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ABSTRACT
Effective similarity search indexing in general metric
spaces has traditionally received special attention in several
areas of interest like pattern recognition, computer vision
or information retrieval. A typical method is based on the
use of a distance as a dissimilarity function (not restricting
to Euclidean distance) where the main objective is to speed
up the search of the most similar object in a database by
minimising the number of distance computations. Several
types of search can be defined, being thek-nearest neigh-
bour or therange search the most common.

AESA is one of the most well known of such algo-
rithms due to its performance (measured in distance com-
putations).PiAESA is anAESA variant where the main ob-
jective has changed. Instead of trying to find the best near-
est neighbour candidate at each step, it tries to find the ob-
ject that contributes the most to have a bigger lower bound
function, that is, a better estimation of the distance.

In this paper we extend and testPiAESA to support
several similarity queries. Our empirical results show that
this approach obtains a significant improvement in perfor-
mance when comparing with competing algorithms.
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1 Introduction

Pattern recognition [1], image retrieval [2], or multimedia
databases [3] are some examples of fields where methods
based on similarity search are having an increasing interest
due to its simplicity and adaptability to work with com-
plex objects. Of particular importance is the most general
approach to similarity search when it is modelled in metric
spaces. Accordingly, the metric indexing techniques can be
applied to many search problems, allowing different forms
of complex queries. Moreover, this generality allows that
the functionality of the techniques can be modified or in-
creased.

The aim of many fast search algorithms is to reduce
the search time, by reducing the number of distance com-
putations. This is specially interesting when the computa-
tion of the distance is particularly expensive. Some exam-

ples are the context shape distance [4], distances between
histograms [5], edit distance between strings [6], trees [7]
or graphs [8], etc. In order to achieve such objective, it
is usual to exploit some type of restricting property that
the similarity measure should meet, being the triangular in-
equality the most popular and effective.

One of the most cited algorithms in this general con-
text is the Approximating and Eliminating Search Algo-
rithm (AESA), introduced by E. Vidal in 1986 [9]. This al-
gorithm is classified as a pivot-based metric space search
algorithm in some taxonomies [10][11]. A pivot-based
technique is a method that uses a subset of objects in the
database for speeding up the search. Usually, the dis-
tances between the pivots and the rest (or some of them)
of the points in the database are stored in preprocess time
and used during the search.AESA, originally defined for
searching the Nearest Neighbour (NN), works by iterating
two steps: first it searches (heuristically) for a candidate
to nearest neighbour (the approximating step), and then it
uses this candidate to discard all the objects in the database
than can not be nearest than the current candidate toNN
(the elimination step). To carry out both steps, the approxi-
mating and eliminating steps, a lower bound of the distance
function is used as an approximation of the true distance.
This lower bound function is updated as new information
becomes available.AESA focuses on searching goodNN
candidates, the effectivity of the elimination step is justa
consequence of that.

The main drawback ofAESA is its quadratic space
complexity with respect to the size of the database. In fact,
the space complexity, becomes a bottleneck when the algo-
rithm is applied to large databases. Consequently, several
solutions have been proposed in the last years to weaken
this problem, for example, splitting the database [12], re-
ducing and selecting the stored distances, [13], [14], etc.
Despite the storage requirements ofAESA can be very high,
there are applications for whichAESA is a feasible solu-
tion. Moreover, some authors have focused their work in
reducing furthermore the number of distance computations
of this algorithm ([15]) but at the expense of a significant
increase in searching time.

PiAESA is a recently proposed fastNN search algo-
rithm. This algorithm reduces significantly the number of
distance computations with respect toAESA without in-



creasing the overhead of the search [16]1. The idea behind
the algorithm consists on changing the focus with respect
to AESA. On the first iterations it searches for the pivots that
contribute the most to have an accurate lower bound func-
tion (but they can be bad candidates toNN), switching to
the usualAESA behaviour when the lower bound function
is precise enough.

In this work we extend thePiAESA to other types of
similarity queries:k-Nearest Neighbours (kNN) andrange
search. We also compare experimentally the effectiveness
of our extensions withAESA and other state of the art tech-
niques.

