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9 Abstract Gilthead seabream (Sparus aurata L.) and

10 European seabass (Dicentrarchus labrax L.) are

11 important commercial marine fish species both for

12 aquaculture and fisheries in the Mediterranean. It is

13 known that farmed individuals escape from farm

14 facilities, but the extent of escape events is not easy to

15 report and estimate because of the difficulty to

16 distinguish between wild and farmed individuals. In

17 this study, significant differences evidence that the

18 cranial and body regions of seabream and seabass are

19 different regarding their farm or wild origin at a

20 different scales are provided through morphometry.

21 Morphological variations have been shown to be a

22 valuable tool for describing changes in shape features.

23 Therefore, the biomass contribution of escapees to

24local habitats could be determined by identifying

25escaped individuals from fisheries landings as a first

26step to assess the potential negative effects of fish farm

27escapees on the environment, and their influence on

28wild stocks and local fisheries.

29Keywords Seabream � Seabass � Morphometry �

30Escapees � Aquaculture � Fisheries landings
31

32Introduction

33Gilthead seabream (Sparus aurata L., Fam. Sparidae)

34and European seabass (Dicentrarchus labrax L., Fam.

35Moronidae) are the important commercial marine fish

36species along the Mediterranean and Eastern Atlantic

37coastline both for aquaculture and fisheries. In 2008,

38the total aquaculture production of seabream and

39seabass in Europe were 89,354 and 58,467 t, respec-

40tively, and total landings reached 7,812 and 8,528 t,

41respectively (FAO, 2011). It is well known that reared

42individuals escape from farm facilities due to technical

43and operational failures (Dempster et al., 2007), but

44the knowledge concerning ecological and genetic

45impacts of these escapees on the Mediterranean

46ecosystem is still sparse. Escaped fish could be present

47on spawning areas and could interbreed with native

48populations as was found for salmonids (Naylor et al.,

492005) and for cod (Uglem et al., 2008; Meager et al.,

502009). Furthermore, it has been reported that escaped

51seabream and seabass were able to swim away from
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52 farm facilities to nearby farms, local fishing grounds

53 and coastal habitats (González-Lorenzo et al., 2005;

54 Toledo-Guedes et al., 2009; Arechavala-Lopez et al.,

55 2011a, b). Thus, the potential for negative ecological

56 consequences to occur through predation, competition

57 or transmitting pathogens to closely reared and wild

58 populations is significant (Dempster et al., 2007). For

59 a better understanding of these potential negative

60 effects, it is important to quantify the number of

61 individuals that escape from sea-cages, and to analyse

62 their mobility, spatial distribution and survival.

63 Because of the difficulty in surveying directly the

64 escapes events, it is imperative to distinguish escapees

65 from native individuals in the natural habitats as a first

66 step to assess their contribution to fisheries landings,

67 for instance examining captured individuals from

68 local fisheries after an escape event.

69 In hatcheries, fish grow faster and frequently with

70 different patterns and environment than in the wild and

71 this phenomenon has beenmainly utilized to distinguish

72 between wild and reared salmonids with a relatively

73 high degree of certainty (Swaine et al., 1991; Fleming

74 et al., 1994; Hard et al., 2000; Fiske et al., 2005).

75 Differential relative growth of body parts conditioned

76 by environmental factors is a common feature of fish

77 development (Osse, 1990; Osse & van den Boogaart,

78 1995, 1999; Gisbert, 1999; Loy et al., 2001). In several

79 species, developmental modifications may be closely

80 linked also to ontogenetic changes in resource use

81 (Webb & Weihs, 1986; Hernandez & Motta, 1997;

82 Sagnes et al., 1997;Ward-Campbell & Beamish, 2005).

83 Such different developmental modifications may exist

84 betweenwild and farmedfish given that they experience

85 large differences in feeding regimen and environment.

