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Abstract. Many fast similarity search techniques relies on the use of
pivots (specially selected points in the data set). Using these points, spe-
cific structures (indexes) are built speeding up the search when queering.
Usually, pivot selection techniques are incremental, being the first one
randomly chosen.

This article explores several techniques to choose the first pivot in a
tree-based fast similarity search technique. We provide experimental re-
sults showing that an adequate choice of this pivot leads to significant
reductions in distance computations and time complexity.

Moreover, most pivot tree-based indexes emphasize in building balanced
trees. We provide experimentally and theoretical support that very un-
balanced trees can be a better choice than balanced ones.

1 Introduction

Similarity search has become a fundamental task in many application areas, in-
cluding data mining, pattern recognition, computer vision, multimedia informa-
tion retrieval, biomedical databases, data compression or statistical data anal-
ysis. The simplest, yet most popular method for this task is the well-known
k-Nearest Neighbor (kNN) classifier. However, one of the main constraints of
using this technique to classify large datasets is its complexity: finding the k-
Nearest Neighbors for a given query is linear on the database size. A classical
method to speed up the search is to rely in some property of the dissimilarity
measure to build up a data structure (index) in preprocess time. Once the index
has been built, similarity queries can be answered with a significant reduction
in the number of distance computations.

In this work we are going to focus our attention in dissimilarity functions
that fulfills the conditions of being a distance and then define a metric space (A
review of such techniques can be found in [3][7][18].) According to Navarro and
Reyes [12], algorithms to search in metric spaces can be divided in pivot-based
and clustering algorithms:



– Pivot-based algorithms use a set of distinguished objects (pivots) of the
datasets. Usually, the distances between pivots and some (or all) the ob-
jects in the database are stored in the index. This information, along with
the properties of the distance function, is used in query time to avoid some
distance computations.

– Clustering algorithms divide the spaces in zones as compact as possible, stor-
ing a representative point for each zone and extra information that permit
to discard a zone at query time.

According to Hjaltason and Samet [7] and Zezula et al.[18], the algorithms can
be divided in:

– Ball partitioning algorithms, that requires only one pivot to divide a set S

into two subsets using a spherical cut.
– Generalized hyperplane partitioning algorithms, where the division is done

using two pivots.
– Distance matrix algorithms, where precomputed distances between the ob-

jects in the datasets are stored to be used in query time.

For example, the Vantage Point Tree (vp-tree) algorithm [17] is a pivot-based

algorithm that uses ball partitioning metric trees. The simplest method selects
randomly the vantage points. However, the author argues that a more careful
selection procedure can yield better search performance.

One of the first works about the selection of pivots was done by Shapiro in
1977 [14]. He found that if the data set belongs to a uniform distribution on
a hypercube in the Euclidean space, it is better to pick (vantage) points near
corners of the hypercube as pivots to improve search performance. Taking into
account these results, Yianilos argues that choosing the points near corners as
pivots can be shown to minimize the boundary of the ball that is inside the
hypercube, increasing search efficiency.

Other well-known example of pivot-based method was proposed by Ullmann
in 1991 [15]. Ullmann defines a metric tree (gh-tree) using generalized hyperplane

partitioning. Instead of picking just one object for partitioning the space as in
the vp-tree, this method picks two pivots, usually, the samples farthest from each
other, dividing the set of remaining samples based on the closest pivot. Similar
strategies were applied in Faloutsos and Lin [5] or Merkwirth et al. [10].

Despite the taxonomy proposed by Navarro and Reyes, some clustering algo-
rithms also use pivots to build indexes. GNAT (Geometric Near-neighbor Access
Tree) [2] is a clustering algorithm, that is a generalization of a gh-tree, and then,
where more than two pivots should be chosen to divide the data set at each
node. The method for choosing the pivot samples is based on a philosophy simi-
lar to that of Yianilos for the vp-tree (and also suggested by others [1][14]). The
method first randomly selects a set of candidate pivot samples from the dataset.
Next, the first pivot is selected randomly from the candidates, and the remaining
pivots are selected iteratively as the farthest away from the previously selected.

A bisector tree, proposed by Kalantari and McDonald [8], is a gh-tree aug-
mented with the maximum distance to a sample in its subtree. Moreover, if in



this structure one of the two pivots in each non leaf node is inherited from its
parent node, the monotonous bisector tree (mb-tree) is obtained [13]. Since this
strategy leads to fewer pivot objects, its use reduces the number of distance
computations during search (provided the distances of pivot objects are prop-
agated downward during search), at the lower cost of a worse partitioning and
a deeper tree. It should be clear that many different configurations are possible
for obtaining a mb-tree, since there are many options to choose the second pivot
at each step for the next decomposition. For example, one strategy is to select
as the second pivot the one that tries to associate the same number of objects
with each node (then, obtaining a balanced tree).