2 The algorithm

Given a new objectq (query) and a databaseT , in
each step,AESA (Approximating Eliminating Search Al-
gorithm) searches for a good candidate toNN avoiding the
computation of as many distances as possible. Instead of
searching the objectt ∈ T that minimises the distance by
computing all the distancesd(q, t) for eacht ∈ T , it uses a
lower bound functionG(q, t) = maxp∈V |d(q, p)−d(p, t)|,
whereV ⊂ T is the set of objects used asNN candidate in
the previous iterations of the search. Sincep andt are ob-
jects in the database, the distancesd(p, t) are computed in
preprocess time and stored in a table. Each time a new can-
didatep ∈ T is selected, the distanced(q, p) is computed
and thenG is updated. Then, applying the triangle inequal-
ity, all the objectst ∈ T whose lower bound distance to
the query (G(q, t)) is larger than the distance to the cur-
rent nearest neighbour candidate (dmin) can be eliminated
of the search. On the other hand, the objectt ∈ T that
minimizes the value ofG(q, t), is selected as new candi-
date in each step. The aim of this selection is to find a
good candidate for: first, reducedmin allowing the elimi-
nation of more objects in the database and second, update
G(q, t) ∀t ∈ T . Note that in the earlier steps of the search
V is very small, and then, the lower bounds are a very bad
estimates of the true distanced. This behaviour worsens
when the dimensionality increases.

In [16] PiAESA (see Algorithm 1) was proposed. The
idea is to focus on selecting objects in the database that are
going to contribute increasing the most the lower bound
function. When no further increases are expected the al-
gorithm switches to the usualAESA behaviour: focus on
obtaining goodNN candidates. InPiAESA the objects of
the database are sorted in a list, in preprocess, by their ex-
pected contribution to increase the lower bound functions.
This list of pivots (P in the algorithm) is used by the search
algorithm. A parameterR is used to assess if the lower
bound is a good estimation of the distance. This parameter
measures the number of successive iterations the best can-
didate toNN has not changed. If theNN candidate does
not change in a large number of iterations that means the

1Note to the referees: this paper is not publicly available. It was sent
some time ago to a journal and now is still under review.

lower bound has stabilized and no further improvements
are expected by increasing the setV . In this moment the
algorithm changes its strategy and looks for good candi-
dates toNN. Obviously, the switch can be also triggered if
the list of pivots is exhausted. This can happen if the list of
pivotsP does not cover the full database.

Algorithm 1 : PiAESA-1NN
Input : T : training set;

q: query;
P ⊂ T : list of selected ordered pivots;
R ∈ N: parameter to control the switch

of the approximation criterion;
Output : pmin ∈ T : nearest neighbour

dmin: distance to the nearest neighbour;

for t ∈ T do G(q, t) = 0;1

i = 0;2

while (P 6= ∅ and i < R) do3

approximating step selecting the next pivots4

in P ; T = T − {s};
update the nearest neighbourpmin; //new NN5

for t ∈ T do updateG(q, t);6

min = argminG(q, t);7

i = i+ 1;8

if min > minprev then i = 0; //G has9

changed
end10

while T 6= ∅ do11

s = argmint∈TG(q, t); T = T − {s};12

update the nearest neighbourpmin;13

foreacht ∈ T do14

updateG(q, t);15

if G(q, t) ≥ dmin then T = T − {t};16

end17

end18

Note that whenR = 0 the algorithm is exactly the
AESA, since the first loop (lines 3 to 10) is skipped.

We are going to study several ways of building the list
of pivotsP . The use of pivot selection techniques in fast
pivot-based search algorithms seems a good choice.

On the following we review some techniques:

• Random Pivot Selection, RPS.

This is the straightforward technique where pivots are
selected randomly.

• Outliers Selection Techniques.

They refer to incremental selection methods locating
objects far away from each other and to the rest of
objects. Starting with a randomly selected pivot (p1),
two strategies are commonly used to select the next
pivot [13].

– Maximum of Minimum Distances, MMD
pi = argmaxs∈(T−Pi)

mini−1
j=1 d(s, pj)



– Maximum Sum of Distances, MSD
pi = argmaxs∈(T−Pi)

∑i−1
j=1 d(s, pj)

whereT is the training set andPi = {p1, . . . , pi}.
The list of pivots is then,P = (p1, . . . , p|T |).

Note that all the objects in the database can appear
in the pivot list (like in theRPS method), that means
the algorithm is just an ordering of the objects in the
database.

• Sparse Spatial Selection, SSS.

This method [17] dynamically selects a set of pivots
whose distance to any already selected pivot is greater
than a percentage of the maximum distance from the
database. If two objects do not fulfil the previous con-
dition, one of them is eliminated from the pivot list
and then it can not be an enumeration of all the ob-
jects in the database.

• Dynamic Pivot Selection, DPS.

This technique, proposed in [18], is a dynamic exten-
sion of theSSS method where the deletion of pivots
is allowed if it can be proved a pivot becomes redun-
dant. As in the previous method, it can not be an enu-
meration of all the objects in the database. This is the
reason why a second condition was added in the new
approach to switch the strategy (see line 3 in Algo-
rithm 1) when the list of pivots was empty.

