Fundamentals of Physics in Engineering I

Unit 7.- ELECTRIC CURRENT

1.- A copper wire, with a circular cross section of 1 cm of diameter, carries a current of 100 A . Copper has 8.5×10^{22} free electrons per cm^{3} and its resistivity at ambient temperature is 1.72×10^{-8} $\Omega \mathrm{m}$. Calculate: (a) The current density in the wire in $\mathrm{A} / \mathrm{m}^{2}$. (b) The drift velocity of the free electrons. (c) The value of the electric field inside the wire.
2.- Find the density of free electrons n for a copper wire if there is a free electron for each copper atom. If the maximum recommended current for a copper wire of 0.81 mm of radius (as the ones used domestically) is 15 A , what is the drift velocity of the electrons in the wire?
3.-A copper wire has a circular section of 1.02 mm of diameter and carries a current of 1.67 A . The resistivity is $1.72 \times 10^{-8} \Omega \mathrm{~m}$ at a temperature of $20^{\circ} \mathrm{C}$. Calculate, at $20^{\circ} \mathrm{C}$: (a) The electric field inside the wire. (b) The potential difference between two points separated 50 m along the wire. (c) The resistance of a copper wire with a length of 50 m . (d) The resistance at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, if the temperature coefficient of resistivity of copper is $\alpha=0.00393\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
4.-Two identical resistors are connected in series to a potential difference of V. Later on, the two resistors are connected in parallel to the same potential difference V. Which one of the two setups dissipates more power?
5.-An ammeter with resistance r_{A} is connected in series with a resistor, whose resistance R we want to measure, and a voltmeter is connected in parallel with the set, as can be seen in the figure. (a) Calculate R as a function of the values I_{m} and V_{m} measured by the ammeter and the voltmeter, respectively. (b) Calculate R when $V_{m} / I_{m} \gg r_{A}$. (c) If $V_{m}=23 \mathrm{~V}, I_{m}=62 \mathrm{~mA}$ and $r_{A}=14 \Omega$, which is the value of R ?
6.-A voltmeter with resistance r_{V} is connected in parallel with a resistor, whose resistance R we want to measure, and an ammeter is connected in series with the set, as can be seen in the figure. (a) Calculate R as a function of the values I_{m} and V_{m} measured by the ammeter and the voltmeter, respectively. (b) Calculate R when $V_{m} / I_{m} \ll r_{V}$. (c) If $V_{m}=43 \mathrm{~V}, I_{m}=16 \mathrm{~mA}$ and
 $r_{V}=62 \mathrm{M} \Omega$, which is the value of R ?
7.-Dynamic resistance, $R_{\text {din }}=d V / d I$, is a useful concept when non-ohmic circuit components are studied. For a diode, a simple model for the pn junction behaviour predicts a current-voltage relationship in the form $I(V)=I_{0}[\exp (e V / k T)-1]$, where I_{0} is the saturation current, different for each diode, k is the Boltzmann's constant, T is the absolute temperature and e is the electron charge. Obtain an expression for the dynamic resistance of this device.

BIBLIOGRAPHY

H. D. Young, R. A. Freeman, "Física universitaria (Sears-Zemansky)" (vol. 2), Pearson Educación, México (2009).
W. E. Gettys, F. J. Keller, M. J. Skove, "Física clásica y moderna", McGraw-Hill, Madrid (1991).
F. A. González, "La física en problemas", Editorial Tébar-Flores, Madrid (1995).
P. A. Tipler, G. Mosca, "Física para la ciencia y la tecnología" (vol. 2), Reverté, Barcelona (2009).
C. Carnero, J. Aguiar, J. Carretero, "Problemas de física II. Electromagnetismo", Editorial Ágora, Málaga (1996).
J. Llinares, A. Page, "Curso de física aplicada: electromagnetismo y semiconductores", Servicio de Publicaciones, Universidad Politécnica de Valencia, Valencia (1987).