86 Moreover, in reared seabream and seabass, the presence

87of malformations or morphoanatomical anomalies has

88been widely documented (Paperna, 1978; Francescon

89et al., 1988; Balebona et al., 1993; Boglione et al., 1993,

902001; Marino et al., 1993; Chatain, 1994; Koumoun-

91dourous et al., 1997; Loy et al., 1999, 2000; Afonso

92et al., 2000; Sfakianakis et al., 2006). The objective of

93this study is to assess the body measures which can

94discriminate between farmed orwild origin of seabream

95and seabass in the Mediterranean Sea, and therefore, if

96the existence of some specific measurements could be

97applied to study the contribution on wild populations

98and fisheries landings.

99Materials and methods

100Sampling and morphometric measurements

101A total of 200wild seabream and 200 farmed seabream

102individuals, aswell as 200wild seabass and 200 farmed

103seabass individuals, from Spain and Greece, were used

104in this study (Table 1). Wild and farmed fish from

105Spain were obtained during the period of July 2009–

106June 2010, from two different localities and farms,

107respectively (Fig. 1). Fish from Greece were obtained

108in October 2009, from a single locality and a single

109farm (Fig. 1). Each seabream or seabass was photo-

110graphed with a digital camera (Canon� Powershot-

111G10)mounted on tripodwith a light source. A rulerwas

112used on each photograph to ensure correct calibration

113in the following image processing. Morphological

114landmarks were selected to give a precise definition

115of the fishmorphology (Humphries et al., 1981; Strauss

116& Bookstein, 1982). Altogether 16 morphological

117landmarks on seabream (Fig. 2; Table 2) and 17

Table 1 Characteristics of seabream and seabass specimens used in this study

Species Locality Origin n Ls (cm) Wt (g)

Range Mean ± SD Range Mean ± SD

Sparus aurata Spain Wild 100 25.3–47.9 34.6 ± 4.8 393–2628 1077 ± 445

Farmed 100 28.6–39.4 30.7 ± 1.2 796–1105 906 ± 53

Greece Wild 100 13.1–17.5 15.3 ± 1.1 47–103 71 ± 1

Farmed 100 13.0–18.7 15.6 ± 1.1 40–132 79 ± 1

Dicentrarchus

labrax

Spain Wild 100 17.3–54.7 31.1 ± 10.1 84–2920 671 ± 676

Farmed 100 32.7–38.6 35.6 ± 1.1 821–1075 918 ± 48

Greece Wild 100 18.1–27.8 23.6 ± 1.9 80–280 152 ± 37

Farmed 100 19.0–25.0 21.4 ± 1.2 91–197 128 ± 22
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Fig. 1 Maps of the study
areas in Spain and Greece,
showing the wild and
farmed fish sampling
localities

Fig. 2 The 16 landmarks and the distances measured which
were used for the morphological analysis on seabream. The
morphometric traits described from the landmarks are shown in
Table 2. Solid lines TNS; dotted line additional measurements.
1 tip of the premaxillary; 2 point of maximum curvature in the
head profile curve; 3 anterior insertion of dorsal fin; 4 posterior
insertion of dorsal fin; 5 dorsal point at least depth of caudal

peduncle; 6 posterior extremity of the lateral line; 7 ventral point
at least depth of caudal peduncle; 8 posterior insertion of anal
fin; 9 anterior insertion of anal fin; 10 anterior insertion of pelvic
fin; 11 insertion of the operculum on the profile; 12 dorsal
insertion of pectoral fin; 13 most anterior point of the eye; 14
most dorsal point of the eye; 15 most posterior point of the eye;
16 most ventral point of the eye
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118 morphological landmarks on seabass were used

119 (Fig. 3; Table 2), and they were placed using the

120 image processing programme ImageJ (Abramoff et al.,

121 2004), inwhich themorphological landmarks are given

122 as x and y co-ordinates. This tool is called Truss

123 Network System (TNS) and covers the entire fish in a

124 uniform network which should theoretically increase

125 the likelihood of extracting morphometric differences

126 within and between species. A regionally unbiased

127 network of morphometric measurements over the

128 two-dimensional outline of a fish should give more

129 information about local body differences than a con-

130 ventional set of measurements (Bookstein, 1982;

