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ABSTRACT

Effective similarity search indexing in general metric
spaces has traditionally received special attention iarsév
areas of interest like pattern recognition, computer wvisio
or information retrieval. A typical method is based on the
use of a distance as a dissimilarity function (not restrgti

to Euclidean distance) where the main objective is to speed
up the search of the most similar object in a database by
minimising the number of distance computations. Several
types of search can be defined, being lthearest neigh-

bour or therange search the most common.

AESA is one of the most well known of such algo-
rithms due to its performance (measured in distance com-
putations) PiIAESA is anAESA variant where the main ob-
jective has changed. Instead of trying to find the best near-
est neighbour candidate at each step, it tries to find the ob-
ject that contributes the most to have a bigger lower bound
function, that is, a better estimation of the distance.

In this paper we extend and teRBtAESA to support
several similarity queries. Our empirical results showvt tha
this approach obtains a significant improvement in perfor-
mance when comparing with competing algorithms.
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1 Introduction

Pattern recognition [1], image retrieval [2], or multimadi
databases [3] are some examples of fields where methods
based on similarity search are having an increasing irteres
due to its simplicity and adaptability to work with com-
plex objects. Of particular importance is the most general
approach to similarity search when it is modelled in metric
spaces. Accordingly, the metric indexing techniques can be
applied to many search problems, allowing different forms
of complex queries. Moreover, this generality allows that
the functionality of the techniques can be modified or in-
creased.

The aim of many fast search algorithms is to reduce
the search time, by reducing the number of distance com-
putations. This is specially interesting when the computa-
tion of the distance is particularly expensive. Some exam-

Luisa Mic6 and José Oncina
Departamento de Lenguajes y Sistemas Informaticos
Universidad de Alicante
P.O. box 99. E-03080 Alicante. Espafia
mico@dlsi.ua.es, oncina@dlsi.ua.es

ples are the context shape distance [4], distances between
histograms [5], edit distance between strings [6], treégs [7
or graphs [8], etc. In order to achieve such objective, it
is usual to exploit some type of restricting property that
the similarity measure should meet, being the triangular in
equality the most popular and effective.

One of the most cited algorithms in this general con-
text is the Approximating and Eliminating Search Algo-
rithm (AESA), introduced by E. Vidal in 1986 [9]. This al-
gorithm is classified as a pivot-based metric space search
algorithm in some taxonomies [10][11]. A pivot-based
technique is a method that uses a subset of objects in the
database for speeding up the search. Usually, the dis-
tances between the pivots and the rest (or some of them)
of the points in the database are stored in preprocess time
and used during the searclAESA, originally defined for
searching the Nearest NeighbodiN), works by iterating
two steps: first it searches (heuristically) for a candidate
to nearest neighbour (the approximating step), and then it
uses this candidate to discard all the objects in the databas
than can not be nearest than the current candidaiéNto
(the elimination step). To carry out both steps, the approxi
mating and eliminating steps, a lower bound of the distance
function is used as an approximation of the true distance.
This lower bound function is updated as new information
becomes availableAESA focuses on searching godN
candidates, the effectivity of the elimination step is jast
consequence of that.

The main drawback oAESA is its quadratic space
complexity with respect to the size of the database. In fact,
the space complexity, becomes a bottleneck when the algo-
rithm is applied to large databases. Consequently, several
solutions have been proposed in the last years to weaken
this problem, for example, splitting the database [12], re-
ducing and selecting the stored distances, [13], [14], etc.
Despite the storage requirement#&iSA can be very high,
there are applications for whichESA is a feasible solu-
tion. Moreover, some authors have focused their work in
reducing furthermore the number of distance computations
of this algorithm ([15]) but at the expense of a significant
increase in searching time.

PIAESA is a recently proposed fabiN search algo-
rithm. This algorithm reduces significantly the number of
distance computations with respect A&SA without in-



creasing the overhead of the search {18Jhe idea behind
the algorithm consists on changing the focus with respect
to AESA. On the firstiterations it searches for the pivots that
contribute the most to have an accurate lower bound func-
tion (but they can be bad candidated\i), switching to

the usualAESA behaviour when the lower bound function
is precise enough.

In this work we extend th@IAESA to other types of
similarity queriesk-Nearest Neighbour&iIN) andrange
search. We also compare experimentally the effectiveness
of our extensions witAESA and other state of the art tech-
nigues.

