by U(qi; q�i) and it is also a

strict Nash equilibrium.

Proof. We write U(q0; (n� 1)q+ q0) = (1��)�(q0; (n� 1)q+ q0)+�(�(q0; (n� 1)q+
q0)� �(q; (n� 1)q + q0)) =

�(q0; (n � 1)q + q0) � ��(q; (n � 1)q + q0) = f(q; q0) + (1 � �)�(q; nq). For a

symmetric Nash equilibrium we then need q 2 argmax
q0

f(q; q0) + (1 � �)�(q; nq).

But the problem max
q0
f(q; q0) + (1 � �)�(q; nq) is equivalent to max

q0
f(q; q0), since

(1� �)�(q; nq) is just a constant term in this maximization problem. We then need
to solve q 2 argmax

q0
f(q; q0) and from 16 we know that qs is the unique solution to

this problem. Further, since f(qs; q0) < 0 for q0 6= qs the equilibrium is strict.

Proposition 2.6 relates the prediction obtained when �rms use IBA to optimizing

behavior. Imitating the best average in multiple markets corresponds to a predic-

tion of a model in which �rms best respond and are concerned about outdoing the

competition, but at the same time have an interest in their absolute payo¤s.

2.5 Alternative Informational Settings

2.5.1 Imitate Only if the Aggregates are Su¢ ciently Close

Intuitively, imitation makes sense if the circumstances of the sampled �rm are suf-

�ciently similar to those of the imitator. Even though in this paper we consider

markets that are ex-ante identical, they may di¤er ex-post with respect to the ag-

gregate quantity produced. If the aggregates are very di¤erent, the pro�t obtained

by a certain strategy in another market may be felt to be a poor predictor of what is

a successful strategy in the own market. It should be noted, however, that the pro�t
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obtained in a market with a di¤erent aggregate is not necessarily a worse predictor

than that obtained by a �rm in the own market. The reason is that when imitating

a �rm in the own market, the ex-post aggregate will di¤er from that before imitation

took place. For example, following an experimentation from a state !(q) that occurs

in another market than the own, which implies imitating although the aggregates

are di¤erent, is always more informative about what pro�ts will be obtained than if

the experimentation had occurred in the own market.

In this section we explore the implications of assuming that �rms are somewhat

cautious with respect to imitating �rms in other markets, and are willing to im-

itate these only if the di¤erence in the aggregates is below a certain level. This

corresponds to imitation that is local, rather than global, in the sense that not all

�rms are necessarily sampled. However, localness is endogenous, since it depends on

the actual quantities produced. We show that the outcome tends to become more

competitive in this case, the reason being that markets will evolve more indepen-

dently, reinforcing the relative payo¤s e¤ect. We provide a full characterization of

the outcome when IBM is used, and a partial characterization when IBA is used, in

which case more analytical di¢ culties arise.

The Model

We assume that each time a �rm ij is picked to imitate it samples �rms in markets

j0 such that jQj � Qj0j � �Q. �Q parameterizes local imitation and we obtain a

model in which �rms gradually become more willing to imitate across markets as �Q

increases. For large values of �Q we obtain a model similar to the multimarket model

analyzed in the preceding sections, and for small values of �Q markets evolve more

independently, resembling Vega-Redondo (1997). For intermediate values we obtain

a model between these two extremes.

We will work with a linear model, with P (Q) = a� bQ and C(q) = cq, in order

to obtain more clear-cut results. Similar results as those presented here can be

obtained without this last assumption. We prefer to present the results for a linear
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model since the results are clearer in this way (even in the linear case, the proof

of stochastic stability is a bit lengthy) and having more general demand and costs

does not provide any additional intuition.

Results

We start by noting that the set of absorbing states will be slightly di¤erent in

this setting. Now, �rms in di¤erent market need not necessarily produce the same

quantity in absorbing states. Apart from the "monomorphic" states f!(q) : q 2 �g,
"polymorphic" states in which all �rms in a given market produce the same quantity,

but the di¤erence between quantities produced in di¤erent markets is su¢ ciently

large, will now also be absorbing. We denote by a vector q = (q1; q2; :::; qk) a state in

which qj is produced by each �rm in market j 2 K. Let 
P := fq 2 �k : 8j; j0 2 K,
qj = qj0or jQj �Qj0j > �Qgn
M , (where subscript P stands for "polymorphic"). As

before, 
 denotes the set of absorbing states. Then:

Lemma 2.2. The set of absorbing states 
 of the unperturbed process is 
M [ 
P .

Proof. (i) Any state in 
M is obviously an absorbing state since there is nothing to

imitate. Any state in 
P is also absorbing, since �rms that are close enough produce

the same quantity, and the remaining �rms are too far away to be imitated.

(ii) It remains to show that any state in which there is some ij; i0j0 2 N � K

such that jqij � qi0j0j � �Q, qij 6= qi0j0 is not absorbing. Consider �rst a state in

fq 2�kgn
P in which x di¤erent quantities are produced. Take some j and j0 such
that jQj�Qj0j � �Q. Then there is always a positive probability that either all �rms

in all markets producing qj imitate qj0 or vice versa, in which case we reach a state in

fq 2�kgn
P in which x� 1 quantities are produced. By iteration of this argument
we reach a state in 
M [ 
P . Next, consider a state in �knnfq 2�kg. From such

a state there is always a positive probability that all �rms in a market imitate the

same quantity, in which case we reach a state in fq 2�kg. Hence, there is always
a positive probability of going from a state in which there is some ij; i0j0 2 N �K
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such that jQij � Qi0j0j � �Q, qij 6= qi0j0 to a state in 
M [ 
P and such states are
therefore not absorbing.

Next, we characterize the set of stochastically stable states of the perturbed

process:

Proposition 2.9. The set of stochastically stable states is f!(q) : q 2 [maxfqc; qw�
�Q
n
]; qw]g.

Proof. Wewill use the shorthand "a series of x-ET" for " a series of x-experimentation

transitions", which refer to a sequence of transitions between absorbing states, each

of which requires x experimentations. "pp" abbreviates "positive probability".

Step 1: Any state in 
P can be left for a state in 
M through a series of 1-ET.

Consider a state in 
P such that jjf(j; j0) 2 K �K : j 6= j0 and Qj 6= Qj0gjj =
x > 0. We will show that a series of 1-ET reduces jjf(j; j0) 2 K �K : j 6= j0 and

Qj 6= Qj0gjj. Take markets j and j0 : Qj0 2 min
j002K

fQj00 : Qj00 > Qjg 6= ?. Let a �rm
ij experiment to q0 : (n� 1)qij + q0 = Qj0 � �Q. Then markets j and j00 : Qj00 = Qj0

will be within comparison reach and all �rms in these markets thus imitate the same

quantity with pp. If j00 : Qj00 = Qj0 imitate j0 we immediately reach a state in which

jjf(j; j0) 2 K �K : j 6= j0 and Qj 6= Qj0gjj < x with pp. If j0 imitate j00 : Qj00 = Qj0,

repeat the same procedure for all markets producing Qj. We again reach a state in

jjf(j; j0) 2 K �K : j 6= j0 and Qj 6= Qj0gjj < x. By iteration of this argument we

reach a state in which x = 0.

We have thus showed 
P
1! :::

1! 
M .

Step 2: Any state !(q) such that q0 2 �n[qc; qw] can be left for an absorbing state
in which q 2 [qc; qw] through a series of 1-ET.
(i) Consider a state !(q) such that q > qw. Let some �rm experiment to

maxfqw; q � �Qg. This experimentation is imitated by all �rms with pp. Repeat
until !(qw) is reached.
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(ii) Consider a state !(q) such that q < qc. Let some �rm experiment to

minfqc; q + �Qg. This experimentation is imitated with pp. Repeat until !(qc)

is reached.

Let 
1 := f!(q) : q 62 [qc; qw]g. We have then shown 
1
1! :::

1! 
Mn
1.
Step 3: Any state in f!(q) 2 
Mn
1 : q =2 [maxfqc; qw �

�Q
n
]; qw]g can be left for

a state in 
2 := f!(q) : q 2 [maxfqc; qw � �Q
n
]; qw]g through a series of 1-ET. No

1-ET from 
2 is possible.

(i) Consider a state in f!(q) 2 
Mn
1 : q =2 [maxfqc; qw � �Q
n
]; qw]g. We will

show that there are experimentations q0 that are pro�table in relative terms, i.e.

d(q; q0) := �(q0; (n�1)q+q0)��(q; (n�1)q+q0) � 0 and that bring the experimenting
market out of comparison reach of the remaining markets. This means that absolute

payo¤ considerations become irrelevant and that the experimentation is followed

with pp. Formally, it is required that d(q; q0) = (a� b((n� 1)q+ q0)� (cq0� cq) � 0
and q0 � q > �Q. d(q; q0) is a concave function with d(q; q) = 0, d(q; '(q)) = 0 at

some point '(q) > qw for q < qw and d(q; q0) > 0; for q0 2 (q; '(q)).
Hence, for any quantity q < qw there is an upper bound '(q) to experimenta-

tions such that d(q; q0) � 0. We deduce '(q) = a�c
b
+ (1 � n)q. The mentioned

experimentations are possible as long as q0 � a�c
b
+ (1� n)q and q0 > �Q + q. Both

inequalities hold for q < q = qw � �Q=n. If q < qc then the mentioned transition is

not possible for any state in 
Mn
1. This transition is thus possible from any state
f!(q) 2 
Mn
1 : q =2 [maxfqc; qw �

�Q
n
]; qw]g, but not from states in 
2.

(ii) Consider a state in f!(q) 2 
Mn
1 : q =2 [maxfqc; qw�
�Q
n
]; qw]g. We will show

how a series of 1-ET leads the system into !(qw). Let a �rm ij experiment to '(q).

The �rms in j will then imitate with pp. and we reach a new absorbing state (in 
P ).

Next, let a �rm i0j0 experiment to '(q). j0 will not be in comparison reach of j before

imitation takes place, since this requires (n�1)q+q0+ �Q � nq0 $ q0�q < �Q=(n�1)
and we required q0 � q > �Q. All �rms in j0 then imitate q0 with pp. By proceeding

in this way we reach the state !('(q)). From this state let a �rm ij experiment

to maxfqw; '(q) � �Qg. Since D('(q);maxfqw; '(q) � �Qg) > 0 all �rms imitate

maxfqw; '(q)� �Qg with pp. and we thus reach !(maxfqw; '(q)� �Qg). Proceed like
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this until !(qw) is reached. Hence, starting from a state in f!(q) 2 
Mn
1 : q =2
[maxfqc; qw � �Q

n
]; qw]g we reach the state !(qw) through a series of 1-ET.

(iii) Since in any state in 
2 there are no experimentations such that d(q; q0) > 0

and q0 � q > �Q, a 1-ET can only occur if D(q; q0) > 0. But we know from Alós-

Ferrer (2004) Lemma A6 that D(q; q0) < 0 for all q 2 [qc; qw]; q0 6= q, so no one-

experimentation transition out of 
2 is possible.

Step 4: All states in 
2 can be connected through a series of 1- and 2-experimentation

transitions.

(i) First, a 2-ET from a state !(q) 2 
2 to some state !(q00) 2 
2; q < q00

is always possible. Consider a state in 
2 and two simultaneous experimentations

q0 = 0 and q00 > q. Then q00 is imitated with pp. i¤ e(q; q00) := (a � b((n � 2)q +
q00)(q00 � q) � (cq00 � cq) � 0. For q < qw the function e(q; q00) is concave with

e(q; q) = e(q; nqw � (n� 2)q) = 0 and e(q; q00) > 0 for all q00 2 [q; nqw � (n� 2)qg].
Any q00 2 (q;maxfnqw�(n�2)q; 2q+ �Qg] is thus imitated with pp. by all �rms, where
the second entry of the maximum is the requirement that the experimenting market

does not exit comparison reach. Hence, we have that !(q) 2! !(q00) is possible for

any q; q00 such that maxfqc; qw � �Q
n
] � q < q00 < maxfnqw � (n� 2)q; 2q + �Qg.

(ii) However, there are no corresponding downward 2-ET (Alós-Ferrer (2004)

Lemma B1). Instead, we will show that a 2-ET from !(qw) to some quantity q00 > qw,

from which a 1-ET to any quantity in [qw � �Q
n
; qw] is possible.

Since e(qw; 2qw) = 0, from !(qw) two experimentations q0 = 0 and q00 = 2qw

means q00 is followed by all �rms (this experimentation will not bring the experiment-

ing market out of comparison reach since the aggregate is held constant) with pp.

Hence !(qw) 2! !(minf2qw; q + �Qg) (with q := maxfqc; qw � �Q
n
]) is possible. Next,

from !(minf2qw; q+ �Qg) any experimentation to quantities q0 2 [qc;minf2qw; q+ �Qg)
improves absolute payo¤s (since they are better responses) and straightforward cal-

culus shows that d(2qw; q0) > 0 for all q0 2 [qc; 2qw); which means that an exper-
imentation to q0 2 [qc; 2qw) is better also in relative terms and is therefore imi-

tated with pp. Correspondingly, d(q + �Q; q0) > 0 for all q0 2 [q; q + �Q). This

means that !(minf2qw; q + �Qg) 1! !(q) is possible for any q 2 [q; qw] (we consider
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minf2qw; q + �Qg to be sure that the experimentation back to q does not bring the
market out of comparison reach).

Step 5: The set of stochastically stable states is 
2.

We will use a combination of radius - modi�ed coradius and tree surgery argu-

ments (see Appendix A) to prove stochastic stability.

(i) First, note that R(
2) = 2. We have shown in step 1-4 that 
P
1! :::

1!

M

1! :::
1! 
Mn
1

1! :::
1! 
2 is possible. Then Cr�(
2) = 1. Since R(
2) >

Cr�(
2), the set of stochastically stable states is contained in 
2.

(ii) We now construct the !(qw)-tree, which shows that !(qw) is stochastically

stable. We already noted 
P
1! :::

1! 
M
1! :::

1! 
Mn
1
1! :::

1! 
2 and that


2
2! :::

2! !(qw) (step 4). This means that in the !(qw)-tree, all states 
n
2 will
have exiting arrows of cost 1, while states in 
2n!(qw) will have exiting arrows of
cost 2. Since states in 
2 cannot be left with less than 2 experimentations, !(qw)

is therefore stochastically stable and the !(qw) tree is 
P
1! :::

1! 
M
1! :::

1!

Mn
1

1! :::
1! 
2

2! :::
2! !(qw).

(iii) We now show that any state in 
2 has the same stochastic potential as !(qw).

Consider a state !(q) 2 
2n!(qw). We know f!(q0) 2 
2 : q0 < qg 2! :::
2! !(q)

and at the same time f!(q0) 2 
2 : q
0 > qg 2! :::

2! !(qw) (step 4). Next,

!(qw)
2! !(minf2qw; q + �Qg) 1! !(q). Hence, to obtain the !(q)-tree we redirect

the arrow exiting !(minf2qw; q + �Qg) in the !(qw)-tree to !(q), which will not
a¤ect the total cost of the tree. Then we cut the arrow exiting !(q), which had

cost 2, and add an arrow from !(qw) to !(minf2qw; q + �Qg) at cost 2. Neither
this will a¤ect the total cost of the tree. Next we make sure there are arrows

f!(q0) 2 
2 : q0 < qg 2! :::
2! !(q) (so that none of them "jumps" q directly to

!(qw)). We thus have a !(q)-tree with the same stochastic potential as the !(qw)-

tree and all states in f!(q) : q 2 [maxfqc; qw � �Q
n
]; qw]g are therefore stochastically

stable. Together with (i) this proves the result.

As seen, the proof proceeds in various steps, in which we analyze stability prop-

erties of di¤erent sets of states. Polymorphic states are inherently instable since
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large enough experimentations always brings two separated markets together. This

might seem like a fragile result, since it appears to depend on �rms being willing

to experiment to very large and probably unpro�table quantities, but in fact it can

be shown that in the linear setting, this result cannot be avoided by for example

imposing a capacity constraint13. It thus seems quite hard for polymorphic states

to survive with local imitation in the sense considered here. States in which quan-

tities not in [qc; qw] are produced are also easily destabilized, the reason being (as

in the section 3.1) that there are experimentations that improve both relative and

absolute payo¤s. Further, there is a lower bound q 2 [qc; qw) such that all states in
f!(q) : q < qg can be destabilized by an upward experimentation. The intuition is
that even if such an experimentation lowers pro�ts in absolute terms, if it is su¢ -

ciently large it will bring the experimenting market out of comparison reach from

the other markets producing the same quantity. Absolute payo¤ considerations then

become irrelevant and the experimenting market evolves independently.

The set of stochastically stable states depends on �Q. This set is weakly increasing

in �Q and increases until the set of stochastically stable states is f!(q) : q 2 [qc; qw]g,
which happens at qw � qc =

�Q
n
. For su¢ ciently large �Q we are thus back to the

prediction with global imitation. On the other hand, as �Q becomes very small the

set of stochastically stable states approaches !(qw). The outcome thus continuously

becomes more competitive as �rms become less willing to imitate across markets.

Imitate the Best Average

It turns out that there are many similarities between how the dynamics work in the

case of IBM and IBA. As when agents follow IBM, all absorbing states in which

quantities not in [qc; qw] are produced can be left with single experimentations. All

polymorphic absorbing states can be left with chains of single experimentation tran-

sitions that bring previously separated markets within comparison reach. This would

lead us to believe that !(qs) is a good candidate for stochastic stability. However,

13In Appendix B we give an informal argument of why this happens.
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there is a problem: if there are single experimentations from !(qs) that are pro�table

in relative terms and bring the experimenting market out of comparison reach, then

not even !(qs) is stable against single experimentations. This happens if qw� �Q
n
> qs,

which always holds for su¢ ciently small �Q. We can thus straightforwardly derive

the result that !(qs) is stochastically stable as long as �Q is su¢ ciently large, but

it�s more di¢ cult to conclude what happens for small �Q. For example, the quan-

tities [qs; '(qs)] could be conjectured to be stochastically stable, since they can all

be connected by 1-experimentation transitions. However, from states (qs; !('(qs)))

there are states !(q), q < qs that can also be reached by 1-experimentation tran-

sitions (see Figure 2.2). From these even larger quantities are pro�table in relative

terms. In the end, all states in 
M may turn out to be stochastically stable. In this

case the concept of stochastic stability provides no prediction at all. We provide

the following partial characterization of the stochastically stable states when IBA is

used:

Proposition 2.10. If �Q � qw n(k�1)
(n+1)k�2 ; then !(q

s) is the unique stochastically stable

state.

Proof. Step 1: All states in 
P can be left for states in 
M through 1-experimentation

transitions.

This follows directly from step 1 in the proof of the preceding Proposition.

Step 2: !(qs) can be reached through a series of 1-experimentation transitions

from any state in 
Mn!(qs).
Take any state f!(q) 2 
Mn!(qs)g and let some �rm ij experiment in the

direction of qs to minfq+ �Q; qsg if q < qs and to maxfq� �Q; qsg if q > qs. All �rms

imitate the experimentation with pp. Proceed in this way until !(qs) is reached.

Step 3: !(qs) cannot be left with a single experimentation as long as �Q �
qw n(k�1)

(n+1)k�2 . The only way for an experimentation to q0 from !(qs) to be imi-

tated is if it brings the experimenting market out of comparison reach and at

the same time d(qs; q0) � 0. Such an experimentation is possible if and only if
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qw � �Q
n
> qs (Step 3 of the proof of the previous Proposition) which is equivalent to

qs = qw nk�1
k(n+1)�2 � qw � �Q=n$ �Q � qw n(k�1)

(n+1)k�2 .