131 Strauss & Bookstein, 1982). A total of 31 morpholog-

132 ical vectors were selected among the landmarks on

133 seabream and 30 morphological vectors on seabass

134 (Table 2). The distances between the landmarks were

135 determined from their co-ordinates. The repeatability

136 of all measurements was determined by measuring 20

137 seabream and 20 seabass from each group three differ-

138 ent times. The coefficient of variation ranged from

139 0.5 to 2%, which indicates a high accuracy and

140 repeatability of this method. Moreover, morphometric

141 indices such as Fulton’sCondition Index [K = 100 9 total

142 weight/(total length)3], Cephalic Index [CI = (head

143 length/total length)] and Relative Profile Index [RP =

144 (maximum body height/total length)] were computed

145 from linear and weight measurements.

146 Statistical analysis

147 In order to avoid the effect of the different specimen’s

148 lengths in the study, all morphological traits were size

149 adjusted using the method described by Reist (1985),

150 because heterogeneity in size among samples pro-

151 duces heterogeneity in measurements. These transfor-

152 mations were done separately for the different group

153 analysis (Spain, Greece and both together Spain–

154 Greece) to avoid interference from the other groups.

155 All the size-correlated traits were standardized to a

156 mean of zero and a standard deviation of 1. Multivar-

157 iate statistics (SPSS, version 15.0 for Windows) were

158 used to test for intra- and inter-groups variation.

159 Statistical differences for size and all the morphomet-

160 ric indices among groups was tested by ANOVA at

161 P\ 0.05. A principal component analysis (PCA),

162 with varimax rotation was selected because the

163 rotation minimizes the number of variables that have

164high loadings on a factor. All PCAs with eigen-

165value[1.00 were considered as important (Chatfield

166& Collins, 1983) and variables were tested by

167ANOVA at P\ 0.05. Discriminant analyses were

168then used to test for group membership. The different

169discriminant functions are hereafter described as DC1,

170DC2, etc. ANOVA was used to test if there were

171differences in morphological traits between the wild

172and the farmed seabream and seabass, respectively.

Table 2 Morphological traits of seabream and seabass mea-
sured from the landmarks in Figs. 2 and 3

Sparus aurata Dicentrarchus labrax

Code Landmark Code Landmark

A1 1–2 A1 1–2

A2 2–10 A2 2–12

A3 10–11 A3 1–12

A4 1–11 B1 2–3

A5 1–10 B2 3–11

A6 2–11 B3 11–12

B1 2–3 B4 2–11

B2 3–9 B5 3–12

B3 9–10 C1 3–4

B4 2–9 C2 4–10

B5 3–10 C3 10–11

B6 3–11 C4 3–10

C1 3–4 C5 4–11

C2 4–8 D1 4–5

C3 8–9 D2 5–9

C4 3–8 D3 9–10

C5 4–9 D4 4–9

C6 4–10 D5 5–10

D1 4–5 E1 5–6

D2 5–7 E2 6–8

D3 7–8 E3 8–9

D4 4–7 E4 5–8

D5 5–8 E5 6–9

E1 5–6 F1 6–7

E2 6–7 F2 7–8

F1 1–12 F3 1–13

F2 11–12 F4 7–13

F3 6–12 Eye L 14–16

Eye L 13–15 Eye H 15–17

Eye H 14–16 SL 1–7

SL 1–6
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173 Results

174 Results evidenced clear differences between wild and

175 farmed fish, mainly on the cranial and body regions,

176 for both seabass and seabream. It should be noted that

177 seabream from Spain and Greece were of different

178 sizes (ANOVA, P B 0.05), while sizes of seabass

179 were similar in the two countries (ANOVA, P[ 0.05;