In the last few years we worked with MDF-trees. This indexes can be viewed
as a particularization of the mb-tree. In order to build an MDF-tree, first a
pivot is chosen from the database (usually randomly). The algorithm proceeds
by dividing the database in two sets each time a node of the tree is split. To
split a node, two pivots are chosen, the corresponding to the new left node is
the pivot of the node to be split and the right pivot is the farthest element of
the left pivot. Then, the objects of the original node are distributed according
to its nearest pivot. This structure stores some additional information (i.e. the
distance from the node pivot to the farthest object of the node) [4].

However, the selection of the first pivot (root of the tree) has not received
special attention. Note that in mb-trees, the selection of the first pivot is affecting
all levels of the tree because the decomposition of the space is done in a top-down
manner.

In this paper we are interested in the initialization of MDF-trees, this index
is used as the basis for building other more complex indexes ([11][4]). In this case
the initialization involves only the selection of the representative of the root.

In this paper an experimental survey of several initializations for the MDF-
tree has been done. Although these initializations involves only the selection of
the representative of the tree root, significant variations on the properties of the
trees and efficiency of the search can be observed.

Moreover, we show that, in this type of trees, it is not a good idea to force
the tree to be balanced. The main reason is that forcing the nodes to be of equal
size leads to big overlapping regions. We show that it is better to force to have
wide unbalanced trees in order to reduce the overlapping regions.

In the next section, a quick review of the construction of the MDF-tree is
presented. In section 3 different initialization proposals are detailed. In section 4
experiments have been carried out on several artificial and real datasets. Finally,
some concluding remarks are depicted in Section 6.

2 The MDF-tree

The MDF tree is a binary indexing structure based on a hyperplane partitioning

approach [11][4]. The main difference with mb-trees is related to the selection of
the representatives (pivots) each time a node is split.



2.1 Building an MDT-tree

In order to build an MDF-tree, firstly a pivot is randomly selected as the root
of the tree (first level). Secondly, the farthest object to the root is chosen as the
second pivot, then the rest of objects are distributed according to the closest
pivot. This procedure is recursively repeated until each leaf node has only one
object (see Figure 3). It is interesting to observe that the root of the tree is
propagated recursively through all the levels of the tree as the left node.

Algorithm 1 describes how anMDF-tree is built. The function build tree(ℓ,S)

takes as arguments the future representative of the root node (ℓ) and the set of
objects to be included in the tree (excluding ℓ) and returns the MDF-tree that
contains S ∪ {ℓ}. The first time that build tree(ℓ,S) is called, ℓ is selected
randomly among the data set. In the algorithm, MT is the pivot corresponding
to T , rT is the covering radius, and TL (TR) is the left (right) subtree of T .

Algorithm 1: build tree(ℓ, S)

Data:
S ∪ {ℓ} = D: set of points to include in T ;
ℓ: future left representative of T

create MDF-tree T

if S is empty then
MT = ℓ

rT = 0
else

r = argmaxx∈S d(ℓ, x)
rT = d(ℓ, r)
Sℓ = {x ∈ S|d(ℓ, x) < d(r, x)}
Sr = {x ∈ S|d(ℓ, x) ≥ d(r, x)} − {r}
TL = build tree(ℓ,Sℓ)

TR = build tree(r,Sr)
end

return T

2.2 The search algorithm

Given a query point, the search algorithm proceeds in a top down procedure.
At each step, the search algorithm computes the distance to the representa-

tives of each child node and updates the current nearest neighbor candidate if
necessary. Next, using the distance from the sample to the representatives and
the radius of the node, it tries to discard each of the nodes. At last, the search
continues with each of the undiscarded nodes.

Note that since in MDF-trees the representative of the left node is the same
as the representative of its father, the distance computation of the query point
to the left representative can be avoided. Then, only one distance is computed
each time a node is explored (see alg. 2.)



Algorithm 2: search tree(T , x)

Data:
T : tree node;
x: sample

if not exists TL then return
if not exists TR then

if not pruned TL then search(TL, x)
return

end

dr = d(rep(TR), x); update nearest neighbour
if dℓ < dr then

if not pruned TL then search (TL, x)
if not pruned TR then search (TR, x)

end

else
if not pruned TR then search (TR, x)
if not pruned TL then search (TL, x)

end

As pruning rule, here we are going to consider the simplest one. Given a
query point x and the current NN candidate nn, no object in the tree T can be
nearest to x than the current NN candidate if (see fig. 1)

d(x, nn) ≤ d(rep(T ), x) − rT

rep(T ) x

rT nn

Fig. 1. Pruning rule

Note that as a consequence of this rule if the representatives of the children
of a node are too near or their radius are too large, an overlapping region will
appear where none of the children can be pruned (see fig. 2). This (usually
unavoidable) situation provokes the algorithm to explore both subtrees.