In this work we use several types of queries. In next
sections, we introduce the major modifications to be made
in thePi-AESA-1NN algorithm to apply them.

2.1 Extension tok-nearest neighbour search

To adapt thePiAESA-1NN to a kNN search strategy, it is
necessary to change two main elements in the algorithm:

• Output: thek nearest objects to the query and their
distances should be recovered (instead ofpmin and
dmin)

• the elimination criterion in line 16 should be changed
by G(t) ≥ dkNN , wheredkNN is the distance to thek
nearest neighbour.

2.2 Extension to range search

To adaptPiAESA-1NN to a range search, a specific value
of the distance from the query is defined (distance to the
query) and it is necessary to change two main elements in
the algorithm:

• Output: given a value for the range (radius),r, all the
objects whose distance to the query is lower thanr are
recovered

• the elimination criterion in line 16 should be changed
byG(t) ≥ r

3 Experimental results

The primary purpose of this work is to study the extendibil-
ity of PiAESA-1NN when therange search or the kNN
search is used. In order to check that, we evaluate these
techniques in several metric spaces, such as synthetic and
real vectors, and a string database. In all the experiments
the distance table is stored in main memory.

In this work we have experimented with artificial and
real data to check the performance ofPiAESA when it is
extended to different types of search. Moreover, we have
compared our proposal with other algorithms competing
AESA (computing less distances or saving space).

The used datasets are:

• Data extracted from a uniform distribution in the unit
hypercube with database sizes ranging from 500 to
15 000 and dimensionality from 2 to 24.

• Real image databases with vectorial representation
(NASA represented by features vector of 20 compo-
nents, andCOLORS represented by vectors of 112
components, both can be found inhttp://www.
sisap.com)

• Contour strings from theMNIST database, a collec-
tion of 60 000 images of handwriting digits (http:
//yann.lecun.com/exdb/mnist/).

In this work, and for all the collections, a subset of
15 000 objects were used for training and 1 000 for testing.
Moreover, for databases with a vectorial representation of
the data, the MinkowskyL1 distance were used. We have
used the edit distance for theMNIST database, where the
strings extracted represent the contour of the images.

3.1 Analysis of the parameterR using thekNN search
strategy

As mentioned in section 2, in our approach we define a
parameter (R) that lets to decide when to switch the ap-
proximation strategy. Our first experiment aims at com-
paring the behaviour of the pivot selecting techniqueMMD
for PiAESA-kNN with some databases. The performance
is shown in Fig. 1 for a 10 and 20-dimensional space in
the unit hypercube, and Fig. 2 where two real datasets were
evaluated.

These figures show that there exists a value of the pa-
rameterR for which the average number of distances is
minimum (the behaviour is similar independently of the
pivot selecting techniques that is used). This result con-
firms that the achievement of our first objective (to ob-
tain a good estimation of the lower bound function) is ful-
filled when the minimum number of distances is computed.
Then, if we use a higher value ofR, marginal improve-
ments will be obtained in the function, losing the opportu-
nity to update the solution.

The optimum value ofR was obtained for every
dataset and used in the remaining experiments.
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Figure 1. Average number of distance computations for
increasing values ofR. A 15 000 points database training
set,L1 Minkowski distance and theMMD pivot selection
technique were used.

It can be shown thatPiAESA always outperform the
AESA algorithm (whenR = 0) for some valueR > 0,
and this result does not depend on the type of search (even
range search is included). Although it seems that with
databaseCOLORS the algorithm does not improveAESA
results (see Fig.2), if a pivot selection technique is appro-
priately chosen, the result can be improved. For example,
for this database,PiAESA improvesAESA if the SSS pivot
technique is used.

3.2 Analysis of the parameterR using different pivot
techniques

In a second set of experiments, we have evaluated the be-
haviour ofPiAESA when the pivot selection techniques de-
scribed in section 2 were used to make the approximation
step in the earlier steps of the search. Both, experiments
with kNN andrange search were made. Results forkNN
search in Fig 3 withk = 1 (on the left) andk = 9 (on
the right) confirm that the optimum value ofR increases
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Figure 2. Average number of distance computations for
increasing values ofR. A 15 000 points database training
set,L1 Minkowski distance and theMMD pivot selection
technique were used.

with k. Moreover, the different pivot methods have the
same behaviour regardless the value ofk. One can view
also in Fig. 3 that the performance ofPiAESA with SSS and
DPS pivot selection techniques are independent ofR when
R > 5 in dimension 10 andR > 25 in dimension 20, due
to the number of pivots is fixed and lower than the training
set size, ie, the conditionP = ∅ is fulfilled in the algorithm
(line 3). Results for therange search in Fig 4 confirm that
the optimum value ofR increases withr.