180 Table 1). Fulton’s Condition Index (K) revealed sig-

181 nificant differences between wild and farmed individ-

182 uals of both studied species (ANOVA; P B 0.01) with

183 the farmed fish exhibiting the highest values (Fig. 4a,

184 b). Cephalic Index (CI) values were significantly

185 different in seabass (ANOVA; P B 0.05), where wild

186 fish showed the highest values in both countries

187 (Fig. 4c); but there were no significant differences

188 between wild and farmed seabream specimens

189 (ANOVA; P[ 0.05; Fig. 4d). However, values of

190 Relative Profile Index (RP) were significantly differ-

191 ent among seabream from different origins (ANOVA;

192 P B 0.05), where farmed fish showed higher values

193 than wild fish (Fig. 4e), while there were no differ-

194 ences for seabass in both countries (ANOVA;

195 P[ 0.05; Fig. 4f).

196A combination of five principal components

197explained as much as 87.03% of the variation of

198size-adjusted body morphology variables for Spanish

199seabream (ANOVA, P B 0.01; Table 3). In case of

200Greece, eight principal components explained as much

201as 85.69% of this variation in seabream, but only four

202with significant differences (ANOVA, P B 0.01;

203Table 3). In both countries, the most important

204differences were located in the anterior body portion,

205principally in head measurements and body height.

206Discriminant analysis presented four differentiated

207groups in Spain, belonging to the two fish farms and

208two control localities (Fig. 5). Two percent of wild

209fish were not adequately assigned, which may indicate

210a cultivated origin, while 100% of the farmed fish were

211correctly classified. Since there were only two groups

212from Greece, the discriminant analysis gave only one

213function and it was therefore not possible to plot the

214relationship between components. However, classifi-

215cation score for the discriminant analysis resulted in

21698% of wild fish and 99% of farmed fish from Greece

217being correctly classified. Comparisons between wild

218and farmed seabream according to their Spanish or

219Greek origin showed clear differences for almost all of

Fig. 3 The 17 landmarks and the distance measured which
were used for morphological measurement on seabass. The
morphological traits described from the landmarks are shown in
Table 2. Solid lines TNS; dotted line additional length
measures. 1 tip of the premaxillary; 2 point of maximum
curvature in the head profile curve; 3 anterior insertion of the
first dorsal fin; 4 anterior insertion of the second dorsal fin; 5
posterior insertion of the second dorsal fin; 6 dorsal point at least

depth of caudal peduncle; 7 posterior extremity of the lateral
line; 8 ventral point at least depth of caudal peduncle; 9 posterior
insertion of anal fin; 10 anterior insertion of anal fin; 11 anterior
insertion of pelvic fin; 12 insertion of the operculum on the
profile; 13 dorsal insertion of pectoral fin; 14most anterior point
of the eye; 15 most dorsal point of the eye; 16 most posterior
point of the eye; 17 most ventral point of the eye
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220 the taken measurements (Fig. 6). Nonetheless, dis-

221 criminant analysis exhibited that around 3% of wild

222 individuals, both from Greece and Spain, could be of

223 cultivated origin (Table 4). It is remarkable that these

224 individuals presented high indices values. The differ-

225 ences in morphological traits were significant

226 (ANOVA, P B 0.05) for all discriminant functions

227for all groups, and could be explained by the group

228origin (Wilks’ k, ANOVA, P B 0.01; Table 5).

229Significant differences in morphological traits

230between wild and farmed seabass in Spain were

231described by two components in the PCA analysis

232which explained 86.47% of the variation (ANOVA,

233P B 0.01; Table 6). First component principally cor-

234related with longitudinal and transversal body mea-

235surements, while head and eye measurements were

236most representative for the second component. Vari-

237ation in morphological traits between farmed and wild

238seabass from Greece was explained by five principal

239components (80.12%) but only three of them pre-

240sented significant differences (ANOVA, P B 0.05;

241Table 6). These differences were mainly due to eye

242and head measurements (PC1) and some transversal

243body measurements (PC2). Discriminant analysis plot

244for Spanish seabass groups illustrated a pronounced

245variation in the morphological traits between wild

246and farmed fish, where the two locations of farmed fish

247were more similar between them, and the two wild

248groups were considerably more heterogeneous

249(Fig. 7). However, the 2% of wild fish from Spain

250were not correctly classified, whereas 100% of the

251farmed fish were correctly assigned. Since there were

252only two groups of seabass from Greece, the discrim-

253inant analysis gave only one function and it was

254therefore not possible to plot the relationship between

255components. However, discriminant analysis correctly

256grouped the 100% of individuals within their respec-

257tive group.

