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ABSTRACT 

The decomposition of five different biomass samples was studied in a thermobalance. 

The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from 

urban and agricultural pruning and waste of forest pruning. Both pyrolysis in inert 

atmosphere and combustion in the presence of oxygen were studied. Different heating 

rates were used and a global kinetic model, valid for all biomasses at the different 

conditions studied, was proposed. The kinetic model is able to fit all the runs performed 

with each biomass sample. 
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INTRODUCTION 

The energy from the sun is stored in biomass through photosynthetic process. 

Photosynthesis starts with the capture of light by photosynthetic pigments accessories 

and conversion into electrical energy by the chlorophyll pigments of the reaction 

centers. In the next stage, not photochemical although light is required to activate 

certain enzymes, the stored chemical energy is used to reduce carbon dioxide and the 

resulting synthesis of carbohydrates. 

In the process of thermochemical conversion of biomass is necessary to know 

the mechanisms by which thermal degradation occurs in the different molecular 

fractions that store chemical energy. The determination of kinetic parameters gives us 

information on the processes taking place as well as the structure and composition of 

the materials. 

The determination of the kinetics corresponding to lignocellulosic materials 

involves the knowledge of the reaction mechanisms. However, the number of reactions 

that occur simultaneously in the most simple pyrolysis process is so great that it is 

practically impossible to develop a kinetic model that takes into account all these 

reactions. Thus, the pyrolysis is usually studied in terms of pseudo-mechanistic models. 

In these models, the products of pyrolysis are divided into char (non-volatile residue 

with a high carbon content), tars (mixtures of a great number of high molecular weight 

compounds that are volatile at the pyrolysis temperature but condense at room 

temperature) and gases (low molecular weight products which have a vapor pressure 

measurable at room temperature). 

Lignocellulosic materials are formed by three different fractions, mainly: 

hemicellulose, cellulose and lignin. Thus, a critical question is whether the pyrolysis of 

a lignocellulosic material can be represented as the simple addition of its components or 

if these components interact chemically or physically, thereby causing the 

lignocellulosic material to behave in its own unique way during its thermal degradation. 

Studies of the kinetics of cellulose, hemicellulose and lignin separately have revealed 

that the interactions between fractions are important, and the pyrolysis behaviour of 

wood components is not completely additive. Besides, the separation process of the 



lignin, cellulose and hemicellulose may alter the structure of these compounds from 

their structure in the raw material. In particular, according to Evans et al[1], it is not 

possible to isolate lignin from wood without changing its structure, even using the same 

method it is difficult to obtain identical samples. However, in TG-DTG analysis of 

lignocellulosic material two or three peaks usually appear, that can be assigned to 

cellulose, lignin and hemicellulose, indicating that, although there are interactions 

between fractions, their identity is maintained. 

The objective of this work is to study the thermal degradation products of five 

different biomass samples in order to establish a global kinetic model valid for the 

pyrolysis and combustion of all this variety of samples. 

MATERIALS AND METHODS 

In the study it was performed thermogravimetric analysis and determination of 

kinetic parameters of a series of biomass samples in both pyrolysis (He atmosphere) and 

combustion (He/O2=4:1 atmosphere).  

Biomass samples under study represent biomass residues or Mediterranean 

endemic plants. Below are the studied species:  

• EG: Esparto grass (Stipa tenacissima, L. or Macrochloa tenacissima, Kunth), 

Mediterranean grass with high PCI and easy regeneration.  

• Straw (Straw Triticum, Hordeum, and Avena sativa), the main cereal crop 

residue.  

• POS: Posidonea Oceanic seaweed. 

• WUAP: Waste from urban and agricultural pruning. In the sampling of 

agricultural waste and garden clippings urban target species are those that 

represent 90% of the cultivated area of the counties with irrigated and rainfed 

land in the province of Alicante (Spain) and 85% of susceptible ornamental 

pruning in the gardens of towns with more than 2000 inhabitants in the province 

of Alicante. Among the species they are Prunus Amygdalus, Citrus sinensis, 

Citrus limon, Prunus armeniaca and Olea europae as the major components. 