The MDF-tree building procedure tries to weaken this effect by choosing, as
representative for the right child, the farthest object of the left representative.
Unfortunately, this usually leads to large radius.



Fig. 2. Overlapping region

3 Initialization methods

As stated in the previous section, it is necessary to choose a pivot that will
act as the root of the tree for construction purposes. To our knowledge, no
work has been done before to study alternative initialization choices. In this
work, we present experimental results (both for tree construction and for search
performance) when performing different root initializations.

Let we enumerate the methods used for this purpose.

3.1 Random method

This initialization is the usual method applied in the MDF-tree [11][4]. It consists
on selecting randomly a sample from the database.

3.2 Outlier method

The aim of this method is to choose an outlier as initialization. In this method,
we first choose randomly one sample from the database, and then the most
distant sample from it is selected as root of the tree.

The hypothesis is that by choosing two, probably, very distant points at the
first level, and recursively dividing the space, the resulting subspaces will have
similar size, producing a very balanced tree.

Given a dataset D, and given p ∈ D randomly chosen, we select r as the root
of the tree, where

r = argmaxt∈D d(p, t)

Figure 3 is and example of the partition an the MDF-tree produced by a
set of points in a two dimensional space. As expected, the tree is reasonably
balanced.
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Fig. 3. Example of a space partitioning produced by a MDF-tree in a two-dimensional
space (top). Given a random object, “L”, in this example the root is the most distant
object to “L” (label “A”), and then is propagated through all the levels of the three
through the left child. The same criterion is used recursively for the propagation of the
rest of pivots. The decomposition continues until there are only one object in each leaf
node (down).



3.3 Median method

The aim now is to choose a “centered” point as initialization. In this case, we
choose the point that minimizes the sum of the distance to all the others, i.e.
the set median of the training set.

Given a dataset D, we select the root of the tree r, where

r = argminp∈D

∑

t∈D

d(p, t)

An example, using the same data set than in fig. 3, can be seen in fig. 4. Note
that now the tree is very unbalanced.

4 Experiments

We have carried out a series of experiments using synthetic and real data to
study the influence of the different methods for the first pivot selection in the
MDF-tree.

Two sets of databases were used in our experiments:

1. Synthetic prototype sets, generated from uniform distributions in the unit
hypercube, from dimension 2 to 20. Each point in the plot shows the result
of a experiment using 50 000 samples as training set, an 10 000 samples as
test. The Euclidean distance was used as dissimilarity measure.

2. Two string databases:
– A database of 69 069 words of an English dictionary was used. A training

set of 50 000 samples with 10 000 test samples were used for the experi-
ments. The words for the samples are randomly chosen from the entire
dictionary. In order to obtain reliable results, several experiments were
carried out, changing the value of the random seed to obtain different
set of words in each case.

– A database of 61 293 strings representing contour chains [6] of the hand-
written digits in NIST database. A training set of 10 000 samples with
1 000 test samples were used for the experiments. Several experiments
with a distinct random seed were carried out.

In both cases, the edit distance [9][16] was used as dissimilarity measure.
Edit distance between two strings is the minimum cost sequence of character
insertions, deletions and substitutions to make equal the two strings. In our
experiments the cost of apply any of the three operations are the same.

Figure 5 shows the depths of the trees using Random, Outlier and Median
initializations, for a dataset with 50 000 samples uniformly distributed points
in the unit hypercube for dimensions varying form 2 to 20. Unlike the other
initializations, the depth of the tree for the Median initialization grows quickly
with the dimension of the space. This is due to the fact that, in general, the
space around the median is usually more populated than in the other choices.
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Fig. 4. Example of a space partitioning produced by a MDF-tree in a two-dimensional
space (top). In this example the root is the set median of the set. The decomposition
continues until there are only one object in each leaf node (down).



To analyze the behavior of the trees during the search, several experiments
were done. Figure 6 (left) shows the average number of distance computations
in a nearest neighbor search for the three initialization. The same datasets as
in the previous experiments were used. Figure 6 (ref) shows the time spent, in
microseconds, by each search. The time was measured on a cpu running at 2660
MHz under a Linux system.

It can be observed that, unexpectedly, in high dimensional spaces the Me-
dian initialization (the method that obtained deepest trees) reduces significantly
the number of distance computations with respect to the classical approaches
(Random and Outlier).
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Fig. 5. Tree depths using Random, Outlier and Median initialization in the Euclidean
Space.

Similar results have been obtained using the English dictionary and the NIST
Database. Results can be seen in tables 1, 2 and 3.

Random Outlier Median

English dic. 184.7 97.2 361.8

NIST 137.1 119.8 203.3

Table 1. Tree depths using Random, Outlier and Median initializations.
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Fig. 6. Average number of distance computations (on the left) and time (in seconds)
using Random, Outlier and Median initialization in the Euclidean Space.