258When comparing morphological traits for seabass

259from Spain and Greece together, significant differ-

260ences were explained by two principal components

261(93.52%; ANOVA, P B 0.01). Body measurements

262were mainly located on the first component (PC1:

26356.2%), while head and eyes measurements were more

264important in the second one (PC2: 37.2%). The first

265two resulting functions from discriminant analysis

266explained 70.4 and 23.1% of the variation, respec-

267tively (Table 8); and the differences in morphological

268traits were significant (Wilks’ k, ANOVA, P B 0.01;

269Table 8). Plotting these two functions, the first one

270grouped the seabass according to their geographical

271origin, while the second function grouped the samples

272according to their wild or farm origin (Fig. 8).

273Moreover, 98 and 99% of reared seabass from Spain

274and Greece, respectively, were correctly grouped

275(Table 7). Furthermore, 88% of wild seabass from

Fig. 4 Morphometric indices of wild and farmed seabream and
seabass from Spain and Greece. Bars showmean values ± stan-
dard deviation
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276 Spain were correctly assigned, but 5 and 7% were

277 assigned to Greek and Spanish farm origin. Only 1%

278 of wild seabass from Greece were not correctly

279 grouped (Table 7).

280 Discussion

281 Body morphology was clearly different between wild

282 and farmed fish for both species. The spatial

283consistency of these results indicate the usefulness of

284these indices in discriminating the origin of the studied

285species, such as the CI for seabass, the RP for

286seabream or Fulton’s Condition Index for both

287species. In addition, morphometric analyses suggest

288that most differences are located primarily in the head

289and anterior region of the body of the fish. Specifically,

290these differences on seabream were focused either on

291the head height (B5) or the distances from the base of

292the pectoral fin to the edges of the mouth (A5) and to

Table 3 Component loadings, percent of variance (% V) and eigenvalues (Eigen.) for the principal components (with varimax
rotation) in the Spain and Greece groups analyses for seabream

Spain Greece

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eye H 0.954 A5 0.859

B2 0.920 A3 0.849

B5 0.920 A2 0.848

A6 0.907 B5 0.823

C4 0.879 B6 0.708

A5 0.869 D2 0.661

A4 0.866 F1 0.660

B6 0.866 F2 0.652

B4 0.855 B4 0.639

C6 0.850 A6 0.524

B3 0.827 B3 0.516

B1 0.818 C1 0.878

A2 0.808 C4 0.853

C5 0.802 B2 0.739

F1 0.795 B1 -0.557

C2 0.767 C3 0.897

D4 0.756 C5 0.830

E2 0.754 F3 0.614

D2 0.752 C6 0.574

D5 0.750 D3 0.868

C3 0.729 D5 0.844

D3 0.725 C2 0.525

D1 -0.661 E2 0.831

F2 0.477 E1 0.813

C1 0.628 Eye L 0.850

A1 0.430 Eye H 0.723

F3 0.484 A4 0.596

A3 0.463 D4 0.746

E1 0.517 D1 0.832

Eye L 0.594 A1 0.861

% V 30.03 20.52 16.51 14.81 5.17 24.18 11.12 10.93 10.07 8.93 8.56 6.67 5.22

Eigenv. 9.01 6.15 4.95 4.44 1.55 7.25 3.34 3.28 3.02 2.68 2.57 2.01 1.59

ANOVA \0.01 \0.01 \0.01 \0.01 \0.01 \0.01 \0.01 \0.01 0.61 0.16 0.92 \0.01 0.82

Components with significant differences (ANOVA; P B 0.05) in morphological traits between farmed and wild seabream are marked in bold (see

Table 2 for definition of characters)
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293 forehead (A2), (see Table 2; Fig. 2); while for seabass