Step 4: Given step 3 we obtain R(!(qs)) > 1 and given step 2 CR�(!(qs)) = 1,

which means that !(qs) is stochastically stable.

The quantity qs thus conserves some of its stability properties also in the case

of endogenous local imitation. However, it requires that �rms aren�t too cautious

about imitating �rms in other markets. When markets become too isolated, it seems

that it looses its attraction as the unique stable quantity. The intuition is that when

markets are more isolated, experimentations are more likely to make two previously

similar market di¤er, thereby inducing them to evolve in isolation, which makes the

calculations of average pro�ts of strategies loose its force.

2.5.2 Markets Arranged Around a Circle

In this section we restrict the amount of information a �rm has access to in an

alternative way. We consider markets that are arranged around a circle and assume

that each �rm has access to information about quantities and pro�ts of �rms in

neighboring markets. Information is therefore again local, but in contrast to the

preceding section localness is exogenously imposed rather than assumed to depend

on di¤erences in the aggregate. An interpretation is that the geographic locations

of the markets are such that not all �rms can observe each other. An important

implication of this information structure is that the same information will not be

available in all the markets and that successful strategies will be bound to spread in

a stepwise fashion over the population.

The Model

As previously, there are k markets, but these are now arranged around a circle and

�rms in each market only observe the quantities and pro�ts of the �rms in the 2�,

� < (k�1)=2 neighboring markets. This creates a sense of localness of information. If
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� = d(k � 1)=2e 14, then �rms have full information and we are back to the standard
case. We refer to the set of �rms in markets (j��); :::; (j�1); (j); (j+1); ::::; (j+�)
as the neighborhood of the �rms in market j, and denote this set �(j). Note that the

markets in �(j) also corresponds to the set of markets that observe j. The following

represents a straightened segment of the circle of markets:

:::; (j � � � 1)(j � �); :::; (j � 1); (j); (j + 1); ::::; (j + �)| {z }
Markets observed by �rms in market j.

(j + � + 1); :::

We will assume that there is some inertia, which means that we do not allow for

the case in which all �rms always adjust strategies in a perfectly synchronized way.

We will show that with this assumption the main results of the paper are robust

to this setting of exogenous local imitation. With no inertia, this is not the case.

In this section we do not restrict ourselves to the linear case, so demand and cost

functions are as in the standard setup.

Imitate the Best Max

First we note that as in the full information setting, the set of absorbing states

coincides with 
M . We have:

Lemma 2.3. When �rms use IBM, there are k markets with n �rms in each

arranged around a circle and �rms observe the � < d(k � 1)=2e neighboring markets,
the set of absorbing states is 
M .

Proof. Evidently, all states in 
M are absorbing.

It remains to be shown that only states in 
M are absorbing. First, note that

states in which 9ij; i0j such that qij 6= qi0j are left with some probability for states

in which qij = qi0j for all ij; i0j. Next, suppose the highest pro�t in all markets is

14By dxe we mean the smallest integer larger than x.
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obtained in market j, where q� is produced. Then all �rms in �(j) imitate q� with

pp. Next, all �rms in �(j + �) and �(j � �) imitate q� with pp. Iteration of this

argument leads us to a state in which q� is produced in all markets.

The characterization of the stochastically stable states coincides with that of the

full information setting:

Proposition 2.11. When �rms use IBM, there are k markets with n �rms in each

arranged around a circle and �rms observe the � < d(k � 1)=2e neighboring markets,
the set of stochastically stable states is f!(q) : q 2 [qc; qw]g.

Proof. Step 1: A single experimentation in market j is imitated with pp. by the �rms

in markets �(j) if and only if D(q; q0) := �(q0; (n�1)q+q0)�maxf�(q; (n�1)q+q0);
�(q; nq)g � 0.
Step 2: A double experimentation in market j is imitated with pp. by the �rms in

�(j) if and only if �(q0; (n�2)q+q0+q00)�maxf�(q; (n�2)q+q0+q00); �(q; nq)g � 0.
Step 1 and step 2 imply that a strategy spreads with pp. to neighboring markets

only if it spreads to the whole population with pp. in the full information case. In

other words, this is a necessary condition for an experimentation to spread.

Step 3: Single experimentations and double downward experimentations (as those

in Proposition 2.1) spread to the whole population with pp. in the circular framework

if they spread to the whole population in the global information framework :

We consider single experimentations from !(q) to q0 and the upward double

experimentations from !(q) to q0 capable of causing a transition to !(q0) in the

global information setup.

(1) !(q) 1! !(q0), !(q) 2! !(q0), q < q0: (i) Let ij experiment to q0. (ii) Let one

�rm in all markets in �(j) imitate. (iii) Let one �rm in all markets in �(j + �) and

�(j � �) imitate q0 and proceed in this way until in all markets there are n � 1 or
n� 2 �rms producing q and 1 �rm producing q0. (iv) Let all �rms imitate q0.
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(2) !(q) 1! !(q0), q0 < q: (i) Let ij experiment to q0. (ii) Let one �rm in all

markets in �(j) imitate to q0. (iii) Proceed in this way until in all markets there are

n� 1 �rms producing q and 1 �rm producing q0. (iv) Let all �rms imitate q0.

In other words, if a single or double experimentation spreads to the entire pop-

ulation in the standard setting it spreads to the entire population in the circular

setting. Single and double experimentations then spread to the entire population in

the circular setting if and only if they do so in the full information setting, and the

set of stochastically stable states are the same in both cases (recall that in the proof

only single and double experimentations are used to prove stochastic stability).

The proof of Proposition 2.11 depends on the assumption of some inertia. In

particular, we "freeze" the process while the invading strategy spreads to the entire

population, though we do so in a more extreme way than necessary. For example,

for upward single experimentations to quantities q0 � qw it is su¢ cient that each

time the strategy spreads, it does not spread to an entire market at once. It is worth

to note that in the models considered in previous sections, inertia does not a¤ect

the set of stochastically stable states, whereas in this setting it becomes important.

A reason for this is that when information is local, the way in which strategies

spread is restricted by the imposed structure of localness. In some sense, in models

of local imitation, there is some innate inertia, in the sense that what happens in

one market can come to other markets�attention only in a restricted, structured

way. Adding inertia to the model looses up some of this structure. For example, an

experimentation can spread to all markets before an entire market switches, which

is what is used in the proof of Proposition 2.11.

Imitate the Best Average

Also in this case, the result is closely related to the main result of the full information

case. The set of absorbing states is again 
M . The proof is completely analogous

to the case of IBM, so we do not repeat it here. We obtain:
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Proposition 2.12. The state !(qs(2� + 1; n)) is the unique stochastically stable

state when there are k markets with n �rms in each arranged around a circle, �rms

use IBA and observe the � < d(k � 1)=2e neighboring markets.

Proof. Step 1: No single experimentation is imitated with pp. when the system is in

!(qs(2� + 1; n)).

This is simply since each �rm observes 2� + 1 other markets and the quantity

qs(2� + 1; n) therefore is evolutionary stable with respect to average payo¤s (see

Proposition 2.3).

Step 2: !(q) 1! !(qs(2� + 1; n)) is possible from any state !(q).

We know that !(qs(2� + 1; n)) is a global invader, which means that any �rm

in �(j) imitates an experimentation to qs(2� + 1; n) with pp. starting in any state

!(q). We consider upward and downward experimentations to qs:

1. !(q) 1! !(qs(2� + 1; n)), q < qs(2� + 1; n): (i) Let a �rm ij experiment to

qs(2�+1). (ii) Let one �rm in each of the markets in �(j) imitate qs(2�+1; n). Now,

all �rms in markets �(j � �) still producing q will observe x 2 f1; ::; 2�g markets in
which one �rm produces qs(2� + 1; n) and n � 1 �rms produce q, and 2� + 1 � x

markets in which all �rms produce q. They then imitate qs(2� + 1; n) with pp. i¤

�(qs(2�+1; n); (n�1)q+qs(2�+1; n))� ( (n�1)x
n(2�+1)�x�(q

s(2�+1; n); (n�1)q+qs(2�+
1; n)) + n(2�+1�x)

n(2�+1)�x�(q; nq)) � 0. But this expression corresponds to f(q; q0) with a

"lambda" equal to �0 = (n�1)x
n(2�+1)�x > �(2� + 1; n). We know that qs increases in �,

which means that (abusing notation) qs(�0) > qs(2� + 1; n). Then, by Corollary 2.2

�rms in �(j � �) imitate qs(2� + 1; n) with pp. So let one �rm in the markets in

�(j � �) producing q imitate qs(2� + 1; n). Proceed in this way until in all markets

there are n�1 �rms producing q and 1 �rm producing qs(2�+1; n). (iii) Let all the
remaining �rms imitate qs(2� + 1; n), which they do with pp. since qs(2� + 1; n) is

in the direction of qw and therefore has a relative payo¤ advantage in all markets.

2. !(q) 1! !(qs(2�+1; n)), q > qs(2�+1; n): (i) Let ij experiment to qs(2�+1; n).

(ii) Let the remaining �rms in j and all �rms in �(j) in imitate to qs(2� + 1; n).

(iii) Since all �rms in the experimenting markets now produce lower quantities they

obtain higher pro�ts, since qs(2� + 1; n) is greater than the "monopoly" outcome,
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and are thus imitated with pp. by all �rms in �(j � �). Let these �rms imitate

qs(2� + 1; n). (iv) Proceed in this way until all �rms produce qs(2� + 1; n).

Since !(q) 1! !(qs(2�+1; n)) and !(qs(2�+1; n)) >1! !(q), for all q 2 �, we have
that R(!(qs(2�+1))) > 1, Cr�(!(qs(2�+1))) = 1 and therefore !(qs(2�+1; n)) is

stochastically stable.

Proposition 12 shows that qs conserves its stability properties when imitation is

not completely global and strategies can spread only in a stepwise process across

the population. It is worth noting that the outcome becomes more competitive in

this setting, in which information is more restricted compared to the case of global

imitation. The result also becomes more competitive as � decreases and the set of

information available to �rms becomes smaller (by the comparative statics results

on qs). Less information about what happens in other market thus means more

competition.

2.6 Concluding Remarks

It has been shown that outcomes tend to become less competitive when �rms have

a greater tendency to imitate across markets. In the benchmark setting, when �rms

use IBM the whole interval between the Cournot and Walrasian outcome becomes

stochastically stable. This result corresponds to the outcome of the single market

memory model of Alós-Ferrer (2004), which points to the close relationship between

such models and imitation in settings with multiple markets. When IBA is used a

distinct feature of the outcome is that it depends on the number of markets. This

means that if �rms behave according to IBA, counter-intuitive things could happen.

An additional market may actually decrease competition. This would be the case if

for example there is a single local market for a certain product in a city and �rms

open up and start providing the same product in another city. If �rms imitate across

markets this may then actually decrease competition.
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The uniqueness of qs and the fact that it is related to the number of markets, a

parameter that is of no relevance in standard Cournot oligopolies, makes it suitable

for experimental testing. If variations of the number of markets in an oligopoly

experiment in which individuals observe outside markets have no e¤ect on the out-

come, then this would be evidence against IBA and/or imitation across markets.

This paper thus provides a new prediction that can be used to test if individuals

imitate across markets and if they do so according to IBA.

We have studied two alternative informational settings in which imitation is

local in di¤erent ways. It has been shown that the cautiousness with respect to

imitating �rms in markets with di¤erent aggregates a¤ects the long run outcome.

More cautious �rms leads to more competitive results. The �rms thus bene�t in the

long run by not being too sensitive about imitating �rms in markets with di¤erent

aggregates. Apesteguia et. al. (2007) obtain a result of similar �avor. In their

model, imitation of only the non-competitors leads to Nash equilibrium, whereas

imitation of only the competitors leads to the Walrasian outcome. The model of

endogenous local imitation allows �rms to sometimes imitate across markets. In this

setting, the outcome continuously becomes more competitive as �rms become more

willing to imitate non-competitors. A similar conclusion is obtained when �rms are

located around a circle. In this case, more information about other markets leads

to less competitive results if �rms imitate according to IBA.

A conclusion that holds across these models is that more information about �rms

in other markets tends to lead to less competitive outcomes. This should be con-

trasted with the conclusion of Huck et. al. (1999, 2000). These authors conclude

that more information about the �rms in the own market leads to more competitive

results and relate this to the prediction of Vega-Redondo (1997). Whereas they

conclude that their results can be taken as tentative evidence in favor of publishing

information about �rm performance, the results of the present paper gives the con-

trary indication. If �rms imitate non-competitors, publishing this information could

actually lead to less competition.

In this paper markets have been assumed to be ex-ante identical. Having a set
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of ex-ante identical markets is a strong assumption, but it helps in obtaining sharp

analytical results. At the same time imitation is more intuitive when there are

no structural di¤erences between the environment of the imitator and the sampled

�rms. However, an interesting direction for further research would be to consider

markets that are ex-ante di¤erent in some dimension.

There is a close relationship between multi-market models and models with mem-

ory. In the memory models of Alós-Ferrer (2004) and Bergin and Berghardt (2009)

an assumption of no inertia is needed for the obtained results. In the multimar-

ket model, inertia becomes important when we consider markets arranged around

a circle. An interesting avenue for further research is to analyze more closely the

relationship between memory, local interaction and inertia.

Appendix A: Methods for Proving Stochastic Sta-
bility

We use three di¤erent methods in order to prove stochastic stability: (i) the "tree-

surgery" method of Young (1993, 1998), (ii) the radius-coradius argument by Ellison

(2000) and (iii) the modi�ed radius-coradius of Ellison (2003). We here brie�y

summarize these methods when applied to a process such as the one outlined in

Section 2.

(i) Young�s (1993, 1998) tree surgery argument: For any ! 2 
, an !-tree
is a tree branching out from ! and reaching every other absorbing state !0 via a

unique path directed from !0 to !. The cost c(!0; !) of an edge between nodes !0 and

! in this graph is equal to the minimum number of experimentations required for

the imitation dynamics to move the system from !0 to ! with positive probability.

Let �! be the set of all !-trees and let �
�
! = argmin

�2�!

X
(!0;!00)2�

c(!0; !00). Then

the stochastic potential of state ! is de�ned as ! =
X

(!0;!00)2��!
c(!0; !00). In other

words, the stochastic potential of ! is equal to the sum of the costs of all the edges

of the minimum cost !-tree. The set of stochastically stable states is argmin
!2


f!g,

122



Chapter 2 Imitation in Cournot Oligopolies with Multiple Markets

i.e. the states with the smallest stochastic potential.

(ii) Ellison�s (2000) radius-coradius argument: For any 
r � 
, let the

radius of 
r, denoted byR(
r), be the minimum number of experimentations needed

for the imitation dynamics to lead the system out of 
r to some state in 
n
r with
positive probability. Let the coradius of 
r, denoted by Cr(
r), be the maximum

(over all !0 2 
n
r) number of experimentations needed to enter 
r from 
n
r.
Then a su¢ cient condition for the set of stochastically states to be contained in 
r

is that R(
r) > Cr(
r). The expected waiting time to reach 
r if the process starts

in 
n
r is in the order of magnitude of ��Cr(!) .
(iii) Ellison�s (2000) modi�ed radius-coradius: Let (!1; !2; :::; !T ) repre-

sent a path originating in some state !1 2 
n
r and ending up in some state
!T 2 
r � 
 and where !i 2 
n
r 8i = 2; :::; T�1. Let c(!i; !i+1) be the minimum
number of experimentations needed for the imitation process to bring the system

from !i to !i+1 with positive probability. Let c(!1; !2; :::; !T ) =
XT

i=1
c(!i; !i+1)�XT�1

i=2
R(!i). Let S(!1;
r) be the set of paths originating in !1 and ending up

in some state in 
r. Let c�(!1; !2; :::;
r) := min
(!1;!2;:::;!T )2S(!1;
r)

c(!1; !2; :::; !T ).

The modi�ed coradius of 
r is then Cr�(
r) := max
!12
n
r

fc�(!1; !2; :::;
r)g. If

R(
r) > Cr�(
r), then the set of stochastically stable states is contained in 
r.

Appendix B: Non-Stability of Polymorphic States

Consider the model analyzed in Section 5.1. Assume that there is some capacity con-

straint �v > qw. The argument that we used to destabilize polymorphic states with

single experimentations depended on experimentations to large enough quantities

to bring two separated markets into comparison reach. Here we give an argument

that shows that in the linear setting even with a capacity constraint polymorphic

states tend to be unstable.

We know that any state (and this holds for both polymorphic and monomorphic

states) in which quantities in �n[qc; qw] are produced are inherently unstable. For
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polymorphic states to have any hope of being stochastically stable they should there-

fore involve only quantities in [qc; qw]. Now consider a polymorphic state in which

qc = a�c
b(n+1)

and qw = a�c
bn
are produced in markets j and j0, implying Qj =

n(a�c)
b(n+1)

and Qj0 =
a�c
b
. Then, an experimentation of one �rm in j0 to q0 = 0 means we

will now have Qj0 =
(a�c)(n�1)

bn
and this is lower than Qj. Hence there are down-

ward experimentation available for �rms in j0 such that j and j0 will be within

comparison reach and they will therefore imitate the same quantity with positive

probability. The same argument can be made for any two initial quantities in [qc; qw].

Any polymorphic state in which quantities in [qc; qw] are produced can therefore be

destabilized with a single experimentation. By iterating such experimentations a

monomorphic state can be reached and arguments similar to those in the proof of

Proposition 2.9 can be used to show that no polymorphic state is stochastically

stable.

Appendix C: Models with Memory as Multimarket
Models

Single market models with memory, as in Alós-Ferrer (2004) and Bergin and Bern-

hardt (2009) can be seen as special cases of multi-market models. The additional

markets can be thought of as existing in the memory of agents. In the models of

Alós-Ferrer (2004) and Bergin and Bernhardt (2009), it is assumed that agents re-

member quantities and pro�ts k periods back, creating a total of k + 1 markets.

They then imitate according to either IBM or IBA observing quantities and pro�ts

in the present and in the past. There is no exogenous inertia in the models, so

all �rms change strategies in perfect synchronicity. As in the multi-market model

f!(q) : q 2 �g constitute the set of absorbing states and the set of stochastically
stable states is contained in this. However, whereas in a multi-market model strate-

gies can spread to new markets in an arbitrary order, in memory models strategies

cannot spread backwards in time. This creates a special kind of inertia. If we think

of the memory model as k + 1 markets, where market 1 is the present, market 2 is
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what happened yesterday and so on, another observation is that experimentations

can occur only in market 1. If we consider some state !(q), a single experimentation

in market 1 in period t will be imitated in a very speci�c sequence. This sequence of

imitation can be thought of as proceeding from the most distant past, market k+1,

successively to the present. In t+1 all �rms in market k+1 are given the possibility

to imitate, in t+2 all �rms in market k are given the possibility to imitate and so on

until the turn comes to market 1. The di¤erent markets are thus picked to imitate

one at a time in a determined sequence.