2 The algorithm

Given a new objecty (query) and a databasé’, in

each stepAESA (Approximating Eliminating Search Al-
gorithm) searches for a good candidaté&\ie avoiding the
computation of as many distances as possible. Instead of
searching the obje¢te T that minimises the distance by
computing all the distancegq, t) for eacht € T', it uses a
lower bound functiorz(g, t) = maxpecv |d(g, p)—d(p, )],
whereV C T'is the set of objects used BN candidate in

the previous iterations of the search. Sipcandt are ob-
jects in the database, the distandés, t) are computed in
preprocess time and stored in a table. Each time a new can-
didatep € T is selected, the distanekq, p) is computed

and thend is updated. Then, applying the triangle inequal-
ity, all the objectst € T" whose lower bound distance to
the query G(q,t)) is larger than the distance to the cur-
rent nearest neighbour candidadg,f,,) can be eliminated

of the search. On the other hand, the objeet T that
minimizes the value o&(q, t), is selected as new candi-
date in each step. The aim of this selection is to find a
good candidate for: first, reduek,;,, allowing the elimi-
nation of more objects in the database and second, update
G(q,t) Vt € T. Note that in the earlier steps of the search
V is very small, and then, the lower bounds are a very bad
estimates of the true distande This behaviour worsens
when the dimensionality increases.

In [16] PIAESA (see Algorithm 1) was proposed. The
idea is to focus on selecting objects in the database that are
going to contribute increasing the most the lower bound
function. When no further increases are expected the al-
gorithm switches to the usu&ESA behaviour: focus on
obtaining good\N candidates. IFPiIAESA the objects of
the database are sorted in a list, in preprocess, by their ex-
pected contribution to increase the lower bound functions.
This list of pivots (P in the algorithm) is used by the search
algorithm. A parameteR is used to assess if the lower
bound is a good estimation of the distance. This parameter
measures the number of successive iterations the best can-
didate toNN has not changed. If theN candidate does
not change in a large number of iterations that means the

INote to the referees: this paper is not publicly availablevas sent
some time ago to a journal and now is still under review.

lower bound has stabilized and no further improvements
are expected by increasing the $&t In this moment the
algorithm changes its strategy and looks for good candi-
dates tdNN. Obviously, the switch can be also triggered if
the list of pivots is exhausted. This can happen if the list of
pivots P does not cover the full database.

Algorithm 1: PIAESA-1INN

Input: 7" training set;

q: query;

P C T list of selected ordered pivots;

R € N: parameter to control the switch

of the approximation criterion;
Output: p..in € T nearest neighbour
dmin: distance to the nearest neighbour;

1 for t € T do G(g,t) = 0;

2 1=0;

3 while (P # @ andi < R) do

4 approximating step selecting the next pigot
inP; T=T-{s};

update the nearest neighbauy;,,; //new NN
for ¢t € T do updateG(q,t);

min = argminG(q, t);

1=1+1,

if min > minye, then i = 0; //G has
changed

10 end

11 while T' # @ do

12 s = argmingerG(q,t); T =T — {s};

13 update the nearest neighbauir;,,;

14 foreacht € T do
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15 updateG(q, t);

16 if G(q,t) > dminthen T =T — {t};
17 end

18 end

Note that whenR = 0 the algorithm is exactly the
AESA, since the first loop (lines 3 to 10) is skipped.

We are going to study several ways of building the list
of pivots P. The use of pivot selection techniques in fast
pivot-based search algorithms seems a good choice.

On the following we review some techniques:

e Random Pivot Selection, RPS.

This is the straightforward technique where pivots are
selected randomly.

e Outliers Selection Techniques.

They refer to incremental selection methods locating
objects far away from each other and to the rest of
objects. Starting with a randomly selected pivot)(

two strategies are commonly used to select the next
pivot [13].

— Maximum of Minimum Distances, MMD
pi = argmaxe p_p,) min’_} d(s, p;)



— Maximum Sum of Distances, MSD
1—1
Di = argmaxc p_p,) Zj:l d(s, p;)

whereT is the training set an®, = {p1,...
The list of pivots is thenP = (p1,...,p1))-

Note that all the objects in the database can appear
in the pivot list (like in theRPS method), that means
the algorithm is just an ordering of the objects in the
database.

e Sparse Spatial Selection, SSS.

This method [17] dynamically selects a set of pivots
whose distance to any already selected pivot is greater
than a percentage of the maximum distance from the
database. If two objects do not fulfil the previous con-
dition, one of them is eliminated from the pivot list
and then it can not be an enumeration of all the ob-
jects in the database.

7pi}'

e Dynamic Pivot Selection, DPS.

This technique, proposed in [18], is a dynamic exten-
sion of theSSS method where the deletion of pivots
is allowed if it can be proved a pivot becomes redun-
dant. As in the previous method, it can not be an enu-
meration of all the objects in the database. This is the
reason why a second condition was added in the new
approach to switch the strategy (see line 3 in Algo-
rithm 1) when the list of pivots was empty.

In this work we use several types of queries. In next
sections, we introduce the major modifications to be made
in the Pi-AESA-1NN algorithm to apply them.

