EX 1

ARA group

1. Find the eigenvalues and eigenspaces of the following matrices and determine if they are diagonalizable:
(a)

$$
\left(\begin{array}{cc}
4 & 5 \\
-1 & -2
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cc}
1 & 0 \\
1 & -2
\end{array}\right)
$$

2. Let A be invertible. Show that λ is an eigenvalue of T if and only if $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A^{-1}.
3. Find the minimal polynomials of

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
B & =\left(\begin{array}{cc}
2 & 0 \\
3 & -1
\end{array}\right) \\
C & =\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

4. Find an $n \times n$ matrix with fundamental polynomial x^{2}.
5. Prove that A is invertible if and only if its fundamental polynomial has a nonzero constant term.
6. Let $A \in \mathbb{R}^{n \times n}$ have n distinct eigenvalues. Show that A is diagonalizable.
7. Find the possible eigenvalues of a matrix A such that $A^{2}=A$.
8. Show that a 2×2 real symmetric matrix is diagonalizable..