The crucial question for the relationship between the results of the multi-market

model with the memory model is how this inertia a¤ects the results. A �rst answer

to this question is that any destabilization achieved in a memory model is valid also

in a multi-market model with inertia. This is simply because the presence of inertia

enables us to clone any sequence of imitations in the memory model. However, with

arbitrary inertia in the multi-market model, imitation can occur in sequences not

possible in the memory model. This means that there are more ways in which a

state can be destabilized. As it turns out, this does not a¤ect the result when IBM

is used (as seen in Proposition 2.1), but the results are completely di¤erent when

IBA is used. In the latter case, the collusive outcome becomes increasingly di¢ cult

to destabilize as memory becomes longer, which eventually makes it stochastically

stable (Bergin and Bernhardt (2009)).
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Chapter 3

Altruistic Provision of Public
Goods and Local Interaction

3.1 Introduction

A standard assumption in economic theory is that individuals act in their own best

interests. Nevertheless, people are often observed acting beyond their immediate

self-interests, which is commonly referred to as altruism. There are several ap-

proaches to reconcile such acts with the rationality typical of many economic mod-

els. One is to incorporate the well being of others into individuals�utility functions

(e.g. Becker, 1974 and 1981). Another is to consider in�nitely repeated interaction,

in which case trigger strategies that punish sel�sh behavior can sustain altruism as

a Nash equilibrium (see, for example, Fudenberg and Maskin 1986). Whereas these

(by now standard) approaches show that altruism can be consistent with rational-

ity, altruistic behavior can also arise if choices are made in a boundedly rational

way. Eshel, Samuelson and Shaked (1998, henceforth, ESS) consider a model in

which individuals live on a circle and repeatedly choose whether to provide a local

public good. Instead of the standard assumption of rationality, individuals make

their choices by imitating successful neighbors. In this setting altruism can persist

and even coexist with sel�sh behavior. The intuition is that the local interaction

structure makes it possible to form local altruistic communities where payo¤s are

high, which leads altruistic choices to be imitated.
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Both the assumption of local imitation and of a local externality1 are reasonable

in many settings. For example, several experiments document the importance of

imitative behavior in economic situations (e.g. Huck, Normann and Oechssler 1999,

Selten and Apesteguia 2005, Apesteguia Huck and Oechssler 2007).2 There are also

theories in psychology which argue that the bulk of human behavior is learned by

observation and imitation of others (see for example Bandura (1977)). Imitation

is likely to be local, in particular if it is payo¤ biased, in the sense that strategies

generating higher payo¤s are imitated more frequently. In this case, an individual

must observe both the actions and consequential well being of his potential role

models. This is quite a demanding informational requirement that probably is met

mainly when it comes to family, friends and closer acquaintances. Moreover, in the

theory of social groups in the sociology literature, it is argued that individuals are

most strongly in�uenced by members of their primary groups, which consist of people

they interact with frequently, such as family, friends, colleagues and neighbors3. It

is also evident that many externalities are local. For example, overconsumption of

subsidized water a¤ects the local water supply and possibly the local reserves of

groundwater, creating a negative local externality. Fisheries along the coast a¤ect

the supply of �sh mostly in a local or regional way. Many pollutants, such as

particles, lead, sulphur and nitrogen oxides act in a local or regional way and can

be related to such everyday decisions as deciding what kind of lawn mower to buy

(where the noise level is also an issue). The externalities caused by the decision to

drive a car and how to do it, such as tra¢ c, accidents and pollution (except CO2)

are primarily non-global. Littering close to where we live a¤ects mainly people living

in the same area, as does letting the dog run loose.4

However, these examples also point to a drawback of the framework of ESS.

In their model, the externality a¤ects only the two closest neighbors, whereas in

1Providing a public good can equivalently be thought of as choosing an action with a positive
externality, or not choosing one with a negative externality.

2Some papers do not �nd imitation signi�cant, e.g. Kirchkamp and Nagel (2007).
3See for instance Light, Keller and Calhoun, Sociology, 5th edition 1991, ch. 8.
4For more information on some of the externalities mentioned in this paragraph, see Tietenberg

& Lewis, (2009).

131



Chapter 3 Altruistic Provision of Public Goods and Local Interaction

the mentioned examples it is likely to a¤ect a much larger number of individuals.

This problem has been considered in the literature. Jun and Sethi (2007), Ma-

tros (2008), and Mengel (2009) show that altruism can persist when the externality

a¤ects exactly the same (possibly large) set of individuals that each individual imi-

tates. However, in many situations it will not hold that the set of individuals that

are a¤ected by the externality is identical to the set of potential role models. This

issue is partially considered by Mengel (2009), who shows that altruism will not

survive when imitation is less local than the externality. However, it is likely that in

many cases precisely the opposite is true. While the external e¤ects of our actions

often (as in the examples mentioned above) a¤ect a large number of individuals,

we mostly learn behaviors from a more limited set of individuals. For instance, we

probably learn to be conservative in water consumption by observing the behavior

of those close to us, whereas our actions a¤ect a much larger set of individuals. The

existing literature, however, provides no result for this case. This means that we

do not know to what extent local externalities combined with local imitation can

explain altruistic behavior when the externality is less local than imitation. It is

therefore important to see what results follow when taking this natural pairing of

assumptions into account.

In this paper, I therefore extend the framework of ESS to study the case in

which the externality is less local than imitation. As in ESS, individuals live on a

circle and repeatedly decide whether to provide a public good5 (to be an altruist),

or not do it (and be an egoist). The public good is shared by an arbitrary number

of neighbors. To make a decision, the individual observes the actions and payo¤s of

the two closest neighbors and imitates the action that generated the highest average

payo¤. The individuals also sometimes experiment, in which case they choose an

action randomly. It is shown that in the absence of experimentation, altruism can

persist and coexist with sel�sh behavior as long as there are at least two individuals

in the population with which the public good is not shared. I.e. altruism can

survive as long as the public good is non-global. With experimentation there is

5I.e. carry out an action with a positive externality.
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an important interplay between the localness of the externality and the size of the

population. Altruism can survive even if the externality reaches a larger number of

individuals than those that are imitated, but only if the population is su¢ ciently

large. The required size of the population increases in the number of individuals

a¤ected by the externality. Hence, altruism can persist both in the presence and in

the absence of experimentation. The conclusion therefore is that local interaction

and imitation is a possible explanation for altruistic behavior in situations well

beyond those considered in ESS.

The intuition behind the results is that since the public good is local, altruists can

group together and exclude egoists from their contributions. In this way, altruists

have mainly altruist neighbors, and egoists have mainly egoist neighbors. Therefore,

the altruists obtain higher payo¤s and thus tend to be imitated. As the public good

becomes less local, altruists need to form larger groups in order to exclude the egoists.

When the public good is nearly global, at most one such altruist group can �t in the

population. It turns out that such a constellation is very sensitive to experimentation

and it is actually enough that a single altruist switches for the entire population to

descend into egoism. A large population protects against this eventuality by allowing

either several altruist groups or few but very large groups. These constellations

are more robust to experimentation, since pockets of altruists can survive egoistic

experimentations. For this reason, large populations help altruism to persist when

the public good is less local.

The outline is the following: In section 2 the model is presented. Section 3 and

4 contain the characterization of the main results. Section 5 considers an extension

and Section 6 concludes.

3.2 The Model

Consider a set of N := f1; 2; : : : ; ng individuals that live on �xed locations around
a circle. The immediate neighbors to the left and right of i 2 N are denoted

i � 1 and i + 1 respectively. The second neighbors to the left and right of i are
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denoted i � 2 and i + 2, and so on. The 2z closest neighbors of i thus consist of
fi� z; i� z + 1; :::; i� 1; i+ 1; :::; i+ z � 1; i+ 1g.
The model proceeds in discrete time. At each time period t 2 f1; 2; :::g each

i 2 N is drawn with independent and identical probability � 2 (0; 1) to choose an
action from S := fa;Eg.6 Once a choice is made, it remains the same until the

individual again is drawn to revise his choice. Let sit 2 S be the choice of i 2 N

in t. If sit = a, then i provides a local public good in t. In this case, i incurs a

cost c < 1=2 in t.7 If sit = E, no cost is incurred. Let NE
i consist of i�s 2nE � 2

closest neighbors (not including i). NE
i is referred to as i�s externality neighborhood.

If sit = a, then i contributes with 1 unit of utility to each j 2 NE
i in t. If sit = E,

then i contributes with no utility to his neighbors in t. Hence, if sit = a, i is said

to be an altruist in t and if sit = E, i is said to be an egoist in t. Note that being

an altruist is a strictly dominated action, since the individual incurs a net private

cost c when he is an altruist. However, choosing to be an altruist is good for society,

since the contributions to other individuals sum at least 2, and 2 � c > 0. Note

also that if sit = a, then i incurs the cost c and provides utility to his neighbors in

each period until he is drawn for another revision opportunity, where a new choice

is made. Let (a;E) := (1; 0). The payo¤ of i in t is then �it :=
X

j2NE
i

sjt � sitc.

Notice that since the payo¤ of an individual depends on the choices of his neighbors,

individuals may obtain di¤erent payo¤s even if they are choosing the same action.

Let N I
i consist of i�s 2nI � 2 closest neighbors and i himself. N I

i is referred to

as i�s imitation neighborhood. When given a revision opportunity in t, i observes his

own payo¤ and action in t� 1 and the payo¤s and actions of the individuals in N I
i

in t� 1. He computes the average payo¤ of each observed action in N I
i and chooses

the action that generated the highest average payo¤. If sit = sjt for all j 2 N I
i ,

then i keeps sit. The reason that this imitation rule is considered is that the same

6This means that there is some inertia in the revision of choices, in the sense that individuals
do not necessarily revise their choices in every time period. This can re�ect an unwillingness of the
individuals to revise their choices too often. It also allows for the possibility that not all individuals
revise their choices in perfect synchronicity.

7As in ESS, egoism will trivially result if c > 1=2. This will be shown in section 3. c = 1=2 is
avoided since it leads to situations with draws.
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action may generate di¤erent payo¤s in the same time period. For example, i � 1
may obtain a high payo¤when choosing a, while i+1 obtains a low payo¤ from the

same action. In this situation, it is not clear that it would be attractive to imitate

a. By computing the average payo¤ of a, i takes into account both the low and high

payo¤ of a.

In other words, the dynamics work as following. Say i is given a revision op-

portunity in t. He then observes the actions and payo¤s of all individuals in N I
i

in t � 1 and makes a choice accordingly. Suppose this leads him to choose sit = a

and that the next revision opportunity arrives at t + 3. In this case i incurs a cost

c and contributes with one unit of utility to the individuals in NE
i in t, t + 1 and

t+ 2. In t+ 3 he observes the actions and payo¤s of the individuals in N I
i in t+ 2

and chooses sit+3. The following illustrates an individual i and his imitation and

externality neighborhoods when nE = 3 and nI = 1:

:::; i� 4;
NE
i [figz }| {

i� 3; i� 2; i� 1; i; i+ 1| {z }
NI
i

; i+ 2; i+ 3; i+ 4; :::

What determines the choice of i in t is whether the average payo¤of the altruists

in N I
i is larger than the average payo¤ of the egoists in N

I
i . Let d�it denote the

di¤erence between the average payo¤s of altruists and egoists in N I
i in t. This

means that if d�it positive, then i chooses to be an altruist in t + 1, if given a

revision opportunity. We can write

d�it :=
1X

j2NI
i

sjt

X
j2NI

i

sjt�jt �
1

nI �
X

j2NI
i

sjt

X
j2NI

i

(1� sjt)�jt.

The �rst term corresponds to the average payo¤ of the altruists in N I
i in t and

the second term gives the average payo¤ of the egoists in N I
i in t. The imitation

rule just described implies that if i is given a revision opportunity in t, then
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sit =

�
a if d�it�1 > 0
E if d�it�1 < 0

8

If nE = nI = 1 the model reduces to the one analyzed by ESS. If nE � nI

the model is similar to the one analyzed by Mengel (2009). Here, the focus is on

nE > nI , i.e. the public good is less local than imitation. For tractability the main

focus (Sections 3-4) is on nE > nI = 1, i.e. individuals imitate only the two closest

neighbors. However, in Section 5 a partial result for 1 < nE < nI is provided. We

also impose nE � (n� 1)=2, which simply means that the externality neighborhood
is not larger than the entire circle of individuals.

The model described so far de�nes a �nite Markov chain, in which a state is a

speci�cation of whether each individual in N is an altruist or an egoist.9 The state

space of this process is therefore fa;Egn and the transition probabilities depend on
the imitation rule and �. This Markov process is denoted � and referred to as the

unperturbed process. Let P � (!; !0) be the probability of reaching state !0 2 fa;Egn

from a state ! 2 fa;Egn in � periods. An absorbing state of � is de�ned as a state
! 2 fa;Egn such that P 1(!; !) = 1. Hence, an absorbing state is a state that once
entered cannot be left. Let 
 denote the set of absorbing states. The absorbing

states of � are characterized in Section 3.

As in ESS individuals are also allowed to sometimes deviate from the imitation

rule and experiment. In each t each individual experiments with independent and

identical probability ". If i experiments, he reverses his choice and picks the opposite

of that prescribed by the imitation rule. By incorporating experimentation a dif-

ferent Markov process is obtained, which is referred to as the perturbed process and

denoted �". The experimentations make a transition between any two states of �"

possible and the �" is therefore irreducible and aperiodic. By a well known results,

this implies that �" has a unique stationary distribution which describes average

behavior in the long run.10 Denote this stationary distribution u". Let u� := limu"
"!0

,

8Ties.do not occur as long as c 6= 1
2 . This is implied by the proof of Lemma 3.1.

9A review on Markov processes can be found in Karlin and Taylor, 1975.
10See, e.g., Karlin and Taylor 1975.
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i.e. u� is the stationary distribution of �" as the experimentation probability ap-

proaches zero. The support of u� is referred to as the set of stochastically stable

states. Denote the set of stochastically stable states 
�. With vanishing experi-

mentation probability the fraction of time spent in the stochastically stable states

approaches one as time approaches in�nity. By a by now standard result 
� � 
.11

As mentioned by Binmore, Samuelson and Vaughan (1995), the absorbing states of

� give an idea of where the dynamics of �" end up in the short run, whereas the

stochastically stable states of �" is where the process will spend most of its time in

the very long run. 
� is characterized in section 4.

3.3 Absorbing States of the Unperturbed Process

I �rst show how the unperturbed process behaves. The �rst result, Lemma 3.1, will

be useful in subsequent proofs and provides intuition concerning how the imitation

dynamics work. In Lemma 3.1 and in what follows, time indexes will be omitted

(whenever this does not cause confusion) in order to reduce notation. Let si :=

(si�nE�1; si�nE ; si+nE ; si+nE+1). In other words, si speci�es the actions chosen by

the individuals just inside and just outside i�s externality neighborhood.

Lemma 3.1. Suppose nE > nI = 1. (i) d�i depends only on si; si�1; si; si+1 and

c. (ii) d�i > 0 if and only if either (si�1; si;si+1) = (a; a; a) or si = (a; a; E;E),

c < 1=2 and (si�1; si+1) = (a;E) (or the mirror image of this).

Proof. (i) We can write d�i = �(1=2(�j+�k)��l), where � is an indicator function,
taking the value 1 if there are two altruists in N I

i and �1 if there is only one. j and
k are the individuals in N I

i picking the same action and obviously i 2 fj; k; lg. Let
�i :=

X
j02NE

i

sj0. Hence d�i = �(1=2(�j + �k)� �l)� c. Now, note that j; k; and l

will all receive the contributions of the individuals in fi�nE +1; i�nE +2; : : : ; i+
nE � 2; i+nE � 1gnfj; k; lg. This means that these contributions will be added and
subtracted once in d�i and they are therefore irrelevant for d�i. Hence, d�i is a

11See, for example, Young 1993.
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function only of the actions of individuals fj; k; lg[fi�nI�1; i�nI ; i+nI ; i+nI+1g
and c.

(ii) If (si�1; si;si+1) = (a; a; a) then d�i > 0 obviously. Likewise if (si�1; si;si+1) =

(E;E;E) then d�i < 0. Otherwise individual i is either surrounded by two individ-

uals opposite of his kind, or by one of each kind. We therefore have the following

four possibilities: EaiE, aEia, aaiE, aEiE. By eliminating irrelevant contributions

and considering these four possibilities we obtain:

EaiE: d�i = �1=2(�j+�k)���l�c = �1=2(si�nE�1+si�nE+si+si+nE+si+nE+1+

si) � �(si�nE + si+nE) � c = �1=2(si�nE�1 � si�nE � si+nE + si+nE+1) � c � si =

�1=2(si�nE�1+si+nE+1�si�nE�si+nE)�(c+1). The maximum of this expression is
�c� 1 and an isolated altruist will therefore always become an egoist, i.e. d�i < 0.
aEia: d�i = �1=2(�j+�k)���l�c = 1=2(si�nE�1+si�nE+si+1+si+nE+si+nE+1+

si�1)�(si�nI+si+nI+si�1+si+1)�c = 1=2(si�nE�1�si�nE�si+nE+si+nE+1)�c��si =
1=2(si�nE�1 + si+nE+1 � si�nE � si+nE)� (c+ 1). The maximum of this expression

is �c and an isolated egoist will therefore always remain so, i.e. d�i < 0.
aaiE: d�i = �1=2(�j+�k)� ��l� c = �1=2(si�nE�1+si�nE +si+si�nE +si+nE +

si�1)��(si+nE+si+nE+1+si+si�1)�c = 1=2(si�nE�1+2si�nE�si+nE�2si+nE+1)�
(c� si) = 1=2(si�nE�1 + 2si�nE � si+nE � 2si+nE+1)� (c� 1). This is positive only
at the maximum, which is equal to 1=2 � c, and only if c < 1=2. The maximum

is attained at si = (a; a; E;E), hence d�i > 0 when si = (a; a; E;E), c < 1=2,

(si�1; si+1) = (a;E) and si = a.

aEiE:d�i = �1=2(�j+�k)���l�c = �1=2(si�nE+si+nE+si�1+si+nE+si+nE+1+

si�1)� �(si�nE�1 + si�nE)� c = �1=2(�si�nE � 2si�nE�1 + 2si+nE + si+nE+1)� c�
si�1) = 1=2(si�nE + 2si�nE�1 � 2si+nE � si+nE+1) � (c + 1): This is positive only
at the maximum, which is equal to 1=2 � c, and only if c < 1=2. The maximum

is attained at si = (a; a; E;E), hence d�i < 0 when si = (a; a; E;E), c < 1=2,

(si�1; si+1) = (a;E) and si = E.

Lemma 3.1 generalizes a result in ESS.12 There it was shown that if nE = nI = 1,

12The result is not formally stated in ESS, but appear on page 161.
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then i chooses altruism if (si�2; si�1; si+1; si+2) = (a; a; E;E). The reason is that i

observes altruists that are grouped together and therefore have high payo¤s. At

the same time the egoists that he observes are also grouped together and therefore

have low payo¤s. When nE > 1 what matter for i�s decision are the actions of the

individuals in N I
i and just inside and just outside of N

E
i . The reason is that all the

individuals in N I
i receive the same utility from the contributions of the individuals in

fi�nE+1; :::; i�2; i+2; :::; i+nE+1g. This is simply because i�1, i and i+1 share
a large number of "externality neighbors". For example, suppose nE = 5. In this

case i� 1, i and i+1 all receive the same utility from the actions of i� 2; i� 3 and
i�4. Therefore, the actions of these individuals are irrelevant for the computation of
the di¤erence between the average payo¤s of altruists and egoists in N I

i . However,

the contribution of i + 5 is not received by i � 1, the contribution of i � 5 is not
received by i+ 1, and the contributions of i+ 6 and i� 6 are only received by i+ 1
and i� 1, respectively. The individuals in fi� 6; i� 5; i+ 5; i+ 6g can be thought
of as the "pivotal" contributors of N I

i , i.e. the individuals whose actions bene�t the

individuals in N I
i non-uniformly. Suppose (si�1; si; si+1) = (a; si; E). In this case,

for i to choose altruism, it is necessary that the actions of the pivotal contributors

bene�t the altruists but not the egoists inN I
i . The ideal constellation, and indeed the

only one such that i would choose altruism, is (si�6; si�5; si+5; si+6) = (a; a; E;E).