2.1 Extension tok-nearest neighbour search

To adapt thePiAESA-INN to a kNN search strategy, it is
necessary to change two main elements in the algorithm:

e Output: thek nearest objects to the query and their
distances should be recovered (insteag.f,, and

¢ the elimination criterion in line 16 should be changed
by G(t) > din, Wherediyy is the distance to thé
nearest neighbour.

2.2 Extension to range search

To adaptPiAESA-1NN to arange search, a specific value

of the distance from the query is defined (distance to the
guery) and it is necessary to change two main elements in
the algorithm:

e Output: given a value for the range (radius)all the
objects whose distance to the query is lower thane
recovered

¢ the elimination criterion in line 16 should be changed
by G(t) > r

3 Experimental results

The primary purpose of this work is to study the extendibil-
ity of PIAESA-INN when therange search or the kNN
search is used. In order to check that, we evaluate these
techniques in several metric spaces, such as synthetic and
real vectors, and a string database. In all the experiments
the distance table is stored in main memory.

In this work we have experimented with artificial and
real data to check the performanceRAESA when it is
extended to different types of search. Moreover, we have
compared our proposal with other algorithms competing
AESA (computing less distances or saving space).

The used datasets are:

e Data extracted from a uniform distribution in the unit
hypercube with database sizes ranging from 500 to
15000 and dimensionality from 2 to 24.

e Real image databases with vectorial representation
(NASA represented by features vector of 20 compo-
nents, andCOLORS represented by vectors of 112
components, both can be found fit p: / / www.
si sap. com

e Contour strings from théINIST database, a collec-
tion of 60000 images of handwriting digitet(t p:
/l'yann. | ecun. com exdb/ mi st/).

In this work, and for all the collections, a subset of
15000 objects were used for training and 1 000 for testing.
Moreover, for databases with a vectorial representation of
the data, the Minkowsky.; distance were used. We have
used the edit distance for th@NIST database, where the
strings extracted represent the contour of the images.

3.1 Analysis of the parameterR using thekNN search
strategy

As mentioned in section 2, in our approach we define a
parameter R) that lets to decide when to switch the ap-
proximation strategy. Our first experiment aims at com-
paring the behaviour of the pivot selecting techniyiidD

for PIAESA-KNN with some databases. The performance
is shown in Fig. 1 for a 10 and 20-dimensional space in
the unit hypercube, and Fig. 2 where two real datasets were
evaluated.

These figures show that there exists a value of the pa-
rameterR for which the average number of distances is
minimum (the behaviour is similar independently of the
pivot selecting techniques that is used). This result con-
firms that the achievement of our first objective (to ob-
tain a good estimation of the lower bound function) is ful-
filled when the minimum number of distances is computed.
Then, if we use a higher value d@?, marginal improve-
ments will be obtained in the function, losing the opportu-
nity to update the solution.

The optimum value ofR was obtained for every
dataset and used in the remaining experiments.
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Figure 1. Average number of distance computations for
increasing values oR. A 15000 points database training
set, L1 Minkowski distance and th®IMD pivot selection
technique were used.

It can be shown thaPiAESA always outperform the
AESA algorithm (whenR = 0) for some valueR > 0,
and this result does not depend on the type of search (even
range search is included). Although it seems that with
database€COLORS the algorithm does not improwsESA
results (see Fig.2), if a pivot selection technique is appro
priately chosen, the result can be improved. For example,
for this databaseRiAESA improvesAESA if the SSS pivot
technique is used.

3.2 Analysis of the parameterR using different pivot
techniques

In a second set of experiments, we have evaluated the be-
haviour ofPIAESA when the pivot selection techniques de-
scribed in section 2 were used to make the approximation
step in the earlier steps of the search. Both, experiments
with kNN andrange search were made. Results f&NN
search in Fig 3 withk = 1 (on the left) andk = 9 (on

the right) confirm that the optimum value &f increases

NASA database
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Figure 2. Average number of distance computations for
increasing values oR. A 15000 points database training
set, L1 Minkowski distance and th®IMD pivot selection
technique were used.

with k. Moreover, the different pivot methods have the
same behaviour regardless the valug:ofOne can view
also in Fig. 3 that the performanceRifAESA with SSSand
DPSpivot selection techniques are independenkathen

R > 5indimension 10 and? > 25 in dimension 20, due
to the number of pivots is fixed and lower than the training
set size, ie, the conditioR = ( is fulfilled in the algorithm
(line 3). Results for theange search in Fig 4 confirm that
the optimum value of? increases withr.

These results show that also whens larger than
1, PIAESA-kNN always outperform#\ESA algorithm for
some pivot techniques (when comparing the average num-
ber of distance computations). It must be noted that these
results have been obtained without any extra computational
cost in search time as the pivots are ordered in preprocess-
ing time.