294 they were on head and body length (F3 and F4,

295 respectively), proportions of the eye and the distances

296 from the base of the operculum to the edge of the

297 mouth (A2) and to the forehead (A3), (see Table 2;

298 Fig. 3).

299These morphological differentiations could be due

300to either the selective breeding programmes applied

301in aquaculture, genetic drift following founding

302generations, or the different origin of fish used as

303broodstocks (Karaiskou et al., 2009). Although the

304accidental escapes of fish from farms have certainly

305contributed to a mix of all gilthead seabream genetic

306stocks (Sola et al., 2006), a high genetic differentia-

307tion between cultivated and wild populations from the

308same area has been reported, which might indicate no

309evidence for significant genetic flow between them

310(Alarcón et al., 2004). The first genetics studies

311carried out on gilthead seabream populations reported

312conflicting data concerning the existence of panmictic

313(Cervelli et al., 1985) or subdivided populations

314(Funkenstein et al., 1990). More recent studies have

315depicted a picture of species subdivision that still

316needs to be clarified. The results of Arabaci et al.

317(2010) suggest a slight but significant population

318structure for the Mediterranean Sea and Atlantic

319Ocean, but not apparently associated with geographic

320or oceanographic factors (Alarcón et al., 2004; Ben-

321Slimen et al., 2004; De Innocentiis et al., 2004;

322Karaiskou et al., 2005; Rossi et al., 2006). In addition

323to fish origin, it should be noted that the mean sizes

324among Spanish and Greek seabream in this study were

325significantly different. Mean size (both length and

326weight) of Spanish seabream proved to be higher than

327the group from Greece. Thus, some morphological

328variations between regions may be the result of

329differences in individual’s age, and hence body size.

330Gilthead seabream are characterized by remarkable

331anatomical changes throughout their life history

332(Cataldi et al., 1987), and this species is known to

333undergo ontogenetic shifts in feeding habits (Mariani

334et al., 2002; Tancioni et al., 2003). Furthermore, a

335pattern of allometric growth on different body regions

336was characterized for each age-stage (Russo et al.,

3372007). Further studies will be necessary to compare

338different sizes of farmed and wild seabream from

339different geographical regions.

340In the case of European seabass, numerous genetic

341population differentiation studies at different geo-

342graphic scales have led to the identification of three

343genetically distinct zones: the northeastern Atlantic

344Ocean, the western Mediterranean and the eastern

345Mediterranean (Patarnello et al., 1993; Allegrucci

346et al., 1997; Garcı́a de León et al., 1997; Castilho &

347McAndrew, 1998; Sola et al., 1998; Bahri-Sfar et al.,

Fig. 5 Scatterplot of functions 1 and 2 for the discriminant
analysis at Spain group including the two locations of farmed
seabream and the two localities of wild seabream

Fig. 6 Scatterplot of functions 1 and 2 for the discriminant
analysis including the groups of farmed and wild seabream from
Spain and Greece
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348 2000; Castilho & Ciftci, 2005; Ergüden & Turan,

349 2005; Katsares et al., 2005; Lemaire et al., 2005). In

350 this study, through discriminate analysis, some wild

351 seabass from Spain (7%) were grouped along with

352 farmed fish from Spain, which probably belong to an

353 escapee group; but some others (5%) were grouped

354 with seabass from Greek farms. Cases in which

355 individuals do not cluster with other samples belong-

356 ing to the same geographical origin are not surprising,

357 since eggs or fingerlings originating from the western

358 basin were most likely used to seed many hatcheries

359 around the Mediterranean when seabass aquaculture,

360 and therefore, escapes into the wild, began in the early

361 1980s (Haffray et al., 2006).