In this way, (the altruist) i � 1 but not (the egoist) i + 1 receive the contributions
of i� 6 and i� 5. At the same time, i+5 and i+6 are egoists and therefore do not
provide utility to i+ 1, which would be out of reach of i� 1.
The next result characterizes the absorbing states of �. Let 
a and 
E denote

the states in which all individuals are altruists and egoists respectively. We say

that any (si�x; :::; si�2; si�1; si; si+1; si+2; :::; si+y) such that sj = a for all j = i �
x + 1; :::; i + y � 1 and si�x = si+y = E is a string of altruists of length x + y � 1.
Correspondingly, any (si�x; :::; si�2; si�1; si; si+1; si+2; :::; si+y) such that sj = E for

all j = i � x + 1; :::; i + y � 1and si�x = si+y = a is a string of egoists of length

x+ y � 1.
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Proposition 3.1. Absorbing States of the Unperturbed Process

Suppose nE > nI = 1.

(i) If c � 1=2, then 
 = 
a [ 
E.
(ii) With n su¢ ciently large and c < 1=2, there are four categories of absorbing

states:

(1) 
a.

(2) 
E.

(3) Strings of altruists of length at least nE+2 separated by strings of egoists

of length nE + 1.

(4) If nE > 5, altruist strings of length between 3 and nE � 3 separated by
egoist strings of length between 2 and nE � 4.
(iii) A lower bound on the fraction of altruists in the absorbing states referred to

in (3) is nE+2
2nE+3

.

Proof. (i) This is a direct corollary of Lemma 3.1, since it shows that unless c < 1=2

an absorbing state cannot contain both altruists and egoists and evidently states

containing either only altruists or only egoists are absorbing.

(ii) (1) and (2) are obvious.

(3): In an absorbing state Lemma 3.1 requires that in a straightened segment of

the circle we have the following structure anywhere that an altruist is adjacent to

an egoist13:

:::ai�nE�1ai�nE ::::::::ai�1aiEi+1::::::::Ei+nEEi+nE+1:::

By further using Lemma 3.1 the following can be deduced: [si�1 = a! si�2 = a],

[si�nE = a! si�nE+1 = a], [si�nE+1 = a! si+2 = E] and [si+1 = E ! si+nI+2 = a].

We then obtain:

:::ai�nE�1ai�nEai�nE+1::::::
�
ai�2ai�1aiEi+1Ei+2:::::::

�
Ei+nEEi+nE+1ai+nE+2::: (A1)

This structure must always result in an absorbing state wherever altruists and

egoists meet and follows by iterating Lemma 3.1. Without this structure, some

13For the sake of concreteness the illustrations are made for the case nI = 10, and each dot in
the illustration represent an agent taking an unspeci�ed action.
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egoist would observe altruists better o¤ than egoists, or some altruist would observe

egoists better o¤ than altruists. The question is how the empty spaces, denoted by

� and �, can be �lled. Write � = fi�nE+2; : : : ; i�3g, � = fi+3; : : : ; i+nE�1g.
These are of size nE � 4 and nE � 3 respectively. Note that A1 implies that egoist
(altruist) strings must be of length 2 (3) at least and an egoist string can be at most

of length nE + 1. However, there is no corresponding upper bound to the length of

altruist strings.

Next, we note that if � contains only altruists, which implies an altruist string

of length at least nE + 2, then � must contain only egoists. Otherwise any altruist

in � with an egoist to his left will switch by Lemma 3.1. On the other hand, if �

contains only egoists all individuals in � must be altruists. Otherwise an altruist in

� with an egoist to his left will switch. This implies that if there is some altruist

string of length at least nE + 2 it must be bordered on each side by egoist strings

of length nE + 1 followed by more altruist strings of length at least nE + 2. In the

same way, if there is an egoist string of length nE + 1 it must be bordered on each

side by altruist strings of length at least nE + 2 followed by egoist strings of length

nE +1. Consequently in an absorbing state with an altruist string of length at least

nE + 2, all egoist strings are of length nE + 1 and vice versa.

(4): Consider again A1

ai�nE�1ai�nEai�nE+1::::::
�
ai�2ai�1aiEi+1Ei+2:::::::

�
Ei+nEEi+nE+1ai+nE+2 (A1)

In order to have an egoist string of length less than nE +1 in an absorbing state

there must be some altruists in �. We know that any altruist string must have length

at least 3. Hence, the length of any egoist string shorter than nE+1 can be at most

nE+1�3�2 = nE�4. Analogously, if there are some egoists in � there must be at
least two of them, restricting the length of altruist strings to nE+2�3�2 = nE�3.
If nE � 5 then egoist strings would be at most of length 1 and by A1 we know that
such a string cannot be part of an absorbing state. Therefore, with nE � 5 all

absorbing states are of the kind described in (3).

Naturally, any absorbing state with "short" strings as those discussed here must
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satisfy Lemma 3.1. The implication is that any egoist string must be part of a

"broken" string of length nE + 1 and altruists bordering egoists must have altruists

at distance nE and nE + 1 on the side opposite of the egoist string. The following

illustrates an absorbing state with n = 18 and nE = 10:

EEaaaaaaaEE| {z }
Broken egoist string

aaaaaaa

There can never be short strings and long strings in an absorbing state, which

follows by the proof of (3).

(iii) The lower bound of altruists in type 3 absorbing states is obtained simply

by taking an altruist string of length nE + 2 and an egoist string of length nE + 1

and is therefore equal to (nE + 2)=(2nE + 3).

Proposition 4.1 implies that a su¢ cient condition for the existence of absorbing

states with both egoists and altruists is n � (nE + 2) + (nE + 1) = 2nE + 3 or

nE � (n � 3)=2. This means that as long as the public good is not completely
global, in the sense that there are at least two individuals in the population not

enjoying the contribution of each individual, we can observe altruistic behavior,

even in the presence of free riding egoists. Hence, altruists can coexist with egoists

even when the externality is far less local than what is assumed in ESS. In fact, it is

su¢ cient that the public good is non-global. On the other hand if the public good

is completely global, there is no hope for altruism. This conclusion is emphasized

in the following corollary:

Corollary 18. There are absorbing states in which egoists and altruists coexist if

nE � (n� 3)=2.

Proposition 4.1 also shows that several properties from the case nE = nI = 1

generalize naturally. The structure of the absorbing states in (3) of Proposition 4.1

is analogous to the case nE = nI = 1, in the sense that long strings of altruists are
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separated by strings of egoists. The intuition is similar too. By grouping together,

altruists can exclude egoists from the bene�ts of cooperation. As imitation is local,

this means that altruists observe mostly altruists with many altruist neighbors. The

observed payo¤s of altruists are therefore high, which leads them to be imitated.

Similarly, egoists observe mostly egoists with many egoist neighbors. The observed

payo¤s of egoists are therefore relatively low and they are therefore not imitated.

As the externality becomes less local, the groups of altruists must be larger for

the contributions to be isolated from the egoists to a su¢ cient extent. Egoists live

in groups on the edges of the altruist groups, bene�tting to some degree from the

public goods provided by these. However, these egoist groups can only grow to

a certain limit, restricted by the size of the externality neighborhood. The lower

bound for altruism derived here generalizes the lower bound derived by ESS for the

case nE = 1, which was found to be 0:6. Here, the lower bound is nE+2
2nE+3

, which is

equal to 0:6 at nE = 1 and converges to 0:5 as nE becomes large.

The absorbing states in (4) of Proposition 3.1 do not appear when nE = 1. In

these absorbing states, short altruists strings are mixed with short egoist strings.

These absorbing states occur since altruists can bene�t from distant altruist strings

that the neighbor egoist do not bene�t from. Absorbing states of type (4) can take

a variety of forms. What they have in common is that the altruist and egoist strings

are relatively short and that there are implicit "broken" egoist strings of length

nE + 1 as described in the proof.

3.4 Stochastically Stable States of The Perturbed
Process

Even though absorbing states in which altruists and egoists coexist can be found

when interaction is almost global, so far nothing has been said about the stability

of these states in the presence of experimentation. Experimentation sometimes

makes it more di¢ cult for altruism to persist. For example, if nE = (n � 3)=2,
then one experimentation is su¢ cient to lead an absorbing state in which there
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are both altruists and egoists into a state in which all individuals are egoists. On

the other hand, a single experimentation is never enough to restore altruism. This

means that if nE = (n � 3)=2, then egoism is somehow more stable than states in

which there are both altruists and egoists. Even though altruism could appear and

endure for some time even under these circumstances, it seems that egoism would

have the upper hand in the long run. Nevertheless, if the population is larger, a

greater number of experimentations are necessary to eliminate altruism. The reason

is that in a larger population, there will either be more or longer altruist strings

in an absorbing state, and there is a limit to the number of altruists that can be

converted by a single egoistic experimentation. At the same time, the number of

experimentations required to reintroduce altruism into a world of egoism is never

above nE + 1. Hence, the stability of altruism in the presence of experimentation

is related to both nE and n. To analyze this situation formally, this section uses

techniques developed by Freidlin and Wentzell (1984) and introduced into economics

by Kandori, Mailath and Rob (1993) and Young (1993) in order to characterize the

stochastically stable states of �". As mentioned, the process will spend almost all

of its time in the stochastically stable states in the long run. The characterization

of stochastic stability is done for the case nE � 5. The reason is that when nE > 5
absorbing states of the type in (4) of Proposition 3.1 emerge and it is particularly

complicated to characterize the basin of attraction of these states.

Let 
3 denote the absorbing states speci�ed in (3) of Proposition 3.1. Let dxe
be the smallest integer greater than x.

Proposition 3.2. Suppose 1 = nI < nE � 5. (1) If n > 4(nE + 1)2, then 
� = 
3.
If
l

n
4(nE+1)

m
> nE + 1, then 
� = 
E. If

l
n

4(nE+1)

m
= nE + 1, then 
� = 
E [ 
3.

Proof. The methodology of Young (1993, 1998) is used to characterize 
�. In short,

the method works as follows: For any ! 2 
, an !-tree is a tree branching out from
! and reaching every !0 2 
, !0 6= !, through a unique path. The cost c(!0; !00)

of the edge between !0 and !00 in this graph is equal to the minimum number of

experimentations required to move from !0 to !00. Let �! be the set of all !-trees.
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The stochastic potential of ! is de�ned as (!) = min
�2�!

X
(!0;!00)2�

c(!0; !00). Then

! 2 
� if and only if it is ! 2 argmin
!02


f(!0)g. In other words, 
� corresponds to
the states with minimum stochastic potential.

The proof is carried out in three steps: (1) It is shown that all states in 
3 have

the same stochastic potential, which implies that if some ! 2 
3 is stochastically
stable then all !0 2 
3 are stochastically stable. (2) It is shown that 
a is never sto-
chastically stable. (3) The conditions under which either 
a or 
E are stochastically

stable are derived.

Step 1: Any state ! 2 
3 can be reached by a series of 1-experimentation tran-
sitions from any other state in 
3.

By a "x-experimentation transition" we mean that x experimentations combined

with imitation dynamics lead the system from one absorbing state to another. This

is abbreviated 1ET and ! x! !0 denotes such a transition between ! and !0. Let

x(k) denote the set of type 3 absorbing states in which there are k � 1 strings of

egoists. We start by making two observations:

(i) A single experimentation can destroy an altruist string in a state ! 2 
3 of
length at most 2(nE + 2) + (nE + 1) � 2 = 3nE + 3. We call such a string a short
string and a longer altruist string a long string. The destruction of a short string

takes place when an individual in its middle experiments to egoism and subsequently

converts the entire altruist string step by step. If there is some other altruist string,

there is now a new long string of egoists that will shrink at its edges until it reaches

length nE+1, in this way making the adjacent altruist strings grow. The presence of

a short string thus makes a 1ET from a state in x(k) to a state in x(k�1) possible. It
is important to note that with positive probability, only one of the adjacent altruist

strings grows after the destruction of the altruist string.

(ii) A long altruist string can be divided into two strings by a single experimen-

tation which introduces an egoist into its middle, which grows to length nE + 1,

making possible a 1ET from a state in x(k) to a state in x(k + 1).

We now provide an algorithm in two steps for moving from any state in x(k) to

a state in x(1) through a sequence of 1ET. If we denote the set of states in which
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there are k1 short strings and k2 long strings by x(k1; k2), then we �nish when ki = 0

and kj = 1, i 6= j.

(i) Here the goal is to show that from any state in x(k1; k2) a state in x(k1; 1)

can be reached through a series of 1ET. If k2 = 1 from the beginning, go to (ii). If

k2 > 1, fragmentize all long strings but one by putting experimentations to egoism

at appropriate places one at a time and allowing each new egoist strings to grow to

size nE + 1. We end up in a state in x(k1 + z; 1), z > 0. If k2 = 0 destroy short

strings and let an adjacent altruist string grow until a long string is created and we

are in x(k1 �m; 1) or only one short string remains and we are in x(1; 0), in which

case we are �nished.

(ii) We will now be in a state in x(k3; 1), where k3 2 fk1 + x; k1; k1 � mg.
Start merging strings with the long string. This is done by suitably placing a

experimentation inside a short altruist string adjacent to the long altruist string

and constructing a sequence of imitations such that the long egoist string created

in this way is completely absorbed into the long altruist string. Proceeding in this

way with each of the short strings, they are eventually eliminated and we arrive in

x(0; 1), which was the goal.

Next, any state in x(1) can be reached from any other state in x(1) by a series of

1ET (x(1) contains more than one state since the egoist string may be at di¤erent

locations). To "move" the egoist string, let an altruist adjacent to the egoist string

mutate and next let the egoist at the opposite end of the egoist string imitate to

altruism. In this way, one experimentation moves the egoist string one step. Thus

any state in x(1) can be reached by 1ETs from any other state in x(1).

Finally, any state in x(k), k > 1, can be reached from a state in x(1) via a series

of 1ETs. To accomplish this, for any state ! 2 x(k), pick a state in x(1) with a

string of egoists that coincide in location with some egoist string in ! and distribute

experimentations in the centre of the location of all egoist strings in ! in any order

(letting the imitation dynamics work after each experimentation). The system will

converge to ! via a series of 1ETs.

Consequently any state ! 2 
3 can be reached from any other state in 
3 via a
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series of 1ETs. This implies that all states in 
3 have the same stochastic potential.

Step 2 :

First note that !A
1! ! is possible for some state ! 2 
3. Consider the !A-tree.

In the path from ! to !A at some point there is an edge leaving some state !0 at

cost greater than 1, since egoist strings are always at least of length 2 in absorbing

states and 2 experimentations therefore are necessary to eliminate egoism. Cut that

edge and add the edge !A
1! ! and we get a !0-tree with lower total cost than the

!A-tree. Hence, !A is not stochastically stable.

Step 3:

Consider �rst the !-tree for ! 2 
3. In such a tree the edges exiting any !0 2 
3
as well as 
a must have cost 1. Next, 
E is connected to the !-tree in the least

costly way. It can be shown that only altruist strings at least of length nE + 1 can

grow to size nE + 2 or larger. At the same time, the introduction of a nE + 1 string

of altruist is su¢ cient for the system to reach a state in 
3. Hence, in the !-tree

the edge leaving 
E has cost nE + 1.

Now consider the 
E-tree. In the 
E-tree the edge leaving 
a has cost 1 and is

connected to some state in 
3. All states in 
3 have outgoing edges of cost 1, except

one that is connected to 
E. This is the state ! 2 
3 from which 
E can be reached
at the lowest cost. A single experimentation can destroy an altruist string of length

at most 3(nE + 1). The largest population in a type (3) absorbing state that can

be converted to egoism by m experimentations is n̂ = m((nE + 1) + 3(nE + 1)) =

4m(nE +1). This occurs in the state in which altruist strings are of length precisely

3(nE+1). Consequentlym� =
l

n
4(nE+1)

m
is the smallest number of experimentations

required to move from a state in 
3 to 
E.

Whether 
3 or 
E is stochastically stable then depends on whether nE + 1 is

larger than
l

n
4(nE+1)

m
. Then 
3 is stochastically stable if

l
n

4(nE+1)

m
> nE + 1 !

n
4(nE+1)

> nE +1 or n > 4(nE +1)2. If
l

n
4(nE+1)

m
< nE +1 holds 
E is stochastically

stable and in case of equality both are stochastically stable.

The �rst conclusion from Proposition 4.2 is that the absorbing state in which
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all agents are altruist is not stochastically stable and will therefore not appear in

the long run. The reason is that it is very sensitive to experimentation. A single

egoistic experimentation thrives in this case and grows into string of length nE + 1

with positive probability. In this way we a reach a state in which there are both al-

truists and egoists. At the same time, it is hard to reach a state where all agents are

altruists from another absorbing state, basically because this requires simultaneous

experimentation of many egoists. It is more di¢ cult to leave states in which there

are both altruists and egoists for a state where all individuals are either altruists and

egoists. Proposition 4.2 shows that such states are sustainable when the population

is su¢ ciently large. Moreover, the required size of the population increases with nE.

Indeed, altruistic behavior is possible for any size of the externality neighborhood,

if the population is correspondingly large. The required size of the population in-

creases quadratically with nE. The intuition is that as nE increases, altruist strings

must be longer to persist and grow. More experimentations are then needed to in-

troduce altruism into a world of egoism. At the same time, fewer experimentations

are required to eliminate altruism and descend into egoism. In this sense, for a �xed

population size, a large externality neighborhood is bad for altruism and eventu-

ally precludes altruism in the long run. However, the number of experimentations

required to exterminate altruism increases linearly with population size. As the

population grows, at some point it becomes so di¢ cult to eradicate altruism that

it ends up prevailing in the long run. A large population protects altruism in the

sense that it becomes increasingly di¢ cult for egoistic experimentations to eliminate

all altruists at once. If some agent switches from altruism and causes a temporary

increase in egoistic behavior, there are pockets of altruism at other population that

are una¤ected by this burst of egoism.

Proposition 4.2 generalizes the conclusions of ESS, who only show that when

nE = 1, the required size of the population is 30. Proposition 4.2 allows us to make

a precise statement with regard to the required localness of the public good for

altruism to persist in the presence of experimentations. A measure of the globalness

of the public good is the fraction 2nE=n, i.e. the fraction of the population enjoying
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the contribution of each individual. From Proposition 4.2 we have that n > 4(nE +

1)2 is necessary and su¢ cient for all stochastically stable states to involve altruism.

This expression can be rewritten nE
2(nE+1)2

> 2nE
n
, which means that nE puts an

upper bound to the globalness of the public good. The term nE
2(nE+1)2

is maximized

at nE = 1 at which n � 17 is necessary for altruism to prevail.14 Hence, at most

2=17 individuals of the population can enjoy the contributions of each individual for

all stochastically stable states to involve altruism. In other words, the public good

must be quite local in the relative sense considered here for altruism to prevail in

the long run. This �nding is summarized in the following corollary:

Corollary 19. For altruism to prevail in the long run, the externality can bene�t

at most a fraction 2/17 of the population. This occurs when nE = 1.

The intuition behind the result is that with larger nE, altruist strings must be

larger in order to exclude egoists from the contributions to a su¢ cient degree. If the

population is small, not many such strings �t into the population, which makes ab-

sorbing states sensitive to egoistic experimentation. If the population is large, many

simultaneous egoistic experimentations are needed to eliminate altruism. This is

the case since many altruistic strings can �t into a large population and a small

number of egoistic experimentations would leave pockets of altruists which subse-

quently thrive. However, it turns out that the required population size increases

fast, and indeed altruism can be stochastically stable if the externality reaches at

most a fraction 2/17 of the population.