• WPF: Waste of pruning forest where they have chosen 5 sampling areas, all 

located in the province of Alicante. Among the species they are Pinus pinaster, 

Pinus nigra, Pinus halepensis, Cedrus deodara, Quercus Ilex and Juniperus 

phoenicea as the major components. 

Table 1 presents the elemental analysis of the samples (carbon, hydrogen, 

nitrogen and sulfur) performed by oxidation of the sample to 1000 °C and subsequent 

detection of combustion products (CO2, H2O, N2 and SO2). The equipment used was a 

Perkin-Elmer 2400 (Perkin-Elmer, UK). Note that the amount of sulfur is neligible in all 

species but the Posidonea Oceanica, probably due to the presence of sulphur salts in the 

seawater (approx. 1-8 %). 

The experiments consisted of six thermogravimetric analysis for each sample, 

carried out in two atmospheres of different reaction (He, He:O2=4:1) and three heating 

rates (5, 10 and 20 K/min), using approx. 5 mg sample. The total gas flow was 100 

mL/min and the temperature range studied from 25 ° C to 650 º C. 

The experiments were repeated to check the reproducibility of the same, a fact 

which was verified by comparing the results of each series. 

Analyses were performed by simultaneous TG-DTA equipment brand 

METTLER TOLEDO TGA/SDTA851e/LF/1600 model that can work between room 

temperature and 1600 °C. On this equipment the specimen holder and the oven are 

arranged horizontally. 

RESULTS AND DISCUSSION 

Figures 1 to 5 present the thermal decomposition of the five studied species, 

both in pyrolysis and combustion at the three heating rates used. The results of the 

kinetic modeling are also in the Figure, but will be discussed later. In the Figures it can 

be seen both the effect of heating rate for the same process and for the species in 

question and the comparison the effect of heat and mass loss for different processes, 

pyrolysis and combustion. 

[Figures 1 to 5] 



Each of the graphs shows the weight loss as the fraction w = m / m0 where m is 

the actual mass of the sample and m0 is the initial mass. Because biomass samples 

contain a residual amount of moisture (about 12%) it is better to take as starting point of 

the analysis one in which the moisture had been lost. 

The points represented, which have been those used for the kinetic analysis, 

have been selected according to techniques recommended by Caballero et al. [2] so that: 

• The derivative of the points is calculated accurately and correctly. 

• The points are equally spaced on a representation dW / dT versus 

temperature. 

• The fitting is simultaneous, with no variation of the kinetic constants, for 

at least three different heating rates. 

Besides this, we use numerical techniques for solving differential equations and 

optimization methods prior definition of a proper objective function [2, 3]. 

Effect of heating rate and reaction atmosphere 

In the previous graphs we can see the effect of the heating rate on TG curves. It 

can be appreciated that increasing heating rate curves are shifted to the right, i.e. that the 

weight losses occur at increasing temperatures. This behavior has been described by 

several researchers and can be explained using different arguments [4, 5]. Some authors 

argue that this behavior is due to changes in reaction mechanism caused by increased 

heating rate. Furthermore, poor heat transmission to the sample in the oven may cause 

increasing differences with increasing heating rate between the nominal and real 

temperature of the sample. It could also be due to different rates of heat dissipation or 

absorption of the reaction at different heating rate. However, the observed shift can be 

simply explained by the mathematical form of the kinetic laws [4, 6], which can provide 

a shift of the curves at higher temperatures with increasing reaction rate with the same 

kinetic constants. 

Several authors have shown that some TG curves can be fitted to different 

kinetic models, providing very different values of the kinetic parameters, depending on 

the models used. Consequently, only models capable of explaining the shift in the TG 



with heating rate, without changing the kinetic parameters can be considered as 

potentially correct, however, if the heating rates which are very large works may be 

including heat transfer effects.  