362 On the other hand, phenotypic differences are

363 not necessarily indicative of genetic differentiation

364 between populations (Ihssen et al., 1981; Allendorf,

365 1988), and thus the detection of morphological

366 differences among populations cannot usually be

367 taken as evidence of genetic differentiation (Turan,

368 1999). Phenotypic plasticity of fish allows them to

369 respond adaptively to environmental change by mod-

370 ification to their physiology and behaviour which

371leads to changes in their morphology, reproduction or

372survival that mitigate the effects of environmental

373variation (Stearns, 1983; Meyer, 1987). Unlike wild

374populations, farmed fish live inside the cages with a

375periodic feeding rate and easily available food,

376suggesting that foraging is different from wild fish

377(Arabaci et al., 2010). Therefore, the morphological

378differences found in this study between wild and

379farmed seabream agree with those differences found

380by Grigorakis et al. (2002) where wild seabream

381presented lower body height, sharper snout and more

382spindle-shaped body than cultured seabream. More-

383over, such differences could be partly explained by

384dietary shifts, which induce changes on the body

385shape (Keast, 1978), influencing prey selection

386and catch efficiency (Mérigoux & Ponton, 1998).

387Furthermore, as they have been widely reported for

388farmed seabream and seabass, all fish species may

389develop shape abnormalities under farming conditions

390(Divanach et al., 1996). Some of such anomalies are

391observable in the cranial and ventral region (Loy et al.,

3922000; Tulli et al., 2009), fin erosion by erodibility

393(Arechavala-Lopez et al., unpublished data), otoliths

Table 4 Inter-group classification score result (in %) for the discriminant analysis of the four groups of seabream

Sparus aurata Group Spain Greece Total

Farmed Wild Farmed Wild

Origin group (%) Spain farmed 100 0 0 0 100

Spain wild 3 97 0 0 100

Greece farmed 0 0 98 2 100

Greece wild 0 0 3 97 100

Table 5 Data from the intra- and inter-groups discrimination analyses

F Eigenvalue Percent
variance

Cumulative
variance

Canonical
correlation

Wilks’
k

v2 df P

Spain 1 10.849 65.6 65.6 0.957 0.009 884.059 60 \0.001

Spain 2 5.132 31.0 96.6 0.915 0.105 421.750 38 \0.001

Spain 3 0.555 3.4 100.0 0.598 0.643 82.608 18 \0.001

Greece 1 4.975 100.0 100.0 0.912 0.167 327.129 30 \0.001

Spain–
Greece

1 1695.914 99.5 99.5 1.000 0.000 4073.060 90 \0.001

Spain–
Greece

2 5.206 0.3 99.8 0.916 0.040 1232.292 58 \0.001

Spain–
Greece

3 3.057 0.2 100.0 0.868 0.247 534.946 28 \0.001

The groups of seabream were classified from these functions (F) in the discriminant analysis
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394 and scale modifications (Carrillo et al., 2001; Arec-

395 havala-Lopez et al., 2011c), and also bent body shape

396 by skeletal anomalies, mainly in the haemal and

397 caudal body regions (Paperna, 1978; Francescon et al.,

398 1988; Balebona et al., 1993; Boglione et al., 1993,

399 2001; Marino et al., 1993; Chatain, 1994; Koumoun-

400 dourous et al., 1997; Loy et al., 1999, 2000; Afonso

401 et al., 2000; Sfakianakis et al., 2006). However, wild-

402caught seabream and seabass present a low number of

403malformations and are scarcely affected by any severe

404anomalies (Boglione et al., 2001; Loy et al., 2000). In

405this study, farmed fish were carefully selected from the

406captures looking for streamlined wild-like profiles,

407associated with absence or light anomalies cadres

408(Loy et al., 2000), to avoid these morphoanatomical

409differences cited above. Despite this, significant

Table 6 Component loadings, percent of variance (% V) and eigenvalues for the principal components (with varimax rotation) in the
Spain and Greece groups analyses for seabass