These results show that also whenk is larger than
1, PiAESA-kNN always outperformsAESA algorithm for
some pivot techniques (when comparing the average num-
ber of distance computations). It must be noted that these
results have been obtained without any extra computational
cost in search time as the pivots are ordered in preprocess-
ing time.

Similar results have been obtained when therange
search is applied. In Fig.4 we show two experiments ap-
plying range search in a 18-dimensional space in the unit
hypercube for radius 1 and 4. In this case,MMD andMSD
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Figure 3. Average number of distance computations for
increasing values ofR. A 15 000 points database training
set andL1 Minkowski distance were used.

obtain the best results, andMSD outperformsMMD when
the value of the range increases, as with increasing dimen-
sionality.

3.3 Comparison with other methods

The performances ofPiAESA and other state of the art al-
gorithms (AESA, iAESA and LAESA) for kNN and range
search are compared in Table 1 and Table 2 respectively.
Usually the performance of these algorithms when answer-
ing both range andkNN queries worsens as the dimension
of the space grows. We have designed some experiments to
study these settings.

As expected, increasing the dimension of the data
makes the problem more difficult. HoweverPiAESA per-
forms consistently (up to 47% in dimension 24) better than
AESA. One can view that this reduction increases with the
dimensionality (in dimension 12 only a 15% of distances
were saved). Moreover, in thekNN case, this reduction also
increases withk (up to dimension 20). This is an encourag-
ing feature for the extensibility of the method to other types
of search.

Moreover, it can be seen thanMSD method outper-
formsMMD both when increases the dimensionality of the
space and the radius used inrange search(see Table 2).

Tables 3 and 4 show the results of the experiment
when the objects belong to real databases (COLORS, NASA
andMNIST). Tables show thatPiAESA has the best perfor-
mance, with slight improvements. Moreover, it was signif-
icant that the best results using theMNIST database were
obtained using the random techniqueRPS.
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Figure 4. Average number of distance computations for
increasing values ofR. A 15 000 points database training
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were used.

4 Conclusions

In this work we have analized experimentally the behaviour
of the PiAESA algorithm for several similarity queries.
The experimental evaluation shows thatPiAESA outper-
forms AESA and other state of the art fast methods in-
dependently of the type of search. Moreover, this ap-
proach improves significantly their behaviour with the di-
mensionality: saving 15% of distance computations in a
12-dimensional space up to 46% of distance computations
in a 24-dimensional space using the nearest neighbour
search. This improvement is even bigger withkNN and
range searches up to 20-dimensional spaces.

The disparity of results depending on the pivot selec-
tion technique suggests that there is room for improvement
in this point. As a consequence, we are interested in ex-
ploring other pivot selection techniques studying how the
use of different set of pivots can affect the behaviour of our
approach.
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Table 1. The three first columns represent the average num-
ber of distances (nd) computed by some state of the art
algorithms for different values ofk with unit hypercube
database and different dimensions. The two last columns
represent the improvement (in %) ofPiAESA versusAESA
(Pi/A) and versusiAESA (Pi/iA). The third column shows
in brackets the optimum value ofR or eachk. The pivot
selection technique used inPiAESA wasMSD.

dimension 12

k AESA iAESA PiAESA Pi–A Pi–iA
nd nd nd % impr. % impr.

1 54.3 49.9 47.0(5) 15.5 6.2

3 83.9 76.2 70.2(5) 19.5 8.5

5 105.6 95.7 88.4(5) 19.5 8.7

7 124.1 112.2 103.9(5) 19.4 8

9 141.1 127.6 118.2(5) 19.4 8

dimension 18

k AESA iAESA PiAESA Pi–A Pi–iA

nd. nd nd % impr. % impr.

1 274.9 231.7 200.6(20) 37.0 15.5

3 462.9 401.7 332.7(30) 39.1 20.7

5 588.3 518.6 423.9(40) 38.8 22.3

7 691.2 616.6 496.9(50) 39.1 24.1

9 780.6 701.0 561.5(50) 39.0 24.8

dimension 24

k AESA iAESA PiAESA Pi–A Pi–iA

nd nd nd % impr. % impr.

1 1277.8 1120.2 869.7(85) 46.9 28.8

3 2103.8 1901.8 1486.0(145) 41.6 28.0

5 2589.6 2364.9 1880.4(180) 37.7 25.8

7 2953.9 2717.2 2190.0(200) 34.9 24.1

9 3264.8 3003.2 2462.3(220) 32.6 22.0

the program CONSOLIDER INGENIO 2010 (CSD2007-
00018).
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