3.5 Larger Imitation Neighborhoods

This section presents a result for the case in which nI can be greater than one, but it

still holds that nI � nE. The model is more complex in this case and it is di¢ cult to

provide a complete characterization of the outcome, even more so since the dynamics

14The di¤erence with respect to ESS comes from the fact that ESS considers � = 1, i.e. all
individuals necessarily revise their choice in each period, whereas here � 2 (0; 1).
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depend to a considerable extent on c. Instead, I characterize a structure of intuitive

appeal, composed of long strings of altruists separated by long strings of egoists,

that will constitute an absorbing state given that c is in a certain range and given

that nE is signi�cantly larger than nI . This structure also encompasses the type 3

absorbing states characterized in Proposition 3.1.

Proposition 3.3. With n su¢ ciently large and nE � 2nI �1, strings of altruists of
length at least 2nI + nE separated by egoist strings of length nI + nE are absorbing

states of the unperturbed process, if and only if c 2 [2(nI)
2+nI�3

2(1+nI)
; 2nI�1

2
).

Proof. The following illustration of a typical absorbing state (with nI = 3 and

nE = 7) is provided as a point of reference:

aaaaaaaaaaaaa
r
E
s
EEEEEEEEE (3.1)

Let r and s be the altruistic and egoistic individuals between two strings, as in

the illustration. Index r = s = 0 and index the individuals to the left of r according

to position relative to r, f�(r�nI); (r�nI+1); : : : ; rg = fnI ; nI�1 : : : ; 1; 0g, and to
the right of s according to fv; v+1; : : : ; v+nIg = f0; 1; : : : ; nIg. Let f�(r�nI); (r�
nI + 1); : : : ; rg � A and fv; v + 1; : : : ; v + nIg � B. A and B then correspond to

the altruists with some egoist in their imitation neighborhood and the egoists with

some altruist in their imitation neighborhood, respectively.

We �rst consider altruists. Denote the highest cost at which an altruist remains

so by �c. This means that we should �nd �c such that d�i(�c) > 0 for all i 2 A and for
all c 2 [0; �c). For an altruist string of length 2nI + nE:

d�i(c) =
1

nI + 1 + i

nI+iX
k=0

(nE + k)� 1

nI � i

nI�i�1X
k=0

(nE � k)� c

=
1

nI + 1 + i

nI+iX
k=0

(k)� 1

nL � i

nI�i�1X
k=0

(k)� c

=
(nI + 1 + i)(nI + i)

2(nI + 1 + i)
� (nI � i)(nI � i� 1)

2(nL � i)
� c

=
2nI � 1
2

� c:
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The �rst and second term are the average payo¤s of altruists and egoists in N I
i

respectively. Note that we can write this only if nE � 2nE � 1. We thus have that
�c = 2nI�1

2
, which is independent both of i (the position of the individual), and nE. If

the altruist string is longer than 2nI+nE, the only di¤erence is that d�i(c) becomes

larger for some of the individuals in the interior of the altruist string and �c will thus

still provide the highest cost at which altruists remain so. Hence c < �c is necessary

and su¢ cient for altruists not to switch in a state in which strings of altruists of

length at least 2nI + nE are separated by egoist strings of length nI + nE.

We now turn to the case of the egoists. We want to �nd c such that d�i(c) � 0
for all j 2 B and for all c > c, with the additional requirement that c < �c. This

part of the proof is carried out in two steps: (1) we �nd c by solving d�s(c) = 0 and

then check that c < �c. (2) We show that d�j > d�j+1, for j; j+1 2 B which ensures
that no individual in B wants to switch.

(1) We can write

d�s(c) =
1

nI

nI�1X
k=0

(nE + k)� 1

nI + 1

nI�1X
k=0

(nE � k)� c

=
2(nI)

2 + nI � 3
2(1 + nI)

� c;

which means that c = 2(nI)
2+nI�3

2(1+nI)
� 0. The egoist s thus remains an egoist if

and only if c � c. Next, �c� c = 2nI�1
2

� 2(nI)
2+nI�3

2(1+nI)
= 1

1+nI
> 0.

(2) We now show that d�j > d�j+1, for j; j+1 2 B and show that this is greater
than 0. We can write d�j�d�j+1 = ��aj� ��aj+1�(��Ej � ��Ej+1), ��

a=E
j denote the average

payo¤s of altruists and egoists respectively in N I
j . Then

��aj � ��aj+1 =
1

nI � j

nI�j�1X
k=0

(nE + k)� 1

nI � j � 1

nI�j�2X
k=0

(nE � k) =
1

2
.
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Next by taking into account the overlap of N I
j and N

I
j+1:

��Ej � ��Ej+1 =
1

nL + j + 1

X
k2NI

j :sk=E

�k �
1

nI + j + 2

X
k2NI

j :sk=E

�k �
�j+nI+1
nI + j + 2

=

P
k2NI

j :sk=E
�k � (nI + j + 1)�j+nI+1

(nI + j + 1)(nI + j + 2)
=
��Ej � �j+nI+1

nI + j + 2

The following bound can be established:

��Ej �
PnI�1

k=0 nE � k

nI
= nE �

nI � 1
2

�j+nI+1 � nE � (nI � 1)

��Ej is bounded by ��
E
s and �j+nI+1 is bounded by the smallest payo¤ in the egoist

string. We can then write:

��Ej � ��Ej+1 =
��Ej � �j+nI+1

nI + j + 2
� 1

2

nI � 1
(nI + j + 2)

<
1

2
= ��aj � ��aj+1

Consequently, d�j > d�j+1. Hence c � c is necessary and su¢ cient for egoists

not to switch in a state in which strings of altruists of length at least 2nI + nE are

separated by egoist strings of length nI + nE.

Proposition 4.3 shows that absorbing states in which long strings of altruists

are separated by long strings of egoists exist also when imitation neighborhoods are

larger. When nI = 1, the case analyzed in the previous sections is obtained. The

condition nE � 2nI � 1 implies that externality neighborhoods that are much larger
than the imitation neighborhoods are considered. The upper bound for the cost is

the highest cost at which altruists remain so. This increases with nI . The intuition

is that as imitation neighborhoods become larger, altruists can see deeper into both

altruist and egoist strings where altruists are happier and egoists are more miserable.

Hence, altruists remain so at larger costs. The lower bound for the cost is the lowest

cost at which egoists remain so. This also increases with nI and it does so more

rapidly than the upper bound. Hence, the interval becomes smaller as nI becomes

larger. However, this is because egoists become more tempted to become altruists
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and not the opposite. At costs below the lower bound it should be even easier

for altruism to thrive. Therefore, since larger nI increases the upper bound for the

cost, more information in a sense helps altruism. This should be contrasted with the

conclusion in Mengel (2009), that too large imitation neighborhoods are detrimental

for altruism. When the imitation neighborhoods are smaller than the externality

neighborhoods, more information actually seems to be bene�cial for altruism.

3.6 Concluding Remarks

This paper has analyzed the importance of localness for altruism in a model of

local provision of a public good. The conclusion is that in the short run, which

is re�ected by the process without experimentations, altruism can survive as long

as the public good is not global. With experimentation the process tends to select

against altruism in the long run when the public good is too global (in the sense of

reaching a larger fraction of the population). In fact, altruism will not survive in

the long run if the public good is more global than in the case analyzed by ESS. As

a larger set of neighbors enjoy the contribution of each individual, the required size

of the population for altruism to survive in the long run increases fast.

The model considered in this paper is to stylized to have policy implications.

However, it does suggest that if one wants to enforce altruistic behavior, it may

be better to concentrate enforcement locally. For example, it may be necessary

to enforce emission control of automobiles. An implication of this paper is that

to the extent that the bene�ts of implementing emission control are su¢ ciently

local, it may be better to concentrate the e¤orts of enforcement to certain areas,

instead of spreading them over the entire population. In this way, the bene�ts of

reducing emissions can be revealed and subsequently imitated by other segments of

the population. It may even be a good idea to temporally enforce altruism locally,

even if this investment has a negative bene�t net cost in the short run. If behavior

is driven by imitation, the locally enforced altruism can spread and eventually the

enforcement may not be necessary. However, care should be taken since this can work
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only if the population is much larger than the reach of the externality. Otherwise,

in the long run, it is likely that the population is driven back to a state of egoistic

behavior.
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Chapter 4

Perfect Communication with
Arbitrary Communication Costs

4.1 Introduction

Strategic communication is an important aspect of many economic situations in

which some party is privately informed. The so called Persuasion Games introduced

by Paul Milgrom in 1981 in an in�uential paper, focus on strategic communication

in terms of disclosure of veri�able or "hard" information. In the benchmark model,

a privately informed sender aims to in�uence the behavior of a receiver by veri�ably

communicating information in a written report. The sender decides which informa-

tion to withhold and which information to include in the report. Milgrom (1981)

showed that if communication is costless and preferences satisfy a monotonicity re-

quirement, the sender reveals all his private information to the receiver. In other

words, communication is perfect in the presence of both incongruent preferences and

strategic behavior. This frequently cited result is known as the unraveling result.1

However, whereas Milgrom (1981) assumed communication to be costless, report-

ing veri�able information is often costly. First, it often requires careful and detailed

explaining based on facts. For example, consider an entrepreneur who writes a

business plan to convince a venture capitalist to invest in his business. It takes

1Di¤erent generalizations of the result originally derived by Milgrom in 1981 can be found in
Milgrom and Roberts (1986), Seidman and Winter (1991) and Mathis (2008).
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both time and e¤ort to explain the technical details of the product, the production

costs, existing and possible competitors, the �nancial situation and other relevant

information. Second, it may involve costly certi�cation by accredited institutions.

The �nancial information in the business plan perhaps requires auditing by exter-

nal accountants, or a patent may be needed to certify the product�s originality. At

the same time, the existing literature indicates that unraveling is sensitive to the

assumption of costless reporting. Jovanovic (1982), Verecchia (1983) and Cheong

and Kim (2004) note that if reporting is costly, it becomes too expensive to report

all available information and therefore unraveling cannot occur.

This paper delivers a di¤erent conclusion. I study a model based on Milgrom�s

(1981) benchmark Persuasion Game, in which, in contrast to previous work, the cost

of veri�ably reporting private information continuously increases in the precision of

the report. The conclusion is, contrary to the previous literature, that unraveling

is rather robust to costly reporting. More speci�cally, whereas Milgrom (1981)

showed that if reporting is costless the unique equilibrium is separating, I show that

a separating equilibrium always exists, regardless of the reporting costs. Hence,

communication can be perfect even with arbitrarily high communication costs. The

intuition is that the reporting costs introduce costly signaling into the Persuasion

Game and thereby give the report a double function. It both discloses information

and at the same time functions as a signaling device through the costs incurred

producing it. When it becomes too expensive to report all the information, a high

sender type can instead discourage lower types from mimicking his report through

the reporting costs. It turns out that a combination of information disclosure and

costly signaling always can accomplish full separation.

I further show that there may be several di¤erent separating equilibria, but these

are all payo¤ equivalent. Moreover, when the reporting costs are low enough, all

equilibria are separating. The uniqueness of the separating equilibria arises since

with su¢ ciently low reporting costs, high sender types can always break out of any

pooling equilibrium by disclosing their true type. When the costs instead are high,

a pooling equilibrium emerges. In the pooling equilibrium, the reports contain no
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information at all. The intuition is that when the costs are high, skepticism on part

of the receiver with respect to withheld information makes it too expensive for the

sender to disclose his true type and break out of the pooling equilibrium. Hence,

whereas the existence of a separating equilibrium is not sensitive to reporting costs,

meaning that unraveling can occur also with high costs, uniqueness indeed is.

The reason that Jovanovic (1982), Verecchia (1983) and Cheong and Kim (2004)

reach such a di¤erent conclusion, is that they assume that the sender�s decision is

binary. He must either report all his private information, or none of it. In such a

setting, there are always some sender types that will not disclose their information

and if the cost is too high, the sender never reports any information.2 The assump-

tion that the sender�s decision is binary, means that he cannot send intermediate

amounts of information. Therefore, if the costs are high, he cannot adapt his re-

porting strategy accordingly and report less information. Here, the sender instead

has considerable discretion in this respect. More speci�cally, as in Milgrom�s (1981)

original Persuasion Game, the sender continuously decides how much information to

report. This means that even if the reporting costs are arbitrarily high, the sender

can report an arbitrarily small amount of information without incurring too high

costs. The assumption that the sender�s decision is continuous seems well suited to

situations in which there is signi�cant discretion with respect to how much informa-

tion to include in the report, such as in the example of the entrepreneur writing a

business plan.

Finally, an extension of the benchmark Persuasion Game is introduced in which

the receiver has a more active role in the communication. In this extension, the

receiver must make an e¤ort at a cost in order to access the information contained

in the report. The aim is to capture the fact that just as it is costly to elaborate a

report, it frequently requires both time and e¤ort to properly read and understand

it.

Once the receiver actively decides whether to read a report, she may be able to

2The latter conclusion is also obtained by Eso and Galambos (2008), who also consider binary
disclosure decisions.
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condition this decision on her "�rst impression" of it. It then becomes important

how this �rst impression is related to the information content of the report and to

which extent the sender can manipulate it. Here, I assume that the appearance of

a report is related to the amount of information it contains and that appearances

can be manipulated at a cost.

Two classes of separating equilibria are characterized. In one of these, referred

to as non-reading equilibria, the receiver never reads any report. Depending on the

reporting and manipulation costs, the sender either refrains from manipulating the

appearance of the report, or spends resources to make the report look more precise

than what it is. In the other class of equilibria, referred to as reading equilibria,

the receiver reads all the reports. Since both equilibria are separating, the receiver

prefers the former, in which she incurs no e¤ort costs.

The structure of the paper is as follows. Section 2 discusses some related litera-

ture. In Section 3 the model is introduced. Section 4 characterizes the equilibria of

the benchmark model of costly reporting and discusses their properties. In Section

5 the extension of the benchmark model is presented. Section 6 concludes.

4.2 Related Literature

This paper is related to Mathis (2008), which considers communication in terms

of partially veri�able information. Mathis (2008) postulates that sometimes due to

time or technical constraints, it is impossible to veri�ably report all private infor-

mation. His conclusion, if applied to a standard Persuasion Game (Milgrom, 1981),

is that the sender must be able to veri�ably report all favorable information for a

separating equilibrium to exist. Mathis�(2008) approach to partial veri�ability can

be treated as a model of costly reporting in which reports are either costless or ar-

bitrarily costly. In other words, the reporting costs are discontinuous. The present

paper gives an alternative approach to partial veri�ability. Here, it may also be ar-

bitrarily costly, and hence in practice impossible, to report all private information.

However, in contrast to Mathis (2008), here a separating equilibrium always exist.
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The di¤erence arises due to the continuity of the reporting costs in the present pa-

per. This allows the sender to use the reporting costs as a signaling device when it

becomes too expensive to report all the information, which is not possible in Mathis

(2008). Hence, when treating partial veri�ability in terms of costly reporting, the

continuity of the costs has an important impact on the outcome.

Another related paper is Kartik�s (2009) work on costly lying.3 In Kartik�s

model, the sender can provide false information at a cost. However, in contrast to

the present paper, the cost of the report is unrelated to its precision. In a sense,

Kartik�s paper and this paper consider two di¤erent kinds of costly lying. Whereas

in Kartik (2009) it is costly to provide false information, here the costs are related to

how much relevant information is withheld. At the same time, while in Kartik (2009)

lying is costly, here it is being truthful that is costly, in the sense that more precise

reports cost more. Kartik (2009) �nds that full separation is impossible and instead

characterizes equilibria in which low types separate and high types pool. There is

still no paper that accomodates both of the mentioned types of costly lying.

Note that the idea here is di¤erent from the one in Henry (2009) and in the

section "Pecuniary Externalities of Disclosure" in Milgrom (2008). In these papers

the sender chooses a number of costly tests to carry out. He then decides which

tests to disclose to the receiver. In principle, this means that the sender chooses the

precision of his private information as well as the precision of the reports. However,

it is not costly to report the information. Hence, the focus of these models is on

costly acquisition of information rather than on costly reporting of information, as

in the present paper. The results are also di¤erent. Since reporting is costless in

Henry (2009), the unraveling result holds and the sender always reveals all of his

private information, which is not the case here.4

The extension in which the receiver must exert e¤ort to assimilate the infor-
3It is also related to Kartik, Ottaviani and Squintiani (2006), but not as closely. The major

di¤erence is that Kartik et. al. (2006) consider an unbounded typespace, whereas Kartik�s (2009)
typespace is bounded, which is also the case in the present paper.

4By the same argument this paper is di¤erent from that of Austen-Smith (1994), in which the
acquisition of information is costly.
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mation in the report is related to Dewatripoint and Tirole (2005). In their model,

the receiver also incurs a cost in order to understand reports, but in a signi�cantly

di¤erent setting. For example, Dewatripoint and Tirole (2005) consider a binary

type space and a binary outcome of communication.

4.3 The Model

A game of persuasion � is considered. There are two players, a sender S and a

receiver R. The game proceeds in two stages. In the �rst stage nature reveals the

value of a parameter t 2 T = [0; 1] to S, according to probabilities given by some

known density f with full support. The parameter t is referred to as the sender�s

type and the knowledge of t constitutes his private information. The sender then

delivers a report to the receiver, that takes the form of a closed interval contained

in T . He can send any such interval with the restriction that his type must belong

to it. Formally, let M = f[l; h] : 0 � l � h � 1]g and let M(t) = fm 2 M : t 2 mg.
A sender of type t then chooses a report m 2 M(t), which he delivers to the

receiver5. Let the precision of a report [l; h] be a function � :M ! [0; 1], de�ned as

�(l; h) = h� l.6

This con�guration allows the sender to be as vague or precise as he wants in

his report. For example, [0; 1] is uninformative about the sender�s type, whereas

[t; t] completely identi�es him. The sender thus communicates an upper and lower

bound for his type, and is restricted to do so truthfully. This captures the assumption

that information is veri�able and the sender cannot include false information in the

report, but is free to choose which information to transmit and which to withhold.

Reports are costly to produce. I assume that the cost of producing a report

depends only on its precision. Hence, the cost is a function C : [0; 1]! R. The cost
does not depend on the sender�s type, which is a signi�cant di¤erence from many

5I follow convention and let m, which usually stands for message in the literature on strategic
transmission of information, denote an arbitrary report.

6The function � is de�ned on closed intervals, so the correct notation would be �([l; h]), but I
use the convention of eliminating the brackets in such expressions to lighten notation.
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models of costly signaling. For example, it is equally costly for any type in [l; 1] to

send [l; 1).7

After having received a reportm, the receiver forms a posterior belief �(tjm) with
respect to the type that sent the report. This belief is a probability distribution over

T . The beliefs are said to be skeptical with respect to [l; h] if �(tj[l; h]) is degenerate
at l. After forming her beliefs, the receiver chooses an action a 2 A, where A is a

closed interval.

The sender�s payo¤ is given by a function U : A�M ! R, de�ned by U(a;m) =
uS(a)� kC(�(m)). The term uS(a) captures the dependence of the sender�s payo¤

on the receiver�s action and k > 0 parameterizes the intensity of the reporting cost.

The receiver�s payo¤ is given by a function uR : A � T ! R. Hence, the receiver�s
payo¤ depends on both the action she chooses and the sender�s type. For example,

the sender�s type may be the quality of a product that he o¤ers for sale and the

receiver�s action the quantity that she decides to buy. In this case, the payo¤ of

the receiver depends on both the quality of the product and the amount she decides

to buy. The payo¤ of the sender depends only on the amount that he persuades

the receiver to buy, and the costs of his persuasive e¤orts, i.e. of the report. Let

aR(t) = argmax
a2A

fuR(a; t)g, i.e. aR(t) is the optimal action of the receiver given

the type of the sender. The following is assumed with respect to payo¤ and cost

functions

Assumption 1: C is continuous and decreasing.