Similar results have been obtained when thage
search is applied. In Fig.4 we show two experiments ap-
plying range search in a 18-dimensional space in the unit
hypercube for radius 1 and 4. In this cas#ID andMSD
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Figure 3. Average number of distance computations for
increasing values oR. A 15000 points database training
set andL; Minkowski distance were used.

obtain the best results, ahSD outperformsMMD when
the value of the range increases, as with increasing dimen-
sionality.

3.3 Comparison with other methods

The performances d?AESA and other state of the art al-
gorithms AESA, iAESA and LAESA) for kNN andrange
search are compared in Table 1 and Table 2 respectively.
Usually the performance of these algorithms when answer-
ing both range andNN queries worsens as the dimension
of the space grows. We have designed some experiments to
study these settings.

As expected, increasing the dimension of the data
makes the problem more difficult. HoweverAESA per-
forms consistently (up to 47% in dimension 24) better than
AESA. One can view that this reduction increases with the
dimensionality (in dimension 12 only a 15% of distances
were saved). Moreover, in th&IN case, this reduction also
increases witlk (up to dimension 20). This is an encourag-
ing feature for the extensibility of the method to other type
of search.

Moreover, it can be seen thaiSD method outper-
formsMMD both when increases the dimensionality of the
space and the radius usedamge search(see Table 2).

Tables 3 and 4 show the results of the experiment
when the objects belong to real databas¥31(ORS, NASA
andMNIST). Tables show tha@®iAESA has the best perfor-
mance, with slight improvements. Moreover, it was signif-
icant that the best results using thiNIST database were
obtained using the random technideies.

range search (r=1), dimension 18
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Figure 4. Average number of distance computations for
increasing values oR. A 15000 points database training
set andL; Minkowski distance in a 18-dimensional space
were used.

4 Conclusions

In this work we have analized experimentally the behaviour
of the PIAESA algorithm for several similarity queries.
The experimental evaluation shows tHIAESA outper-
forms AESA and other state of the art fast methods in-
dependently of the type of search. Moreover, this ap-
proach improves significantly their behaviour with the di-
mensionality: saving 15% of distance computations in a
12-dimensional space up to 46% of distance computations
in a 24-dimensional space using the nearest neighbour
search. This improvement is even bigger wkkN and
range searches up to 20-dimensional spaces.

The disparity of results depending on the pivot selec-
tion technique suggests that there is room for improvement
in this point. As a consequence, we are interested in ex-
ploring other pivot selection techniques studying how the
use of different set of pivots can affect the behaviour of our
approach.
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Table 1. The three first columns represent the average num-
ber of distances (nd) computed by some state of the art

algorithms for different values of with unit hypercube

database and different dimensions. The two last columns

represent the improvement (in %) BFAESA versusAESA
(Pi/A) and versusAESA (Pi/iA). The third column shows
in brackets the optimum value @ or eachk. The pivot

Table 2. Average number of distance computations by sev-
eral state of the art algorithms for different values of the

radiu

sr usingrange search with a unit hypercube database

and several dimensions. The third and fourth column show
in brackets the optimum value @t for eachr and tech-

selection technique used MAESA wasMSD.

dimension 12
k | AESA | IAESA PIAESA Pi-A Pi—iA
nd nd nd % impr. | % impr.
1| 54.3 49.9 47.0(5) 155 6.2
3| 839 76.2 70.2(5) 19.5 8.5
5| 105.6 | 95.7 88.4(5) 19.5 8.7
7| 1241 | 1122 103.9(5) 19.4 8
9| 141.1 | 127.6 118.2(5) 194 8
dimension 18
k | AESA | IAESA PIAESA Pi-A Pi—iA
nd. nd nd % impr. | % impr.
1| 2749 | 231.7 | 200.6(20) 37.0 15.5
3| 4629 | 401.7 | 332.7(30) 39.1 20.7
5| 588.3 | 518.6 | 423.9(40) 38.8 22.3
7| 691.2 | 616.6 | 496.9(50) 39.1 24.1
9| 780.6 | 701.0 | 561.5(50) 39.0 24.8
dimension 24
k | AESA | IAESA PIAESA Pi-A Pi—iA
nd nd nd % impr. | % impr.
1| 1277.8| 1120.2| 869.7(85) 46.9 28.8
3 | 2103.8| 1901.8| 1486.0(145)|| 41.6 28.0
5 | 2589.6| 2364.9 | 1880.4(180)|| 37.7 25.8
7 | 2953.9| 2717.2 | 2190.0(200)| 34.9 24.1
9 | 3264.8| 3003.2 | 2462.3(220)| 32.6 22.0

the program CONSOLIDER INGENIO 2010 (CSD2007-
00018).
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