Random Outlier Median

English dic. 4402.6 5324.6 3241.9

NIST 1713.8 1845.9 1501.2

Table 2. Average number of distance computations using Random, Outlier and Median
initializations.

Random Outlier Median

English dic. 16446.6 19906,4 12268.6

NIST 87769.9 95037.9 78800.6

Table 3. Time (in microseconds) using Random, Outlier and Median initializations.



5 Non balanced trees

In order to find an explanation to this result the MDF-tree was studied deeply.
Let suppose we have a very big database were a good candidate to NN is

found quickly and its distance to the query object is negligible with respect to
the radius of the nodes.

In a node we can distinguish four regions depending on two criteria:

– if we are in the left (right) node region.
– if we are in the overlapping region or not.

Let we call r the probability that a random point in the node goes to the left
child. Let we call s the probability that a point falls in the overlapping region.
We are going to assume now that this probabilities depends only on the size of
the node.

In order to check if this is assumable, for each node of some MDF-tree, we
have counted the number of points in the node and the number of points in the
left child. The trees were obtained from a database of 20 000 points uniformly
distributed in 5, 10 and 15 dimensional unit hypercube. The euclidean distance
was used as dissimilarity function. The experiments were repeated using the
Outlier and the Median initialization techniques. The results of this experiment
is shown in fig. 7. Similarly, the number of points in the node versus the number
of points in the overlapping region was represented in fig. 8. It can be seen that
the ratios are quite linear (perhaps with the exception of the last point). Then
the slope gives us the parameter r and s respectivelly. Table 4 shows their values.
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Fig. 7. Left node size versus parent node size in MDF-tree with Outlier and Median
initializations for uniformly dirtributed points in the 5, 10 and 15 dimensional unit
hypercube.

Note that parameter r is smaller for the Outlier than for the Median ini-
tialization. That means that the trees are more balanced for the Outlier than
for the Median initialization. In fact, for the Median initialization, the trees are
very unbalanced.
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Fig. 8. Orevlapping node size versus parent node size in MDF-tree with Outlier and
Median initializations for uniformly distributed points in the 5, 10 and 15 dimensional
unit hypercube.

Table 4. Values of the parameters r and s

dim. param. r param. s

Outlier Median Outlier Median

5 0.65 0.94 0.67 0.20
10 0.63 0.97 0.75 0.15
15 0.65 0.97 0.81 0.15

Note also that parameter s is smaller for the Median than for the Outlier
initialization. Assuming the distance to the NN is negligible, if a query point
falls in the overlapping region, the algorithm should search in both children,
otherwise it search only in one of them.

In this situation, the Median initialization is displacing the frontier of the
two children towards the right one and reducing the overlapping region at the
expenses of increasing the depth of the tree.

To get an idea of how efficient the effect can be, we can estimate the expected
number of distance computations.

In order to do that we need to know the following probabilities:

– Probability of being in left node but not in the overlapping region: r(1 − s)
– Probability of being in the left node and in the overlapping region: rs.
– Probability of being in the right node and in the overlapping region: (1−r)s.
– Probability of being in the right node but not in the overlapping region:

(1− r)(1 − s).

The the expected number of distance computations in a tree with n objects
(c(n)) can be expressed as:

c(n) = r(1 − s) c(rn) + s [c(rn) + c((1− r)n)] + (1− r)(1 − s) c((1 − r)n) + 1

= (r(1 − s) + s) c(rn) + (s+ (1− r)(1 − s)) c((1− r)n) + 1

and obviously, c(n) = 1 if n ≤ 1.



Table 5 shows the expected number of distance computations corresponding
to the parameters in table 4.

Table 5. Expected number of distance computations

dim. Outlier Median

5 5502 879
10 10235 2103
15 16291 2374

6 Conclusions

In this work we show that an appropriate initialization technique can lead to
significant distance computations reductions in MDF-trees based search algo-
rithms.

Surprisingly, and far from what intuitively was expected, the method that
produces a more degenerate tree is the one that computes the least number of
distances. Moreover, the reduction is more important as the dimensionality of
the data increases.

The lesson learnt from this work is that balanced trees can not be taken as a
guide to increase the performance of the algorithm. We have developed a simple
theory to explain why very unbalanced trees can lead to significant distance
computation reductions.

Many questions remains open:

– Can we devise an expression to link the reduction factor r (which is related
with the balance degree of the tree) with the overlapping factor s? This
expression will guide us to find which is the optimal relative volume of the
chidren nodes.

– In our case, we are manipulating the relative value of the children nodes just
by choosing an initial pivot. Can we propagate this idea to the selection of
pivots in all the nodes?

– Can we extrapolate this results to other tree based indexes?
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