Assumption 2: uS is continuous and strictly increasing.

Assumption 3: For all t 2 T , aR(t) is unique, continuous and strictly increasing.

Assumption 1 implies that more precise reports are more expensive to produce.

Assumption 2 means that the sender�s payo¤ increases in the receiver�s action, which

7There are applications when this assumption is not the most natural one. For example, a
researcher with a relatively good model may �nd it easier than a researcher with a bad one, to
prove to colleagues that his model is not of the worst possible kind.

163



Chapter 4 Perfect Communication with Arbitrary Communication Costs

is natural if for example the action of the receiver is a purchased quantity or a level

of investment. Assumption 3 implies that the receiver�s optimal choice continuously

increases in the type of the sender. This is reasonable if for instance the type

represents the quality of the sender�s product. Assumption 2 and 3 are the kind of

monotonicity assumptions used by Milgrom (1981) and Milgrom and Roberts (1986)

to derive the unraveling result. The essence of these two assumptions is that the

sender wants the receiver to believe he is of as high a type as possible.

A pure strategy of the sender is a functionm : T !M with the constraintm(t) 2
M(t) for all t 2 T . When it is convenient to be explicit about the upper and lower
bound I use [l(t); h(t)] to denote t�s report. When it is convenient to refer to these

separately I write l(t) or h(t). A pure strategy of the receiver is a function a :M !
A. The expected payo¤ of the receiver given a;m and �(tjm) is

R
uR(a; t)d�(tjm).

The equilibrium concept considered is Perfect Bayesian Equilibrium (referred to as

PBE or simply as an "equilibrium" in the remainder of the paper), de�ned as follows:

De�nition 4.1. A PBE of � is a receiver strategy a�(m), a sender strategy m�(t)

and for each m 2M beliefs ��(tjm), such that

1. For all m 2M , a�(m) 2 argmax
a2A

R
uR(a; t)d��(tjm).

2. For all t 2 T , m�(t) 2 argmax
m2M(t)

U(a�(m);m).

3. For any report m sent in equilibrium the beliefs of the receiver ��(tjm) are
obtained by applying Bayes rule. For any report [l; h] not sent in equilibrium

��(tj[l; h]) have support [l; h].

This is a standard de�nition, which requires that the receiver chooses the strategy

that maximizes her payo¤ given her beliefs, that the sender chooses the strategy

that maximizes payo¤s given the strategy of the receiver, and that the beliefs of the

receiver are rational.
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4.4 Costly Reporting and Equilibrium

4.4.1 Separating Equilibria

In this subsection the focus is on separating equilibria (SE) of �. A separating

equilibrium is a PBE in which each sender type sends a unique report, i.e. for all

t; t0 2 T it holds that m�(t) 6= m�(t0). Since the receiver�s beliefs are rational, in a

separating equilibrium she always knows exactly who sent the report and can choose

the optimal action given each sender type. Hence, in a separating equilibrium all the

private information of the sender is transmitted to the receiver, so communication

is perfect.

Milgrom�s (1981) unraveling result implies that in the absence of reporting costs,

i.e. with k = 0, all equilibria of � are separating. The logic is that types prefer

identifying themselves, which is always possible at zero cost, over pooling with lower

types. It also holds that in any equilibrium l�(t) = t for all t, since otherwise there

are types that would mimic the reports of higher types.

On the other hand, when k is positive, a sender strategy in which l(t) = t for all

t 2 T is not necessarily an equilibrium. The problem is that this may become too

expensive for some types. For example, t = 1 would have to send the very precise

report [1; 1] and if k is su¢ ciently large this will be too expensive. However, full

separation can be accomplished in another way. Reporting costs can be reduced by

sending some l(t) < t. This solves the problem of too high reporting costs, but it

creates another one. If l(t) < t, then types in [l(t); t) may be tempted to mimic

the report of t. In this subsection it will be shown that it is possible to �nd a

sender strategy such that these temptations do not arise. The reporting costs can

be used to avoid this. In equilibrium, these costs work as a signaling device and full

separation is accomplished through a combination of costly signaling and disclosure

of information.

Before proceeding to the main result a lemma is derived, which is helpful in

characterizing separating equilibria. In order to formulate the lemma two di¤erent

terms are introduced. First, let
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t�(t) := maxfargmax
t02[0;t]

U(aR(t0); [t0; 1])g. (4.1)

To understand this term, suppose we have a separating equilbrium in which

m(t) = [t; 1] for all t 2 T . In this case, the receiver chooses aR(t) when she receives
m(t). Therefore, each t�s payo¤ equals U(aR(t); [t; 1]). t�(t) is the type below or

equal to t that obtains the highest payo¤ in this separating equilibrium. If there is

more than one type that obtains this payo¤, then t�(t) is the highest of these types.

For example, t�(1) is the type that would obtain the highest payo¤ by reporting all

his good news, given that he is identi�ed by the receiver. Note that if k = 0 then,

given the monotonicity assumptions, t�(t) = t for all t. With k > 0 it is possible

that t�(t) < t, in particular if k is large. In this case, identi�cation by reporting all

the good news is expensive for high types. Let

"(t) := fl 2 [0; t] : U(aR(t); [l; 1]) = U(aR(t�(t)); [t�(t); 1])g: (4.2)

As can be seen, "(t) is related to t�(t). Consider again a situation in which all

sender types are identi�ed by the receiver. Then "(t) is the lower bound of the report

with upper bound 1 that t must send in order to obtain the same payo¤ as t�(t). In

other words, "(t) is the amount of good news that t should report in order to obtain

the same payo¤ as the type t0 < t that obtains the highest payo¤ by reporting all

his good news. If k = 0, then "(t) = t for all t. With k > 0, it is possible that

"(t) < t. The following lemma shows that "(t) exists and is unique.

Lemma 4.1. For all t 2 T it holds that "(t) exists and is unique. Further t�(t) �
"(t) � t and "(t) is strictly increasing in t.

Proof. Suppose t�(t) = t. Then, "(t) = t so it both exists and is unique.

Suppose t�(t) < t, which means U(aR(t); [t; 1]) < U(aR(t�(t)); [t�(t); 1]). Then

uS(aR(t)) > uS(aR(t�(t))) andC(1�t) > C(1�t�(t)). This means that U(aR(t); [t�(t); 1]) >
U(aR(t�(t)); [t�(t); 1]). Then, by the continuity of C and the intermediate value theo-

rem there exists some "(t) 2 (t�(t); t) such that U(aR(t); ["(t); 1]) = U(aR(t�(t)); [t�(t); 1]):
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Uniqueness follows from the fact that C is decreasing (and hence monotone).

Consider some t0 > t. If t�(t0) > t then "(t0) > "(t) since "(t) � t < t�(t0) � "(t0).

If t�(t0) � t then t�(t) = t�(t0). Then since uS(aR(t)) < uS(aR(t0)) we have

U(aR(t�(t0)); [t�(t0); 1]) = U(aR(t); ["(t); 1]) < U(aR(t0); ["(t); 1]):This means that

"(t0) > "(t) is needed for U(aR(t�(t0)); [t�(t0); 1]) = U(aR(t0); ["(t0); 1]). Hence, "(t) is

increasing in t.

Lemma 1 implies that if all types t send [t; 1] and are identi�ed by the receiver,

then t0 can always obtain the same payo¤ as the lower types with the highest payo¤

by sending ["(t0); 1]. It is convenient to introduce the following notation, let T1 =

ft : "(t) = tgand T2 = TnT1. The following Proposition uses Lemma 1 to establish
the existence of a separating equilibrium of �:

Proposition 4.1. The following is a separating equilibrium of �

1. All t 2 T send m�(t) = ["(t); 1].

2. For any [l; h] not sent in equilibrium �(tj[l; h]) is degenerate at l.

3. For all t 2 T it holds that a�(m�(t)) = aR(t), and a�([l; h]) = aR(l) for any

message [l; h] not sent in equilibrium.

Proof. We �rst make three observations which help to prove the result:

(i) Lemma 1 guarantees that (1) de�nes a unique report for all t 2 T .
(ii) Equilibrium payo¤s are weakly increasing in t. This is because each type

in equilibrium obtains U(aR(t�(t)); [t�(t); 1]) = max
t02[0;t]

U(aR(t0); [t0; 1]). Since t de�nes

the upper bound of the domain over which this function is maximized, equilibrium

payo¤s are weakly increasing in t.

(iii) Claim: If U(aR(t);m�(t)) > U(aR(t0);m�(t0)) then l(t) > t0.

Proof: Assume U(aR(t);m�(t)) > U(aR(t0);m�(t0)). First, note that U(aR(t);m�(t)) >

U(aR(t0);m�(t0)) implies t > t0 since equilibrium payo¤s are increasing in t.

If t 2 T1 then l(t) = t > t0, which means that for t 2 T1 the claim holds.
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If t 2 T2 then l(t) = "(t) > t�(t) = maxf[0; t] \ T1g. For all t0 2 [t�(t); t] we
have U(aR(t);m�(t)) = U(aR(t0);m�(t0)) since [t�(t); t] � T2. So for [t�(t); t] the

hypothesis of the claim is not satis�ed and we need not prove anything. On the

other hand l(t) = "(t) > t�(t) means that l(t) > t0 for all t0 2 [0; t�(t)] and so the
claim holds for any t 2 T2.�
Since equilibrium payo¤s are increasing in t, no type t has incentives to deviate

to a report m�(t0) sent by some t0 < t. At the same time (iii) implies that t can�t

deviate to any message m�(t0) sent by some type t0 > t, since l(t0) > t and therefore

m�(t0) 62M(t).
It remains to show that no type has incentives to deviate to some report not

sent in equilibrium. Each t 2 T obtains U(aR(t�(t)); [t�(t); 1]) in equilibrium. Given
the skeptical beliefs of R, a type t deviating to some out of equilibrium report

mD = [lD; hD] will be identi�ed as type lD < t. The buyer will thus take action

aR(lD) in response to mD and the payo¤ that t obtains from the deviation will be

U(aR(lD); [lD; hD]) � U(aR(lD); [lD; 1]) � U(aR(t�(t)); [t�(t); 1]), where the second

inequality follows from the de�nition of t�(t). Hence, there are no incentives to

deviate to out of equilibrium reports.

The fact that a separating equilibrium always exists means that unraveling al-

ways can occur even if reporting is costly. In fact, it can occur for arbitrarily large

k, i.e. no matter how high the reporting costs are.

Since l�(t) = "(t) for all t in the equilibrium speci�ed in Proposition 4.1, the

types in T1 send l�(t) = t and the types in T2 send l�(t) < t. Hence, the types in

T1 behave as when reporting is costless and prove that they are not of a lower type

than what they are. For these types, the bene�t of separating is not outweighed

by the cost of proving their type and they can therefore separate from lower types

by disclosing information. However, for types in T2 this strategy is too expensive

and would give a lower payo¤ than some lower types that they could mimic. In

equilibrium, they therefore economize on reporting costs by sending l�(t) = "(t) < t

and only prove that they are not lower than "(t) < t. This means that enough costs
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Figure 4.1: A Separating Equilibrium with Positive Reporting Costs

must be incurred so no type in ["(t); t] have incentives to mimic the report, which is

accomplished by letting l�(t) = "(t). In this way, types in T2 obtain the same payo¤

as the type below them with the highest payo¤. The costs incurred producing the

report hence work as a signaling device. When it is too expensive to prove your type,

it is instead possible to incur costs and in this way signal your type. Hence, in the

equilibrium speci�ed in Proposition 4.1, a combination of disclosure of information

and costly signaling accomplishes full separation.

Figure 4.1 illustrates a separating equilibrium, in a setting in which uR(t; a) =

t log(a) � a, uS(a) = a1=2 and C(x) = 0:7(1 � x)2. The "(t) curve gives the lower

bound of the reports. Since T1 = [0; t�(1)], "(t) is a 45 degree line in [0; t�(1)].

Thereafter "(t) is strictly concave and therefore below the 45 degree line, which

re�ects the fact that types in T2 = [t�(1); 1] must economize on reporting costs in

equilibrium.

A couple of di¤erent properties of the equilibrium in Proposition 4.1 are worth

pointing out. First, the sender�s equilibrium payo¤s are weakly increasing in t. The

lowest payo¤ obtained in equilibrium is U(aR(0); [0; 1]) and the highest payo¤ is

U(aR(t�(1)); [t�(1); 1]). In segments of the type-space such that l�(t) = t payo¤s are

169



Chapter 4 Perfect Communication with Arbitrary Communication Costs

strictly increasing, while in segments of the type-space in which l�(t) < t, payo¤s

are constant. This contrasts somewhat with the case in which reporting is costless,

in which equilibrium payo¤s are strictly increasing in t. Second, the precision of the

reports is strictly increasing in t, meaning that higher types incur strictly higher

costs writing the reports. This is simply because high types distinguish themselves

from lower types by reporting a larger amount of good news. Thus, their reports

contain more information and are therefore costlier to produce. Third, whereas the

beliefs with respect to unsent reports are skeptical, the beliefs with respect to reports

sent in equilibrium are not necessarily skeptical. More precisely, if T2 is nonempty,

the beliefs with respect to the messages sent by types in T2 are non-skeptical. This

contrasts with costless reporting, where beliefs are always skeptical. The intuition

is that with costly reporting, not reporting all favorable information can be justi�ed

on the ground that it is too costly to do so, and hence the receiver can be somewhat

less skeptical with respect to withheld information. Therefore, high reporting costs

mute skepticism.

The equilibrium characterized in Proposition 4.1 is not the only separating equi-

librium of �. For example, an equilibrium can be constructed in which types in T2

continuously contract the reports at the upper end of the type space rather than at

the lower end (as in Proposition 4.1). This raises the question if some separating

equilibria economize more on reporting costs than others. For example, one may

wonder whether there are equilibria in which types in T1 choose some l�(t) < t, or

types in T2 choose some l�(t) < "(t), thereby saving on reporting costs. Or on the

other hand, if an equilibrium of "dissipative signaling" in which the payo¤s are con-

stant over the entire typespace is possible. In the following proposition, it is shown

that this is not the case. On the contrary, all sender types earn exactly the same

payo¤ in any separating equilibrium. Formally, let two equilibria be payo¤ equiv-

alent if all sender types and the receiver earn the same payo¤ in both equilibria.

Then:

Proposition 4.2. All separating equilibria of � are payo¤ equivalent.
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Proof. In the equilibrium in Proposition 4.1 all types t 2 T obtain U(aR(t�(t)); [t�(t); 1]).
We will show that this payo¤ must be obtained by all types in any SE.

Step (i): In any SE U(aR(t); [l(t); h(t)]) � U(aR(t�(t)); [t�(t); 1]) for all t 2 T .
Proof: Consider a SE in which U(aR(t); [l(t); h(t)]) < U(aR(t�(t)); [t�(t); 1]) for

some t 2 T . If [t�(t); 1] is sent by some other type t0 (which requires t0 � t�(t)) in

equilibrium then t obtains U(aR(t0); [t�(t); 1]) � U(aR(t�(t)); [t�(t); 1]), if he deviates

to [t�(t); 1], so [t�(t); 1] is a pro�table deviation.

If [t�(t); 1] is not sent in equilibrium then given the worst possible inference on

account of R type t obtains a payo¤U(aR(t�(t)); [t�(t); 1]) if he deviates to [t�(t); 1].

Hence [t�(t); 1] is a pro�table deviation.

Step (ii): In any SE U(aR(t); [l(t); h(t)]) � U(aR(t�(t)); [t�(t); 1]) for all t 2 T .
Proof: Consider a SE in which U(aR(t0); [l(t0); h(t0)]) > U(aR(t�(t0)); [t�(t0); 1])

for some t0 2 T . This implies that l(t0) < "(t0). In equilibrium it is then needed

that U(aR(t); [l(t); h(t)]) � U(aR(t0); [l(t0); h(t0)]) for all t 2 [l(t0); t0]. However,

this means that the same must apply for all types in [l(l(t0)); t0] with l(l(t0)) <

"(l(l(t0))) � "(l(t0)) � l(t0). Iterating another step it must also hold for all types in

[l(l(l(t0))); t0]. By iterating this argument it follows that a necessary condition for

m(t0) = [l(t0); h(t0)] to be part of a SE is that there exists a sequence

f(l(tn); h(tn)gNn=1;

with

0 � l(tn) � tn � h(tn) � 1;

tn = l(tn�1);

U(aR(tn); [l(tn); h(tn)]) � U(aR(t0); [l(t0); h(t0)]) 8n = 1; 2; :::; N;

if N is �nite then l(tN) = tN

The last property follows since otherwise we would have to iterate the sequence

an additional step. It is immediate to derive some additional properties that this
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sequence must satisfy:

l(tn) < "(tn);

l(tn) < l(tn�1);

N ! 1.

l(tn) < "(tn) follows since for any h(tn) we have U(aR(tn); ["(tn); h(tn)]) �
U(aR(t�(t0)); [t�(t0); 1]) < U(aR(t0); [l(t0); h(t0)]). Next, as a consequence l(tn) <

l(tn�1) since l(tn) < "(tn) � tn = l(tn�1). Finally, since l(tn) < tn for all n =

1; 2; :::; N , it must be that N is not �nite. It then follows that fl(tn)g1n=1 must
converge to some limit L 2 [0; t0]. In what follows it will be shown that a sequence
fl(tn)g1n=1 satisfying the above properties cannot converge to some L 2 [0; t0), which
implies that there can be no separating equilibrium in which some type obtains a

payo¤ higher than in the equilibrium in 4.1.

Claim: The sequence fl(tn)g1n=1 does not converge to some L 2 [0; t0).
Proof: Let �U(t0) = U(aR(t0); [l(t0); h(t0)]) � U(aR(t�(t0)); [t�(t0); 1]) = C(1 �

"(t0)) � C(h(t0) � l(t0)). That is, �U(t0) is the increment in t00s payo¤ over that

obtained in the equilibrium in Proposition 4.1. Then for any tn it must hold that

U(aR(tn); [l(tn); h(tn)])� U(aR(t�(t0)); [t�(t0); 1]) � �U(t0) and this implies
U(aR(tn); [l(tn); h(tn)])� U(aR(t�(tn)); [t�(tn); 1]) � �U(t0), or

C(1� "(tn))� C(h(tn)� l(tn)) � �U(t0) 8tn.

This expression de�nes an upper bound on l(tn) given h(tn) for all tn which can

be written l(tn) � h(tn)� C�1(C(1� "(tn))��U(t0)), where C�1(�) is the inverse
function of C(�), which is de�ned given that C(�) is decreasing. We can write

l(tn) � h(tn)� C�1(C(1� "(tn))��U(t0))

� 1� C�1(C(1� "(tn))��U(t0))

= "(tn) + [C�1(C(1� "(tn)))� C�1(C(1� "(tn))��U(t0))]

Let C�1(C(1� "(tn)))�C�1(C(1� "(tn))��U(t0)) := B(tn;�U(t0)) and note

that B(tn;�U(t0)) < 0. This means that l(tn) must be smaller than "(tn) at least by
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the amount B(tn;�U(t0)). Note that B(tn;�U(t0)) cannot approach zero for some

�xed �U(t0). This is so since lim
x!y

C�1(x) = lim
x!y

C�1(x� ") ! C�1(x) = C�1(x� ")
by continuity and the latter equality does not hold since C(�) is decreasing. The
consequence is that each tn must send some l(tn) which fall short of tn by some

non-vanishing amount.