As for the effect of the atmosphere of reaction three different behaviors can be 

distinguished [7, 8]: pyrolysis + combustion of the residue formed (i.e., during the 

combustion process there is a first step of pyrolysis, followed by the reaction of oxygen 

with the residue of pyrolysis), oxidative pyrolysis (the combustion takes place in parallel 

to pyrolysis, being faster and taking place, therefore, at lower temperatures. In this 

process, oxygen reacts with the solid that is being decomposed before reaching the 

flame formation), and combustion delayed respect to the pyrolysis (the presence of 

oxygen produces partial oxygenation of solid material, causing the apparent delay in the 

decomposition of the solid).  

Different amounts of final weight were obtained in the presence or absence of 

oxygen. Pyrolysis experiments reach smaller decomposition fractions (60-70%) than 

experiments in the presence of oxygen, which gives a breakdown of 90% sample. In 

pyrolysis, the residue contains inorganic material and char, while in combustion, the 

residue is the ash formed by inorganic matter. 

Note that in the processes of pyrolysis, the species EG, Straw and WUAP have 

decomposition about 70%. In the case of POS is less than 60% in the best cases. This 

may be due to the presence of salts and inorganic substances deposited or adsorbed 

marine environment where this species occurs. These salts form a more refractory 

residue that increases the amount of pyrolytic residue. 

The type of process that occurs in the samples studied in the present work 

depends on the biomass studied: 

- For EG and POS there is a clear behavior of the type pyrolysis + 

combustion, since the first stages of decomposition in the presence of 

oxygen are crafty with the pyrolytic curves (in the absence of oxygen). 

At higher temperatures there is a clear decomposition of the residue 

formed in the first stages. 



- For WUAP and Straw, the behavior is similar but a slight acceleration of 

the combustion versus pyrolysis is observed. 

- WFP shows a confusing behavior between pyrolysis+combustion and 

oxidative pyrolysis. 

Kinetic model for pyrolysis and combustion processes 

In the decomposition of biomass samples it can be distinguish three regions of 

weight loss [5, 9-11]. Due to this, the better results for the kinetic modeling will assume 

three different organic fractions that would decompose simultaneously in parallel 

reactions [5, 10, 12]. Each organic fraction would decompose into volatile and a 

carbonaceous solid residue. 

Using this technique, pseudo reaction mechanisms are constructed, in which 

each reaction includes one or more elementary reactions, since gases and tars cannot be 

treated separately and are grouped as volatile matter. The kinetic parameters obtained 

are representative of each overall reaction. 

The kinetic model proposed for the pyrolysis of biomasses could be interpreted 

considering the materials formed by three independent parts, each one following an 

independent reaction, as follows: 
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In the previous reactions, Solid1, Solid2 and Solid3 refer to different fractions or 

components of the original material, “Volatilesi” are the gases and condensable volatiles 

evolved in the corresponding reactions (i = 1 to 3), and “Chari” is the char formed in the 

decomposition of each Solidi (i = 1 to 3). On the other hand, the small letters represent 

the yield coefficients representative of each reaction and consequently, it is considered 

not to be changing with time and with the extension of the reaction. Moreover, each 

fraction has a yield coefficient that represents the maximum mass fractions obtainable 

by each reaction. In this way, vi∞ is the yield coefficient for the Volatilesi and vi is the 



mass fraction of volatiles. The different initial mass fraction of the components (wsio) 

are related so the following must be fulfilled: 
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Considering an n-th order kinetic decomposition, the kinetic equations for the 

pyrolysis runs can be expressed as followed: 
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with the kinetic constants following the Arrhenius equation: 
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In the equations, Vi and Vi∞ represent the volatiles evolved from the 

decomposition of each fraction, and the maximum yield of volatiles that can be 

obtained, respectively. 

