ARA group

- 1. Find the eigenvalues and eigenspaces of the following matrices and determine if they are diagonalizable:
 - (a)

(b)

- $\begin{pmatrix} 4 & 5\\ -1 & -2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0\\ 1 & -2 \end{pmatrix}$
- 2. Let A be invertible. Show that λ is an eigenvalue of T if and only if $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A^{-1} .
- 3. Find the minimal polynomials of

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$B = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$$
$$C = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- 4. Find an $n \times n$ matrix with fundamental polynomial x^2 .
- 5. Prove that A is invertible if and only if its fundamental polynomial has a nonzero constant term.
- 6. Let $A \in \mathbb{R}^{n \times n}$ have n distinct eigenvalues. Show that A is diagonalizable.
- 7. Find the possible eigenvalues of a matrix A such that $A^2 = A$.
- 8. Show that a 2×2 real symmetric matrix is diagonalizable..