Now, suppose lim
n!1

l(tn) = L for some L 2 [0; t0]. But the fact that B(tn;�U(t0))
does not approach 0 implies that if we take some tn̂ su¢ ciently close to L we obtain

that l(tn̂) < L. Hence, since fl(tn)g is a decreasing sequence lim
n!1

l(tn)g 6= L and the

sequence can therefore not converge to some L 2 [0; t0].�
We have therefore reached a contradiction, so in a separating equilibrium it

cannot hold that U(aR(t0); [l(t0); h(t0)]) > U(aR(t�(t0)); [t�(t0); 1]) for some t0 2
T .

The implication of this result is that any separating equilibrium will be similar

to the one in Proposition 4.1. There can be some variation in the exact content of

the reports, but the basic mechanism is the same. In equilibrium, types that cannot

send [t; 1] and be better o¤ than lower types doing the same, must obtain payo¤s

equal to the highest one obtained by lower types. Types that are better o¤ than all

lower types by sending [t; 1] must send precisely this message.

It is fairly straightforward to see that in a separating equilibrium no sender type

can earn a lower payo¤ than the one obtained in Proposition 4.1. It is more di¢ cult

to see that no type can earn a higher payo¤. The logic of the proof is the following.

For a type to earn a higher payo¤ than in Proposition 4.1 he must produce a report

with l(t) < "(t). But then, all types in [l(t); "(t)] can mimic this message and hence

have to earn at least the same payo¤. This means that the type l(t) must produce

a report with l(l(t)) < "(l(t)). This creates a sequence that at some point hits zero,

and for t = 0 it is not possible to produce a report with l(0) < "(0) = 0. Therefore

in a separating equilibrium it is not possible for any type to earn a higher payo¤

than in Proposition 4.1. The intuition then is that the precision of the message must

be low enough to ensure at least as high payo¤ as that of lower types. But it must
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also be high enough to discourage lower types from mimicking it.

In the absence of reporting costs, i.e. when k = 0, there is a unique separating

equilibrium (Milgrom 1981). The following result shows that a su¢ cient condition

for all equilibria to be separating is that k is small enough.

Proposition 4.3. For k su¢ ciently small all equilibria of � are separating.

Proof. Consider an equilibrium in which some pooling occur. Suppose that in

this equilibrium � � T pool on some report mP = [l(�); h(�)], where evidently

l(�) � minft 2 �g. The payo¤ obtained for the pooling types in equilibrium is

then U(aR(t(�)); [l(�); h(�)]; where aR(t(�)) = argmax
a2A

R
uR(a; t)d�(tjmP ). I write

the optimal action of R as aR(t(�)) in recognition of the fact that this action corre-

sponds to the action R would take when certain that the message came from some

type t(�) in the convex hull of � .

Consider a deviation to [t; 1] by some t 2 � such that t > t(�). The deviator t

then earns at least U(aR(t); [t; 1]). This deviation is then pro�table if uS(aR(t)) �
uS(aR(t(�)) � k(C(1 � t) � C(h(�) � l(�))) > 0. The �rst term in this expression

is positive since t > t(�). If the second term is positive the deviation is therefore

pro�table. If the second term is negative, then for k su¢ ciently small k(C(1� t)�
C(h(�)� l(�))) < uS(aR(t))� uS(aR(t(�)). The deviation is therefore pro�table for
small enough k.

Hence, for k su¢ ciently small there can be no pooling in equilibrium, so all

equilibria are separating.

Proposition 4.3 implies that for small values of k the unraveling result of Milgrom

(1981) is intact, in the sense that all equilibria are separating. The unraveling result

is thus fully robust to small reporting costs. This conclusion contrasts with that of

Jovanovic (1981) and Verecchia (1983), in which full separation is impossible even

with arbitrarily small reporting costs. As mentioned, the di¤erence arises since in

those papers the disclosure decision is binary, which implies that there are always

some types for which disclosure is not worthwhile.
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To sum up, in this subsection it has been established that separating equilibria

exist, regardless of the reporting costs. All separating equilibria are payo¤ equiv-

alent. If the reporting costs are su¢ ciently small, all equilibria are separating. In

other words, the results in this subsection show how the unraveling result of Milgrom

(1981) generalizes to reporting costs that increase continuously in the precision of

the report.

4.4.2 Pooling Equilibrium

In a pooling equilibrium all types send the same report, which means that com-

munication is absent. Hence, the receiver�s information is not enhanced beyond her

knowledge of the prior distribution and she chooses the same action regardless of the

type of the sender. Here, in a pooling equilibrium, all types must send [0; 1], since

this is the only report that is true for all sender types. Proposition 4.3 implies that

when reporting costs are small, a pooling equilibrium does not exist. The following

result shows that on the other hand, with high reporting costs, a pooling equilibrium

exists.

Proposition 4.4. For k su¢ ciently high a pooling equilibrium exists. In the pooling

equilibrium m�(t) = [0; 1] for all t 2 T .

Proof. (i) In a pooling equilibrium all types must send [0; 1] since this is the only

report available to all types. Hence, if a pooling equilibrium exists it is unique.

(ii) Assume all types send mP = [0; 1]. This means that in equilibrium their

payo¤ is

U(a(mP ); [0; 1]), where a(mP ) = argmax
a2A

R
uR(a; t)dF (t). Note that a(mP ) = aR(t̂)

for some t̂ 2 (0; 1). If the beliefs of R with respect to out of equilibrium reports

are skeptical, then no type in [0; t̂] can pro�tably deviate, since the action of the

receiver in response to the deviation would be lower than a(mP ) and the deviating

report would be costlier than [0; 1].

Pro�table deviations are available for types t > t̂ such that U(aR(t̂); [0; 1]) <

U(aR(t); [t; 1]) or uS(aR(t))� uS(aR(t̂)) > k(C(1� t)� C(1)). The left side of this
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inequality is bounded and C(1 � t) � C(1) is bounded away from zero since t > t̂.

This means that for k su¢ ciently large the inequality will not hold for any t, so there

will be no pro�table deviation. Therefore, for su¢ ciently high k all types sendingmP

together with a skeptical inference on account of the receiver is an equilibrium.

A pooling equilibrium arises when the reporting costs are su¢ ciently high, since

a deviation in which the sender reports enough information to prove his type be-

comes too expensive. Skeptical beliefs with respect to unsent reports add to these

costs.8 One may wonder why separating equilibria exist regardless of the reporting

costs, but still it becomes impossible to break out of a pooling equilibrium when the

costs are high. The reason is that in the separating equilibrium, non-skeptical equi-

librium beliefs of the receiver allow the sender to identify himself by providing less

informative reports when the costs are high. In contrast, in a pooling equilibrium

the receiver may be skeptical with respect to all unsent reports. In this case, the

sender would have to provide enough evidence to overcome the receivers skepticism,

i.e., to identify himself t must send [t; 1]. Hence, in breaking out from an equilib-

rium of uninformative reports, the sender cannot justify withheld information by

appealing to the high costs of providing it, as in the separating equilibrium. This

makes it much harder for him to identify himself.

The fact that k high enough is su¢ cient for a pooling equilibrium to exist, means

that k small enough is not only su¢ cient for separating equilibria to be the unique

class of equilibria, it is also necessary. In principle, equilibria that constitute inter-

mediate cases between pooling and full separation may also arise, such as equilibria

with multiple pools or equilibria in which some types pool and others separate.

Here, I have limited myself to show that uninformative equilibria arise when the

reporting costs are su¢ ciently high. Future work could analyze intermediate cases

more closely.

In the pooling equilibrium, the sender incurs no cost writing reports. It can be

shown that whenever a pooling equilibrium exists, the sender prefers the pooling

8Recall that a belief �(tj[l; h]) is skeptical if it is degenerate at l.
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equilibrium. In fact, all sender types prefer the pooling equilibrium to the separat-

ing equilibrium. This is illustrated by the following argument. The maximum payo¤

earned in a separating equilibrium is U(aR(t�(1)); [t�(1); 1]). At the same time, given

the skeptical beliefs of the receiver, t�(1) could obtain at most U(aR(t�(1)); [t�(1); 1])

by deviating from the pooling equilibrium to [t�(1); 1]. But since we are in an equilib-

rium, this is not a pro�table deviation, so U(aR(t�(1)); [t�(1); 1]) < U(aR(t̂); [0; 1]).9

Hence, the payo¤s obtained in the pooling equilibrium exceed the maximum (over

all types) payo¤ obtained in the separating equilibrium. Therefore all sender types

prefer the pooling equilibrium and consequently so does the sender.

On the other hand, the receiver always prefers the separating equilibrium. It is

therefore not immediately clear whether the pooling or the separating equilibrium

is better in welfare terms. Such a comparison depends on a cardinal comparison

of uS(a) and uR(a; t). In fact, not even when the intensity k of the reporting cost

is arbitrarily high is it possible to say which of the equilibria is better in welfare

terms. The reason is that the payo¤ the sender obtains in a separating equilibrium

is bounded from below at U(aR(0); [0; 1]). Hence, the sender�s gain by going from

a separating equilibrium to a pooling equilibrium is bounded at U(aR(t̂); [0; 1]) �
U(aR(0); [0; 1]).

4.5 A more Active Receiver

In this section an extension of the baseline model of costly reporting presented in

Section 3 is considered. In this extension, the receiver must examine the report at

a cost in order to access the information contained in it. The aim is to capture the

fact that just as it is costly to elaborate a report, it frequently requires both time

and e¤ort to read and understand it.

When the receiver actively decides whether to read a report, it becomes impor-

tant whether she can make this decision contingent on some �rst impression of the

report�s appearance. This �rst impression may come from a �rst glance or a quick

9With t̂ de�ned as in the proof of Proposition 4.4.
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browse. It is then relevant how the �rst impression is related to the information

content of the report and to which extent it can be manipulated. I will assume that

the appearance of a report is related to its precision. The idea is that since a precise

report contains more information it tends to be thicker and denser. It may also re-

quire more numbers, arguments, explanations, diagrams and other details that can

be detected by a quick browse. I also assume that appearances can be manipulated

at a cost. Hence, a report can be "polished" to look more or less precise than what

it really is. This captures the idea that, for example, a vague report can be made

to appear more informative at a �rst glance by �lling it with nonsense information

(that nevertheless looks informative at �rst glance). Conversely, a precise report can

be condensed so it seems less informative, perhaps by making an additional e¤ort

to eliminate redundant information.

4.5.1 The Model

The same model as the one in Section 3 is considered, but with some modi�cations.

Each sender type t chooses an element m 2M(t) as before, but now he also chooses
an appearance p 2 P = [0; 1]. Hence, here a sender of type t chooses a couple

(m; p) 2 M(t) � P . In this section I will refer to the couple (m; p) as a report,

to m as the information content of (m; p) and to p as the appearance of (m; p). If

p is chosen so p < �(m) the report is made to look more precise than what it is

and if p > �(m), it is made to look less precise than what it is. If p = �(m), the

appearance is not manipulated, so the report looks just as precise as it really is.

The interpretation is the following. A precise report here, is understood as a report

that contains a large amount of information. Reports of a given precision may have

a things in common. For example, they may be equally thick, or contain similar

amounts of numbers, plots, calculations and arguments, and so on. The sender can

make a report look more precise than what it is by including redundant information.

He could also make it look more precise than what it is, by being more concise and

eliminating redundancies.
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The cost of producing a report (m; p) is given by kC(�(m))+kp (�(m)�p), where
the �rst term is the cost function from Section 3,  is a function  : [�1; 1] ! R
and kp > 0 is an intensity parameter. The term kp (�(m) � p) gives the cost of

manipulating the appearance of a report with information content m so it looks

like a report of precision p. The function  is assumed to be a convex and satisfy

 0(x) < 0 for x < 0,  0(x) > 0 for x > 0 and  (0) = 010. This means that it is costly

to make a report look both more or less precise than what it is, i.e. it is costly both

to add redundant information and remove it. If the report is not manipulated, no

additional costs are incurred. Additionally, in this section it will be assumed that

C is di¤erentiable and convex.

When a report (m; p) is delivered to the receiver, she immediately observes p.

She then forms beliefs �1((m; t)jp). These beliefs are a probability distribution over
M �T . In other words, the receiver forms a belief both with respect to which types
might have sent a report with appearance p, and with respect to the information

content of the report. Next, she chooses an e¤ort level e 2 E = [0; 1] with which she
examines the report. With probability e she understands the report and accesses the

information contained in it, i.e. she observes m. With probability 1�e she does not
access the information. If she accesses m, she updates her beliefs to �2(tj(m; p)) and
chooses an action a 2 A. If she does not access the information, she does not update
her beliefs, but just chooses an action a 2 A. Examination e¤ort costs kR(e), where
 is an increasing and convex function  : E ! R and kR parameterizes the intensity
of the examination cost.

The sender�s payo¤ is now U(a;m; p) = uS(a)� kC(�(m))� kp (�(m)� p) and
the receiver�s payo¤ is uR(a; t) � kR(e). The same assumptions as in Section 3

apply to these functions.

The sender�s strategy is a function �S : T ! M � P with the restriction m 2
M(t). Then, �S(t) = (m; p) means the sender of type t chooses report m and

appearance p. I letm(t) and p(t) respectively denote the information and appearance

components of �S(t).

10However, it is not assumed that  0(0) = 0.
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The receiver�s strategy can be written as a combination of two functions. Let

�R1 : P ! E � A and �R2 : M � P ! A, where �R1 assigns an e¤ort level and an

action to each p 2 P and �R2 assigns an action to each (m; p) 2 M � P . Then

�R1 (p) = (e; a) means that the receiver chooses e¤ort level e when receiving a report

with appearance p; and action a if the information content is not accessed. Similarly

�R2 (m; p) = a means that the receiver chooses a in response to a report (m; p) (given

thatm is accessed). I write e(p) and a(p) to denote the e¤ort and action components

of �R1 . The strategy of the receiver is written as a pair (�
R
1 ; �

R
2 ).

A PBE here is a receiver strategy (�̂R1 ; �̂
R
2 ), a sender strategy �̂

S and beliefs

�̂1((m; t)jp) and �̂2(tj(m; p)), such that (i) �̂R2 maximizes the receiver�s payo¤ given
�̂2(tj(m; p)), (ii) �̂R1 maximizes the receiver�s payo¤s given �̂1((m; t)jp), (iii) �̂S max-
imizes the sender�s payo¤ given (�̂R1 ; �̂

R
2 ) and (iv) �̂1((m; t)jp) and �̂2(tj(m; p)) are

rational (i.e. consistent with the receiver�s strategy and the prior distribution).

4.5.2 Results

The model just described has multiple PBE. Here, I focus on separating equilibria.

The aim is to study to what extent communication is complicated by the fact that

the sender has to make an e¤ort in order to assimilate the information contained in

a report. One way of doing this is by focusing on the possibilities for perfect com-

munication under these circumstances. Two categories of equilibria are identi�ed

and characterized: Non-Reading Separating Equilibria (NRSE) and Reading Sepa-

rating Equilibria (RSE). A non-reading separating equilibrium is a separating PBE

in which the receiver�s examines any report with zero e¤ort. A reading separating

equilibrium is a separating PBE in which the receiver examines some messages sent

in equilibrium with positive e¤ort.

Non-Reading Separating Equilibrium

In a NRSE the reader never exerts any e¤ort in order to access the information

content of the report. In spite of this, the equilibrium is fully separating, so she
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is able to distinguish between all sender types. For this to be possible, all reports

must have a unique appearance, so the receiver can tell them apart by just a quick

glance. The fact that the receiver does not read the reports means that the infor-

mation content becomes less relevant. The receiver never actually assimilates the

information content of a report. The relevance of the information content instead

comes from the costs involved in providing it. In order to separate when the receiver

does not read the reports, the di¤erent sender types must "burn money" producing

the reports to the degree that all sender types obtain the same payo¤. The reason

is that since the receiver does not read the reports, it is always possible for any

type to mimic the report of all other types. The necessary costs can be incurred

both by providing veri�able information and polishing the appearance of the report.

Since separation is accomplished through the costs of producing reports and not by

disclosure of information, the NRSE is a pure costly signaling equilibrium.

Two classes of NRSE are identi�ed, truth-telling and in�ated-talk equilibria.

In a truth-telling equilibrium the sender never makes an e¤ort to manipulate the

appearance of the report, so �(m(t)) = p(t) for all t. In an in�ated-talk equilibrium

some sender types manipulate the appearance of the report in order to make it look

more precise than what it is, so there are t such that �(m(t)) > p(t).11 Loosely

speaking, truth-telling equilibria arise if it is relatively more expensive to polish the

report�s appearance so it looks more precise, than to actually increase its precision.

In�ated talk equilibria arise in the opposite case, when it is relatively more costly

to provide information than to polish the appearance of the report. On the other

hand, in a NRSE no type ever incur costs to make the reports look less precise.

In a NRSE it must hold that �S(0) = ([0; 1]; 1], i.e. the lowest type must send

the cheapest possible report. If he sends any other report, he could always deviate

11In�ated-talk equilibria bear resemblance to those characterized in Kartik (2009) and Kartik
et. al. (2006). In these models the sender incurs lying costs when claiming to be a higher type
than what he is. In equilibrium, all sender types claim to be of a higher type than what they are.
A di¤erence in the present paper is that the reference point (the precision of a report) with respect
to which a statement (an appearance) can be considered to be a lie, is endogenous. I.e., whereas
in Kartik (2009) and Kartik et. al. (2006), the term �(m(t)) is a message with exogenous meaning
"my type is t", here it is endogenously chosen by the sender.
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to the cheaper report ([0; 1]; 1) and be identi�ed at least as t = 0. Since all types

must obtain the same payo¤ in a NRSE, this implies that they must all obtain

U(aR(0); [0; 1]; 1). Let U(0) := U(aR(0); [0; 1]; 1). I now de�ne a function that will

be helpful in characterizing NRSE. Let pt(x) be the implicit function de�ned by

fp : kC(x) + kp (x� p) = u(aR(t))� U(0) and p � xg (4.3)

This means that if �(m(t)) = x then pt(x) gives the appearance that the report

of type t must have in a separating equilibrium for his payo¤ to equal that of type

0. Therefore, (m; pt(�(m(t))) gives the pairs (m; p) that t could send in a NRSE.

The function pt(x) plays an important role in establishing the following lemma that

characterizes the set of NRSE.

Lemma 4.2. 1. A unique set of payo¤ equivalent NRSE exists i¤ k > u(aR(1))�U(0)
C(0)

,

kp > u(aR(1))�U(0)
 (1)

and the domain of p1(x) is an interval [m1; 1].

2. In the NRSE all t 2 T send (m�(t); pt(�(m
�(t)))), with m�(t) such that

�(m�(t)) = argmin
x2[m1;1]

pt(x).

3. If �(m�(1)) = m1 the NRSE are truth telling equilibria. If �(m
�(1)) > m1

there is a set of types (t̂; 1] such that pt(�(m�(t))) < �(m�(t)) for all t 2 (t̂; 1],

while pt(�(m�(t))) < �(m�(t)) for all t 2 [0; t̂]. Hence, these NRSE are in�ated talk
equilibria.

Proof. First note that there is no NRSE in which �(m(t)) < p(t) for some t. In

this case, the payo¤ of t is u(aR(t)) � kp (�(m(t)) � p(t)) � kC(�(m(t))) and a

pro�table deviation is (m0; p(t)) such that �(m0) = p(t). Hence, in any equilibrium

�(m(t)) � p(t) for all t 2 T .
Su¢ ciency of 1: Note that if the domain of p1(m) is an interval [m1; 1] then

the domain of pt(m) is an interval [mt; 1] for all t 2 T .
Suppose all t 2 T send (m(t); pt(�(m(t)))) such that �(m(t)) 2 argmin

x2[mt;1]

pt(x).