The calculated values were obtained by integration of the differential equations 

presented in the kinetic model, by the explicite Euler method, but considering and 

testing that the intervals of time are small enough so the errors introduced are 

negligible. The optimization method of the function Solver in a Microsoft Excel 

spreadsheet was used to minimize the differences between experimental and calculated 

weight loss and their derivatives. The objective function (OF) to minimize was the sum 

of the square differences between experimental and calculated weight loss values: 
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where 'i' represents the experimental data at time 't' in the experiment with a heating rate 

'j'. The value of wexpij or wcalij represents the weight loss fraction in the experimental and 

calculated data, respectively. 



On the other hand, the model proposed to explain the thermal decomposition of 

biomasses in the presence of oxygen is the same that has been considered in the case of 

pyrolysis runs, but with different values of some kinetic constants. For all the fractions 

(1 to 3), the same values of apparent activation energy and reaction order obtained 

under a helium atmosphere have been considered, but the pre-exponential factor is 

assumed to be different due to the presence of the oxygen. This type of model 

satisfactorily fitted the decomposition of other materials [13, 14]. With all these 

considerations, acceptable correlations of the data are obtained. 

In order to obtain a single set of parameters for the combustion of the material, 

all the runs at the different heating rates were correlated with the same set of 

parameters. For the optimization of each of the biomasses studied, 6 TG runs (approx. 

600 experimental points) are correlated and 14 parameters were obtained (3 x Ei, 3x ni, 

3x ki0 in pyrolytic conditions, 3x ki0 in combustion conditions and 2 x wi0). The kinetic 

parameters for decomposition of each fraction in oxidative and pyrolytic conditions are 

shown in Table 1. 

[Table 1] 

Figures 1 to 5 shows the loss curves of experimental and calculated weight loss, 

at all heating rates studied and both in inert and oxidative atmosphere. It is clear that 

best fits would be obtained if all parameters are allowed to vary for each run, but they 

would be less representative of the overall process. 

Figure 6 shows the calculated evolution of each of the fractions considered in the 

pyrolysis and combustion of WFP at 5 ºC/min. The remaining biomass samples present 

a similar behavior. From this figure it can be concluded that: 

• “Fraction 2” begins to decompose slightly before “Fraction 1”. 

• “Fraction 2” is the more contributing to the total weight loss of all 

biomass samples studied. 

• The decomposition of “Fraction 1” is accelerated in the presence of 

oxygen, but the form of the curve remains. The contrary is true for 

“Fraction 2”, that is almost unaffected by the presence of oxygen. 



• “Fraction 3” decomposes in a wider temperature range. It is the fraction 

presenting more differences comparing combustion and pyrolysis. 

Comparing these observations with the literature it is clear that “Fraction 1” 

corresponds to the cellulosic materials. It decomposes in a temperature range 300-400 

ºC for pyrolysis and goes to 500 ºC for higher heating rates. This is due to the main 

reactions that consist in breaking down the glicosidic bonds with the subsequent partial 

depolimerization of the cellulosic material of the wood. To this fraction corresponds 

activation energies between 150-250 kJ/mol. The decomposition of this fraction is very 

much accelerated in the presence of oxygen. The ratios between (kio)pyrolysis with the 

corresponding (kio)combustion (data in Table 2), are in the range 10
3
-10

6
, whereas for the 

other fractions this ratio is 1-10. 

On the other hand, “Fraction 2” should correspond to hemicelluloses. It 

decomposes in the temperature range 200-250 ºC in combustion and 250-300 ºC in 

pyrolysis conditions. This corresponds to activation energies between 100 and 300 

kJ/mol, depending on the biomass sample. It is observed a great difference in this 

kinetic parameter, indicating that the decomposition of this fraction is given with 

different energetic requirements for the different biomasses. 

“Fraction 3” corresponds to the ligninic material of the biomass. It is the most 

refractory and difficult to thermally decompose. Lignin is the chemical constituent of 

wood that holds the greatest influence on its physical and chemical characteristics. The 

higher percentage of fixed carbon is present in woods with the higher percentages of 

lignin. This is attributed to the fact that the lignin is the most resistant to the thermal 

decomposition when comparing to the cellulose and hemicellulose, due to its complex 

structure. The ligninic fraction decomposes between 300 and 500 ºC in the combustion 

conditions, but pyrolysis takes place at higher temperatures. The orders of reaction are 

the highest found, accordingly to literature [6, 15, 16]. The activation energies vary in 

the range 100-230 kJ/mol. 