Spain Greece

PC1 PC2 PC1 PC2 PC3 PC4 PC5

F4 0.945 F3 0.904

E4 0.905 Eye L 0.805

D2 0.890 A3 0.801

C2 0.887 A2 0.729

C5 0.885 Eye H 0.725

E3 0.884 B4 0.692

C4 0.875 D5 0.543

D4 0.872 B3 0.419

E5 0.867 F2 0.724

D5 0.859 F4 0.675

C3 0.855 F1 0.671

B2 0.851 C1 0.664

E1 0.847 A1 -0.655

E2 0.839 D3 0.583

C1 0.835 C5 0.554

B5 0.815 E2 0.491

D1 0.812 D1 0.780

B1 0.787 C2 0.748

B3 0.771 D4 0.712

D3 0.756 C4 0.627

B4 0.697 B2 0.597

F3 0.919 C3 0.581

A3 0.914 E4 0.907

A1 0.853 E1 0.885

Eye L 0.830 E3 0.659

A2 0.800 D2 0.626

F2 0.695 E5 0.516

Eye H 0.685 B1 0.758

F1 0.632 B5 0.687

% V 57.72 33.75 22.64 18.01 16.01 14.98 8.48

Eigenv. 16.74 9.79 6.56 5.22 4.64 4.34 2.46

ANOVA \0.01 \0.01 \0.01 \0.01 0.24 0.11 0.03

Components with significant differences (ANOVA; P B 0.05) in morphological traits between farmed and wild seabass are marked
in bold (see Table 2 for definition of characters)
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410 differences have been detected mainly in the anterior

411 region for both species, resulting from neither mal-

412 formations nor abnormalities.

413 In conclusion, this study provides evidences

414 that body morphology of seabream and seabass are

415different according to their origin at different scales,

416which could be attributed to both rearing environment

417and genetic differentiation. Even more, the use of

418morphoanatomical indices (K, CI and RP) seems to

419have wider applicability than image processing (TNS)

420in the identification of wild and farmed fish. Such

421indices entail no great scientific expertise and they

422have been shown to be a valuable tool for describing

423changes in shape features, and could be used as a

424useful technique in the field to identify escapees within

425the wild stocks, and therefore, to monitor their

426potential negative effects on the environment and

427their influence on local fisheries landings. However, it

428must be taken into account that an escapee that

429survives over time may resemble a wild individual due

430to the changes on habitat and food. The use of the

431combined approach, such as morphometry, genetic

432and other biological indicators (e.g. growth pattern of

433scales and otoliths, fatty acids and trace elements),

434should be considered for the more precise quantification

435of escapeswithin natural populations, fisheries landing or

436for evaluation of re-stocking programs. Thiswill not only

437contribute greatly to biological and ecological clarifica-

438tionof the species butwill also help to the development of

439a strategy for natural stocks conservation and improving

440the aquaculture sustainability.

Fig. 7 Scatterplot of functions 1 and 2 for the discriminant
analysis at Spain-group including the two locations of farmed
seabass and the two localities of wild seabass

Table 7 Inter-group classification score result (in %) for the discriminant analysis of the four groups of seabass

Dicentrarchus labrax Group Spain Greece Total

Farmed Wild Farmed Wild

Origin group (%) Spain farmed 98 2 0 0 100

Spain wild 7 88 5 0 100

Greece farmed 0 0 99 1 100

Greece wild 0 1 0 99 100

Table 8 Data from the intra- and inter-groups discrimination analyses

Group F Eigenvalue Percent
variance

Cumulative
variance

Canonical
correlation

Wilks’ k v2 df P

Spain 1 4.405 77.5 77.5 0.903 0.071 485.064 81 \0.001

Spain 2 0.930 16.4 93.9 0.694 0.384 175.457 52 \0.001

Spain 3 0.348 6.1 100.0 0.508 0.742 54.848 25 \0.001

Greece 1 7.596 100.0 100.0 0.940 0.116 394.768 29 \0.001

Spain–Greece 1 9.818 70.4 70.4 0.953 0.011 1709.278 87 \0.001

Spain–Greece 2 3.227 23.1 93.5 0.874 0.124 798.482 56 \0.001

Spain–Greece 3 0.908 6.5 100.0 0.690 0.524 247.106 27 \0.001

The groups of seabass were classified from these functions (F) in the discriminant analysis
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