Then all types send di¤erent reports of di¤erent appearances and all types earn the

same payo¤ u(aR(t)) � kp (�(m(t)) � p(�(m(t))) � kC(�(m(t))). No deviation to

messages m0 2 [mt; 1] is pro�table, since it renders payo¤s u(a
R(t)) � kp (�(m0) �
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pt(�(m(t))))� kC(�(m0)) � u(aR(t))� kp (�(m0)� pt(�(m0)))� kC(�(m0))

= u(aR(t))�kp (�(m(t))�pt(�(m(t))))�kC(�(m(t))), where the �rst inequality
follows since p(�(m(t))) = min

x2[mt;1]
pt(x) � p(�(m0)) and �(m0) � pt(�(m(t))).

Deviations to messages in m0 2 [0;mt) are likewise unpro�table. First, note that

pt(mt) = mt (since C(0) > u(aR(1))�U(0)). Next, for any deviation to m0 2 [0;mt)

the pro�ts obtained are u(aR(t))� kp (�(m0)� pt(�(m(t))))� kC(�(m0)) �

u(aR(t)) � kp (0) � kC(�(mt)) = u(aR(t)) � kp (�(m(t)) � pt(�(m(t)))) �
kC(�(m(t))), where the �rst inequality follows since �(m0) � pt(m(t)) � 0 and

�(m0) < mt.

Hence, the assumptions in (1) guarantee that there is a NRSE in which all types

send (m(t); p(�(m(t)))) such that �(m(t)) = argmin
x2[mt;1]

pt(x).

Necessity of 1: We examine each of the assumptions in (1). First, note

that in equilibrium all types must send (m(t); pt(�(m(t)))) such that �(m(t)) 2
argmin
x2D(pt)

pt(x), where D(pt) is the domain of pt. If this is not the case, a deviation to

m0 such that �(m0) 2 argmin
x2D(pt)

pt(x) would be pro�table.

Suppose kC(0) < u(aR(1))� U(0). Then min
x2D(pt)

pt(x) = 0. Hence in equilibrium

t = 1 must send (m(t); 0). Now consider a deviation to (m0; 0) with �(m0) = 0. This

gives payo¤s u(aR(1)) � C(0) < U(0) = u(aR(1)) � kp (�(m(t))) � kC(�(m(t)))).

So pro�table deviations are available.

Now suppose kp (1) < u(aR(1)) � U(0). Again in equilibrium t = 1 must send

(m(t); 0). Now consider a deviation to (m0; 0) with �(m0) = 1. This gives payo¤s

u(aR(1))� kp (1) < U(0) = u(aR(1))� kp (�(m(t)))� kC(�(m(t))). So pro�table
deviations are available.

Finally, suppose that the domain of p1(x) is not an interval [m1; 1]. This means

that there is some point a in [0; 1] such that for some " 2 (0; 1 � a] it holds that

a+" 62 D(p1). Further, p(a) = 0. Consider a deviation tom0 such that �(m0) = a+".

At this point kC(a+ ") + kp (a+ ") < u(aR(t))� U(0) since if the inequality were
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reversed there would be some p at which it held with equality, contradicting that

a+ " 62 D(p1). Hence m0 = a+ " is a pro�table deviation.

2. It was already shown in the �rst paragraph of the proof of necessity of 1 that

all types must send m(t) such that �(m(t)) 2 argmin
x2D(pt)

pt(x) and p(�(m(t))).

3. First, suppose argmin
x2[m1;1]

p1(x) = m1. This evidently means that t = 1 tells

the truth in equilibrium. However, it also means that for t 2 (0; 1) it holds

that argmin
m2[m1;1]

pt(m) = �(m�(t)). To see this, suppose that for some t 2 (0; 1)

argmin
m2[mt;1]

pt(m) < �(m�(t)). In this case, due to the convexity of pt(m), it would have

to hold that p0t(mt) < 0 < p01(m1). But it can be shown that p
0
t(mt) =

kp 0(0)+kC0(mt)

kp 0(0)

and p0t(mt) < p01(m1) is therefore equivalent to C
0(m1) < C 0(mt) which does not

hold since m1 < mt. Hence, if t = 1 speaks the truth in equilibrium then so does

all types (alternatively, p0t(mt) is increasing in t. Since pt(mt) is convex a positive

slope means that all types will minimize pt(m) at mt.)

Now, suppose argmin
x2[m1;1]

p1(x) > m1. Then t = 1 will necessarily in�ate talk in

equilibrium. Further, there will be a set of types (t̂; 1] such that argmin
x2[mt;1]

pt(x) =

�(m�(t)) for all t 2 (t̂; 1]. However, as argued, if for some t̂ argmin
x2[mt̂;1]

pt̂(x) = mt̂ then

all types [0; t̂] will tell the truth. Indeed, there is always such a t̂, namely 0, who

always tells the truth, so the question is rather if some other types besides him tell

the truth. The set of truth tellers will be the set of types t such that p0t(mt) > 0.

Lemma 4.2 characterizes the set of NRSE. Item (1) gives necessary and su¢ cient

condition for the existence of a unique set of payo¤ equivalent NRSE. First, both k

and kp must be su¢ ciently high. The reason is that all types must be able to burn

enough money providing information and manipulating appearances. However, this

is not enough, the costs kC(0) and kp (1) must be high enough by themselves

and the domain of p1(x) must be an interval. These requirements arise since for

any report (m; p) sent in equilibrium, there can be no report (m0; p), i.e. with the

same appearance but di¤erent information content, that is less costly to provide

184



Chapter 4 Perfect Communication with Arbitrary Communication Costs

than (m; p). Hence, given the equilibrium message, it must be more costly both to

increase and decrease the (true) precision of the report. A point where this holds for

all types exists under the conditions stated in (1) of Lemma 4.2. Item (2) states that

(m; p) must be chosen so �(m) minimizes pt(�(m) and p = pt(�(m)). The reason

is that such points are the only ones in which there is no report (m0; p) with lower

cost. The intuition is that at these points, the cost of increasing precision outweighs

the lower manipulation costs, and the savings obtained by decreasing precision, are

outweighed by higher manipulation costs. Item (2) also shows in which sense there

is multiplicity of NRSE. The report of each type must have a unique precision, but

there is an in�nite number of reports with the same precision. Hence, the report

of each type has a unique precision and appearance, but the actual information

content is not determined. Finally, (3) gives conditions under which the NRSE are

truth-telling or in�ated talk equilibria.

Lemma 4.2 gives a set of conditions that are related to NRSE. However, these

are not in terms of the primitives of the model. Whether the domain of p1 is an

interval [m1; 1] depends on the properties of k
p (�) and kC(�) and it has not been

established so far whether this is at all possible, or whether it is consistent with the

conditions imposed on kpand k. However, it is helpful in establishing the main result

of this subsection, in which the equilibria is characterized in terms of the intensity

parameters of the cost functions.

Proposition 4.5. If k > u(aR(1))�U(0)
C(0)

then

(1) If kp > �kC0(mt)

 0(0) a unique set of payo¤ equivalent truth-telling NRSE exists.

(2) There is some kp(k) such that for kp 2 [kp(k);�kC0(mt)

 0(0) ) a unique set of payo¤

equivalent in�ated talk NRSE exists, in which a set of types (t̂(kp); 1] manipulate

appearances and [0; t̂(kp)) does not.

(3) For kp low enough there are no NRSE.

Proof. (1) We can use lemma 4.2 and then only need to show that argmin
x2[m1;1]

p1(x) = m1

if kp > �kp(k) for some �kp(k) > 0. Since pt(x) is convex, argmin
x2[m1;1]

p1(x) = m1 if and
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only if p01(m1) > 0, i.e. if k
p 0(0) + kC 0(mt) > 0 or k

p > �kC0(mt)

 0(0) .

(2) For an equilibrium to display in�ated talk it is required that argmin
x2[m1;1]

p1(x) >

m1. A necessary condition for this is that p
0
1(m1) < 0 or kp < �kc0(mt)

 0(0) . It is also

required that the domain of p1(x) be an interval [m1; 1] i.e. there is no discontinuity

in [m1; 1]. A su¢ cient condition for this is that kp 0(m1) > �kC 0(m1) or k
p >

�kC
0(m1)

 0(m1)
. To see that it is su¢ cient note that kC(�(m))+kp (�(m)) � u(aR(1))�

U(0) for all m such that �(m) � m1 is su¢ cient for p1(x) to be de�ned on [m1; 1].

Next kC(m1) + kp (m1) > u(aR(1)) � U(0) and kp 0(m1) > �kC 0(m1) implies

kp 0(�(m)) > �kC 0(�(m)) for all m such that �(m) > m1 by convexity of  (�)
and C(�). Hence kC(�(m)) + kp (�(m)) � u(aR(1)) � U(0) for all m such that

�(m) � m1. Hence if k
p 2 [�kC

0(m1)

 0(m1)
;�kC

0(mt)

 0(0) ] there is an equilibrium that displays

in�ated talk. (Note that kp > �kC
0(m1)

 0(m1)
together with k > u(aR(1))�U(0)

C(0)
implies the

necessary condition for kp; i.e. kp > u(aR(1))�U(0)
 (1)

)

As is known by lemma 4.2 a set of types (t̂(kp); 1] display in�ated talk. This set

can be more exactly speci�ed by noting that p0t(mt) = p0t(C
�1(U(t)=k)) and thus

dp0t(C
�1(U(t)=k))
dt

= p00t (C
�1(U(t)=k)) 1

C0(t)
U 0(t)
k

< 0. Hence even if p01(m1) < 0 we have

that p0t(mt) will be on the increase in t so at some point t̂(k
p) it may become positive

and then types t > t̂(kp) will tell the truth. If lim
t!0

p0t(mt) =
kp 0(0)+kc0(1)

kp 0(0) < 0 which is

equivalent to kp < �kc0(1)
 0(0) then all types except t = 0 in�ate talk.

(3) This follows from lemma 4.2.

Proposition 4.5 shows that k and kp large enough is indeed a su¢ cient condition

for NRSE to exist is. Moreover, if the manipulation cost is high enough relative

to the cost of precision, all NRSE are truth-telling. If the manipulation cost is

somewhat lower, there is a unique class of NRSE that display in�ated talk. If the

manipulation cost is too low, there are no NRSE (this is already known from Lemma

4.2 but is stated in Proposition 4.5 for completeness). The intuition behind this

result is the following. In a NRSE it should not be possible for a type to maintain

the same appearance but deviate to a report of di¤erent precision. If the cost

of manipulation is high enough, relative to the precision costs, then truth telling
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can be an equilibrium since any deviation from such an equilibrium, maintaining

appearance constant, will increase manipulation of appearance and therefore be too

expensive. If the cost of manipulation is somewhat lower, there may be incentives

to incur some manipulation cost in order to reduce the precision costs, which means

truth telling is not an equilibrium. If the cost of manipulation is not too low, then

due to the convexity of the manipulation and precision costs, it is possible to �nd

a point from which the cost of additional manipulation outweighs the reduction of

precision costs. Such a point is then part of an in�ated talk equilibrium. If the cost

of manipulation is too low, this point is never reached and it is always warranted to

incur some additional manipulation costs in order to reduce the precision costs. In

this case, there are no NRSE.

In a NRSE, higher types tend to send more precise reports, but also to incur

higher costs polishing appearances. In fact, in an in�ated talk NRSE, high types

polish the reports to make them look more precise, whereas low types do not. The

reason is that since low types send less precise messages, the convexity of the pre-

cision costs eventually leads the manipulation costs to become high relative to the

precision costs for lower types.

The result in this subsection shows that communication can be possible even

if the receiver never actually reads the report. In this case, communication is in

terms of the appearances of the reports and the receiver can distinguish between

the di¤erent reports simply by observing that they look di¤erent at �rst glance. For

example, some reports may be thicker or appear to have more numbers, equations

and so on. However, this communication comes at a high cost. All the bene�ts of

being of a higher type is burnt up in communication costs. Nevertheless, while the

sender should be unhappy with this state of a¤airs, it is an ideal situation for the

receiver, who obtains full information without reading a single report.

It should be noted that there is always a non-reading pooling equilibrium in which

all types send ([0; 1]; 1] (a non-sense non-manipulated message) and the receiver

never reads anything. This is worse for the receiver, but much better for all sender
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types.12

In the following subsection, the attention is turned to equilibria in which the

receiver do read the reports.

Reading Separating Equilibrium

Under some circumstances there are separating equilibria in which reports are read.

A few observations can be made about such equilibria. First, for the reader to

examine a report with positive e¤ort, there must be more than one type producing

a report with the same appearance. Otherwise, in equilibrium the receiver knows

already exactly what type sent the report and there are therefore no incentives to

make an e¤ort to understand it. Second, for a reading equilibrium to be separating

any message that is examined with positive e¤ort must be examined with e¤ort

e = 1, so the probability of interpreting the report correctly is equal to one. If this

is not the case, the receiver sometimes is uncertain with respect to the sender�s type

and in these cases her choice will not correspond to that of full information. This

means that full separation requires that the intensity of the reading costs is not too

high. More precisely, when choosing e¤ort level given a set � of types pooling on

some p in a separating equilibrium the receiver solves

max
e2[0;1]

fe
Z
�

u(aR(t); t)f(tj�)dt+ (1� e)max
a

Z
�

uR(a; t)f(tj�)dt� kR(e)g. (4.4)

If � consists of a single type then the solution to this problem is e� = 0, i.e.

the message is not read. If � does not consist of a single type, the �rst order

condition is
R
�
u(aR(t))f(tj�)dt �max

a

R
�
u(aR(t))f(tj�)dt � kR0(e�) � 0 if e� = 1.

Consequently, in a reading SE given any set � of types that pool on some p it

must hold that
R
�
u(aR(t))f(tj�)dt�max

a

R
�
u(aR(t))f(tj�)dt � kR0(1). If kR is too

high this inequality does not hold for any � (since the left side of the inequality is

bounded). Hence, if the reading cost is too high there is no equilibrium in which

12Indeed, the fact that it is better for all sender types makes the NRSE look susceptible to some
re�nements, such as the concept of announcement proofness introduced in Matthews et.al. (1991).
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the receiver reviews reports with positive e¤ort. A low kR is therefore a necessary

condition for a RSE to exist. The following result shows that it is also a su¢ cient

condition

Proposition 4.6. For kR low enough there is a RSE.

Proof. As in the non-reading SE, in the reading equilibrium type t = 0 must send

([0; 1]; 1). Suppose p(t) = 1 for all t 2 T . Then if kR is su¢ ciently low, the receiver
will examine p with e¤ort e = 1. Further, let m(t) = (l(t); 1) for all t 2 T . Then

US(t) = uS(aR(t))�(kp (�l(t))+kC(1�l(t))). In a separating equilibrium we must
�nd l(t) such that for all t; t0 2 T such that t0 > t either US(t) = US(t0) or t < l(t0).

But we know from Proposition 4.1 that such an l(t) exists. To be explicit, let

�t�(t) := maxfargmax
t02[0;t]

uS(aR(t0))�(kp (�t0)+kC(1�t0))g and let �(t) := ft0 2 [0; t] :

uS(aR(t))� (kp (�t0)+kC(1� t0)) = uS(aR(�t�(t)))� (kp (��t�(t))+kC(1��t�(t)))g.
Then �(t) is similar to "(t) in Section 3, the only di¤erence being that �(t) is de�ned

with a di¤erent cost function, that nevertheless satisfy the same properties as C.

The arguments given in the proof of Proposition 4.1 thus applies here as well, so

m(t) = [�(t); 1] and p = 1 indeed is a reading SE if kR is su¢ ciently small, under the

additional condition that the receiver will not read any report (m; p0) with p0 6= 1.

The proof of Proposition 4.6 shows that if the cost of examining a report is

su¢ ciently low, it is always possible for the sender to pool on some appearance, and

next separate using a combination of disclosure of information and costly signaling.

While the appearance is the same for all types, so all reports look the same, the

content of the reports di¤er across types. Once the receiver examines the reports,

she is able to determine exactly which type sent the report. An equilibrium always

exists due to the existence result in Section 3. The only di¤erence here is that the

sender incurs a combination of precision and manipulation costs, so the cost function

is di¤erent (in fact, the sender indeed incurs higher costs here).

Hence, as long as the examination costs are not too high, perfect communication

can occur in a way similar to the benchmark case studied in Section 3. A paradoxical
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aspect of the RSE speci�ed in the proof of Proposition 4.6 is that all sender types

except t = 0 manipulate the appearance of the report at a cost, with the only

bene�t that the receiver in this way will read their report. Moreover, they make their

reports look less precise than what they are (perhaps by condensing the information,

making it �t in a smaller number of pages). The problem that they face is that the

receiver only examines reports with p = 1 and responds skeptically to any other

report. This leads the sender to incur costs that seem unnecessary. The underlying

dilemma arises since the receiver must read the reports for information to become

veri�able and then to pooling on appearances is required. Manipulation is therefore

necessary for separation. Hence, any separation arising from the receiver reading

the reports requires that some types polish the appearances of the reports.

The receiver is worse o¤ in the RSE than in the NRSE, since she obtains full

information as before, but now at a positive cost. The sender incurs less costs than

in the non-reading equilibrium, except in the special case in which �t�(1) = 0 so

the utilities across sender types is constant13. In this case, welfare is higher in the

NRSE, since the expected utility of the sender is the same and the expected utility

of the receiver is higher.

A conclusion is that perfect communication is possible even when the receiver

has to make an e¤ort at a cost in order to access the information contained in the

report. RSE always exist if the intensity of the examination cost is not too high.

This means means that the existence of a separating equilibrium is robust to the

inclusion of small reading costs.

4.6 Concluding Remarks

In this paper it has been shown how the unraveling result of Milgrom (1981) gen-

eralizes when reporting of information increases continuously in the precision of the

report. Contrary to what one might suspect, a separating equilibrium always ex-

ist, also for arbitrarily high reporting costs. Hence, communication can be perfect,

13The term �t�(1) is de�ned in the proof of Proposition 4.6.
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even when communication costs are arbitrarily high. The intuition is that the costs

work as a signaling device and a combination of disclosure of information and costly

signaling can be used to accomplish full separation. When the costs of reporting be-

come high the separating equilibrium looses uniqueness and other outcomes become

plausible as well. Hence, when reporting costs are high, both situations in which the

receiver obtains full information and situations in which she obtains less (or none)

information can arise. This conclusion contrasts with the previous literature, such

as Jovanovic (1982) and Verecchia (1983) which has argued that reporting costs are

more detrimental for communication.

This paper has also studied the obstacles to communication that can arise when

the receiver has to make an e¤ort at a cost in order to assimilate the information

contained in reports. It has been shown that there are both separating equilibria in

which reports are not read and in which they are read. The former equilibria exist

under a number of conditions on the cost functions. In principle, the precision and

manipulation costs should not be too low. The latter exist as long as it is not too

costly for the receiver to examine the reports. This means that unraveling is robust

to costly examination of reports, in the sense that the set of separating equilibria is

not emptied with small examination costs.

A promising direction for future research is to study more closely the role of the

receiver in communication. For example, if the receiver must make an e¤ort in order

to understand the report, a relevant issue is the incentives of the sender to make

it understandable. Another possibility is that the probability of understanding a

report is related to its precision. In principle, a more precise report may be harder

to understand, which would seem to reduce the incentives to produce precise reports.

Finally, yet another possibility is to incorporate more "layers of information" into a

report. For example, the receiver may obtain a �rst impression by a quick glance, a

deeper understanding by browsing the report and �nally a thorough understanding

by reading it.
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