The reaction of decomposition of lignin and thus the formation of volatile is 

more favoured in the presence of oxygen, due to its diffusion inside the sample 

producing several reactions. These reactions favour the production of volatile species 

and a higher thermal degradation. Moreover, the decomposition of lignin in POS and 



WUAP present very significant differences compared to other species probably due to 

the structure and reactivity of their lignin vs oxygen reaction [16]. 

CONCLUSIONS 

The decomposition of five different biomass samples was studied in a thermobalance. 

Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were 

studied. Different heating rates were used and a global kinetic model, valid for all 

biomasses at the different conditions studied, was proposed. The kinetic model is able to 

fit all the runs performed with each biomass sample. Kinetic parameters have been 

calculated for thermal decomposition of studied samples. 
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Figure 1.  

Pyrolysis and combustion of Esparto grass at the different heating rates. Experimental 

curve and calculated points. 

 

 
Figure 2.  

Pyrolysis and combustion of Straw at the different heating rates. Experimental curve 

and calculated points. 

 
 



 
Figure 3.  

Pyrolysis and combustion of Posidonea Oceanica seaweed at the different heating rates. 

Experimental curve and calculated points. 

 

 
 
 

 
Figure 4.  

Pyrolysis and combustion of agricultural and urban pruning wastes at the different 

heating rates. Experimental curve and calculated points. 

 

 
 



 
Figure 5.  

Pyrolysis and combustion of waste from forest pruning at the different heating rates. 

Experimental curve and calculated points. 

 
 
 

 
 
Figure 6.  

Evolution of the different fraction during the pyrolysis and combustion of waste from 

forest pruning at 5 ºC/min. 

 



Table 1. Elemental analysis of the biomass samples (% dry wt.) 
 

  

Esparto grass Straw Posidonea Oc. 

Agric. Urban  

pruning waste 

Forest pruning 

waste 

N 0.50 0.21 0.71 2.09 0.65 

C 38.16 42.93 34.85 48.06 40.12 

H 5.40 6.16 4.54 5.81 5.44 

S 0.00 0.00 0.62 0.00 0.00 

O 55.94 50.70 59.28 44.04 53.79 

 
 
 
Table 2. Kinetic parameters obtained in the pyrolysis and combustion fitting. 
 

  
Esparto 
grass 

Straw 
Posidonea 
Oceanica 

Agric. 
Urban  
pruning 
waste 

Forest 
pruning 
waste 

E1 (kJ/mol) 171.75 162.13 211.25 295.92 103.21 

E2 (kJ/mol) 150.37 239.63 255.98 130.56 199.37 

E3 (kJ/mol) 229.26 181.63 143.48 102.48 125.86 

n1 1.37 1.93 1.00 1.15 1.27 

n2 7.06 178 2.12 2.90 1.17 

n3 2.49 6.31 9.21 9.48 4.66 

w20 0.468 0.452 0.503 0.443 0.525 

w30 0.257 0.301 0.125 0.314 0.202 

ko1 (min-1) 
1,40E+05 3,03E+05 1,36E+06 3,29E+09 3,35E+04 

pyrolysis 

k02 (min-1) 
1,69E+16 3,05E+21 3,49E+23 1,44E+12 3,66E+16 

pyrolysis 

ko3 (min-1) 
5,47E+20 8,45E+18 9,39E+15 5,59E+12 1,56E+12 

pyrolysis 

ko1 (min-1) 
1,07E+09 7,34E+12 2,84E+09 1,58E+14 3,14E+07 

combustion 

k02 (min-1) 
1,83E+16 3,08E+22 7,14E+23 3,36E+12 3,49E+17 

combustion 

ko3 (min-1) 
8,60E+20 1,61E+19 1,09E+16 5,97E+12 2,64E+12 

combustion 

 


